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A special class of optimal control problems with complementarity constraints

on the control functions is studied. It is shown that such problems possess optimal

solutions whenever the underlying control space is a �rst-order Sobolev space.

After deriving necessary optimality conditions of strong stationarity-type, a penalty

method based on the Fischer–Burmeister function is suggested and its theoretical

properties are analyzed. Finally, the numerical treatment of the problem is discussed

and results of computational experiments are presented.
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1. Introduction

Complementarity conditions appear in many mathematical optimization problems arising from

real-world applications, and this phenomenon is not restricted to the �nite-dimensional setting,

see Luo et al. [1996], Ulbrich [2011], Wachsmuth [2015] and the references therein. A prominent

example for a complementarity problem in function spaces is the optimal control of the obstacle

problem, see Harder and Wachsmuth [2018a] for an overview of existing literature. Mathematical

problems with complementarity constraints (MPCCs) su�er from an inherent lack of regularity,
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see [Ye et al., 1997, Proposition 1.1] and [Mehlitz and Wachsmuth, 2016, Lemma 3.1] for the

�nite- and in�nite-dimensional situation, respectively, which is why the construction of suitable

optimality conditions, constraint quali�cations, and numerical methods is a challenging task.

Using so-called NCP functions, complementarity constraints can be transformed into possibly

nonsmooth equality constraints that can be handled by, e.g., Newton-type methods, see De Luca

et al. [2000], Facchinei et al. [1998], Ulbrich [2011] and the references therein. A satisfying

overview of NCP functions can be found in Sun and Qi [1999]. One of the most popular NCP-

functions is the so-called Fischer–Burmeister function ϕ : R2 → R given by

∀a,b ∈ R : ϕ(a,b) :=
√
a2 + b2 − a − b, (1.1)

see Fischer [1992]. Obviously, one has

∀a,b ∈ R : ϕ(a,b) = 0 ⇐⇒ a ≥ 0 ∧ b ≥ 0 ∧ ab = 0,

which (by de�nition) holds for all NCP functions. Thus, NCP-functions allow the replacement of

a complementarity condition by a single equality constraint. In Ulbrich [2011], it is shown that

NCP-functions can be applied to solve complementarity problems in function space settings as

well.

In this paper, an optimal control problem with complementarity constraints on the control

functions is studied. Control complementarity constraints have been the subject of several

recent papers including Clarke and de Pinho [2010], Guo and Ye [2016], Mehlitz and Wachsmuth

[2018], Pang and Stewart [2008]. Classically, such constraints arise from reformulating a bilevel

optimal control problem with lower level control constraints as a single-level problem using

lower level �rst-order optimality conditions, see [Mehlitz and Wachsmuth, 2016, Section 5]. On

the other hand, control complementarity constraints are closely related to switching conditions

on the control functions, see Clason et al. [2016a,b, 2017] and the references therein. Here, it will

be shown that such problems possess an optimal solution if the control space is taken as H 1(Ω).
Recently, optimal control problems with control constraints in �rst-order Sobolev spaces were

studied in Deng et al. [2018a,b].

It will also be demonstrated that the Fischer–Burmeister function can be used to design

penalty methods that can be exploited to �nd minimizers of the corresponding optimal control

problem. One major advantage of this procedure is that the resulting penalized problems are

unconstrained. In contrast, simply penalizing the equilibrium condition and leaving the non-

negativity conditions in the constraints would lead to the appearance of Lagrange multipliers

from H 1(Ω)? in the necessary optimality conditions of the penalized problems, which would

cause some theoretical and numerical di�culties due to the presumed high regularity of the

control space, see Deng et al. [2018b].

The paper is organized as follows: In the remainder of this section, the basic notation is

introduced. Afterwards, the optimal control problem is formally stated and the existence of

solutions is discussed in Section 2. Necessary optimality conditions of strong stationarity-type

are derived in Section 3. Section 4 is dedicated to the theoretical investigation of a penalization

procedure for the H 1
-setting. The practical implementation of the proposed numerical method

and some corresponding examples are discussed in Section 5 and Section 6, respectively.
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Basic notation For a Banach space X, ‖·‖X denotes its norm. The expression X?
is used

to represent the topological dual space of X. Let 〈·, ·〉X : X? × X → R be the associated dual

pairing. For another Banach spaceY,L [X,Y] represents the Banach space of all bounded, linear

operators which map from X to Y. For F ∈ L [X,Y], F? ∈ L
[
Y?,X?

]
denotes its adjoint. If

X ⊂ Y holds true while the associated identity mapping from X into Y is continuous, then X

is said to be continuously embedded into Y, denoted by X ↪→ Y.

Recall that a setA ⊂ X is said to be weakly sequentially closed if all the limit points of weakly

convergent sequences contained in A belong to A as well, and that any closed, convex set is

weakly sequentially closed by Mazur’s lemma. For any A ⊂ X, de�ne the polar cone

A◦ :=
{
x? ∈ X?

��∀x ∈ A :

〈
x?, x

〉
X
≤ 0

}
,

as well as the annihilator

A⊥ :=
{
x? ∈ X?

��∀x ∈ A :

〈
x?, x

〉
X
= 0

}
.

By de�nition,A⊥ = A◦∩(−A)◦ holds true. It is well known thatA◦ is a nonempty, closed, convex

cone while A⊥ is a closed subspace of X?
. For an arbitrary vector x ∈ X, set x⊥ := {x}⊥ for the

sake of brevity.

Finally, if a function F : X → Y is Fréchet di�erentiable at x̄ ∈ X, then the bounded, linear

operator F ′(x̄) ∈ L [X,Y] denotes its Fréchet derivative at x̄ .

Function spaces For an arbitrary bounded domain Ω ⊂ Rd
and p ∈ [1,∞], Lp (Ω) denotes

the usual Lebesgue space of (equivalence classes of) Lebesgue measurable functions mapping

from Ω to R, which is equipped with the usual norm. It is well known that for p ∈ [1,∞), the

space Lp (Ω)? is isometric to Lp
′

(Ω) for p ′ ∈ (1,∞] such that 1/p + 1/p ′ = 1. The associated dual

pairing is given by

∀u ∈ Lp (Ω) ∀v ∈ Lp
′

(Ω) : 〈v,u〉Lp (Ω) :=

∫
Ω
u(x)v(x)dx .

Recall that L2(Ω) is a Hilbert space which will be identi�ed with L2(Ω) by means of Riesz’

representation theorem. For an arbitrary function u ∈ L1(Ω), suppu := {x ∈ Ω |u(x) , 0}

denotes the support of u. Supposing that A ⊂ Ω is a Lebesgue measurable set, χA : Ω → R

represents the characteristic function of A which is 1 for all x ∈ A and 0 else. Clearly, for a

bounded domain Ω and p ∈ [1,∞), the relation ‖χA‖Lp (Ω) = |A|
1/p

is obtained where |A| denotes

the Lebesgue measure of A.

The Banach space of all weakly di�erentiable functions from L2(Ω) whose weak derivatives

belong to L2(Ω) is denoted by H 1(Ω). It is equipped with the usual norm

∀y ∈ H 1(Ω) : ‖y ‖H 1(Ω) :=
(
‖y ‖2L2(Ω) +

∑d
i=1



∂xiy

2

L2(Ω)

)
1/2

.

Clearly, H 1(Ω) is a Hilbert space. However, its dual H 1(Ω)? will not be identi�ed with H 1(Ω)
so that H 1(Ω), L2(Ω), and H 1(Ω)? form a so-called Gelfand triple, i.e., they satisfy the relations

H 1(Ω) ↪→ L2(Ω) ↪→ H 1(Ω)?. A detailed study of duality in Sobolev spaces can be found in

[Adams and Fournier, 2003, Section 3].

3



Whenever Ω satis�es the so-called cone condition, see [Adams and Fournier, 2003, Section 4],

then the embedding H 1(Ω) ↪→ L2(Ω) is compact, see [Adams and Fournier, 2003, Theorem 6.3].

In this paper, E ∈ L
[
H 1(Ω), L2(Ω)

]
is used to denote the latter.

For later use, let L2

+(Ω) ⊂ L2(Ω) andH 1

+(Ω) ⊂ H 1(Ω) denote the nonempty, closed, and convex

cones of almost everywhere nonnegative functions in L2(Ω) and H 1(Ω), respectively.

2. Problem se�ing and existence of optimal solutions

In this work, the model complementarity problem

1

2
‖D[y] − yd‖

2

D + J (u,v) → min

y ,u ,v

A[y] − B[u] − C[v] = 0

(u,v) ∈ C

 (OC
4
)

is studied, where for some α1,α2 ≥ 0 and ε ≥ 0,

∀u,v ∈ H 1(Ω) : J (u,v) :=
α1

2
‖u‖2L2(Ω) +

α2

2
‖v ‖2L2(Ω) +

ε
2

(
‖u‖2H 1(Ω) + ‖v ‖

2

H 1(Ω)

)
,

and C denotes the complementarity set

C :=
{
(w, z) ∈ H 1(Ω)2

��
0 ≤ w(x) ⊥ z(x) ≥ 0 a.e. on Ω

}
.

Observing that A can represent a di�erential operator, one can interpret (OC
4
) as an optimal

control problem with complementarity constraints on the control functions that can be used to

model switching requirements on the controls. In the context of ordinary di�erential equations,

optimal control problems with mixed control-state complementarity constraints have been

studied in Clarke and de Pinho [2010], Guo and Ye [2016], Pang and Stewart [2008] recently. In

Harder and Wachsmuth [2018a,b], Mehlitz and Wachsmuth [2018], the interested reader can

�nd some theoretical investigations of optimization problems with complementarity constraints

with respect to L2

+(Ω) andH 1

+(Ω). Recently, optimal control problems with switching constraints

related to (OC
4
) have been studied in Clason et al. [2016b, 2017].

For the remainder of this work, the following standing assumptions on the problem (OC
4
)

are postulated.

Assumption 2.1. The domain Ω ⊂ Rd is nonempty, bounded, and satis�es the cone condition.
Let the observation space D as well as the state space Y be Hilbert spaces. The target yd ∈ D

will be �xed. The operator A ∈ L
[
Y,Y?

]
is an isomorphism while B,C ∈ L

[
H 1(Ω),Y?

]
and

D ∈ L [Y,D] are arbitrarily chosen. Finally, ε > 0 holds.

LetS ∈ L
[
H 1(Ω)2,D

]
be the control-to-observation operator which maps any pair of controls

(u,v) ∈ H 1(Ω)2 to D[y], where y ∈ Y is the associated uniquely determined solution of the

state equation

A[y] − B[u] − C[v] = 0.

Then, S is a well-de�ned continuous linear operator since A is assumed to be an isomorphism.

In the following, the existence of optimal solutions to (OC
4
) is discussed. First, the overall

H 1
-setting needed for the further theoretical treatment of (OC

4
) is analyzed in Section 2.1. Some

comments on the setting where controls come from L2(Ω) are presented in Section 2.2.
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2.1. First-order Sobolev spaces

Since the objective function of (OC
4
) is continuously Fréchet di�erentiable, convex, and bounded

from below, the only critical point for existence is the weak sequential closedness of the com-

plementarity set C.

Lemma 2.2. The set C is closed.

Proof. Let {(uk ,vk )}k ∈N ⊂ C be a sequence converging to (ū, v̄) ∈ H 1(Ω)2. Due to the continuity

of the embedding H 1(Ω) ↪→ L2(Ω), the strong convergences uk → ū and vk → v̄ hold in L2(Ω).
Noting that the cone L2

+(Ω) is closed in L2(Ω), the relations {uk }k ∈N, {vk }k ∈N ⊂ L2

+(Ω) yield

ū, v̄ ∈ L2

+(Ω).
Hence, by supposing (ū, v̄) < C, there is a measurable set Ω′ ⊂ Ω of positive measure and

some ϵ > 0 such that ū(x)v̄(x) ≥ ϵ holds for almost all x ∈ Ω′. Noting that ūv̄ ∈ L1(Ω) holds true,

‖ūv̄ ‖L1(Ω) ≥ ϵ |Ω
′ | > 0 follows. On the other hand, Hölder’s inequality and the boundedness of

{uk }k ∈N in L2(Ω) yield that {ukvk }k ∈N ⊂ L1(Ω) converges in L1(Ω) to ūv̄ since

‖ukvk − ūv̄ ‖L1(Ω) ≤ ‖uk (vk − v̄)‖L1(Ω) + ‖(uk − ū)v̄ ‖L1(Ω)

≤ ‖uk ‖L2(Ω) ‖vk − v̄ ‖L2(Ω) + ‖uk − ū‖L2(Ω) ‖v̄ ‖L2(Ω)
k→∞
−−−−→ 0.

However, due to ‖ukvk ‖L1(Ω) = 0 for all k ∈ N, the assumption ‖ūv̄ ‖L1(Ω) > 0 cannot be satis�ed.

Thus, (ū, v̄) ∈ C, and, consequently, C is closed. �

Although C is a nonconvex set, the compactness of the embedding H 1(Ω) ↪→ L2(Ω) can be

used in order to show that C is weakly sequentially closed.

Lemma 2.3. The set C is weakly sequentially closed.

Proof. First, a similar proof as for Lemma 2.2 shows that the complementarity set in L2(Ω) given

by

C̃ :=
{
(w, z) ∈ L2(Ω)2

��
0 ≤ w(x) ⊥ z(x) ≥ 0 a.e. on Ω

}
=

{
(w, z) ∈ L2

+(Ω)
2

�� 〈w, z〉L2(Ω) = 0

}
(2.1)

is closed as well.

Next, choose a sequence {(uk ,vk )}k ∈N ⊂ C converging weakly to (ū, v̄) ∈ H 1(Ω)2. Exploiting

uk ⇀ ū and vk ⇀ v̄ as well as the compactness of the embedding H 1(Ω) ↪→ L2(Ω), there is a

subsequence of {(uk ,vk )}k ∈N that converges strongly to (ū, v̄) in L2(Ω)2. Due to the closedness

of C̃ in L2(Ω)2, (ū, v̄) ∈ C̃ ∩H 1(Ω)2 holds, and, consequently, (ū, v̄) is already an element of C.

Thus, C is weakly sequentially closed. �

As a corollary, the existence of optimal solutions to (OC
4
) is obtained.

Corollary 2.4. The problem (OC
4
) possesses an optimal solution.

Proof. The objective functional of (OC
4
) is continuously Fréchet di�erentiable, convex, and (due

to ε > 0) coercive. Furthermore, by Lemma 2.3, the complementarity set C is weakly sequentially

closed, and so is the feasible set induced by the PDE constraint. Hence, the claim follows by

application of Tonelli’s direct method. �
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2.2. Lebesgue spaces

In the remainder of this section, the existence of optimal controls in L2(Ω) is investigated. In

this case, the corresponding model problem is given by

1

2
‖D[y] − yd‖

2

D +
α1

2
‖u‖2L2(Ω) +

α2

2
‖v ‖2L2(Ω) → min

y ,u ,v

A[y] − B̃[u] − C̃[v] = 0

(u,v) ∈ C̃

 (OCL2 )

where the complementarity set C̃ has been de�ned in (2.1). Furthermore, B̃, C̃ ∈ L
[
L2(Ω),Y?

]
need to be chosen. As already shown in the proof of Lemma 2.3, C̃ is closed. However, C̃ is in

general not weakly sequentially closed, as the following example shows.

Example 2.5. For any k ∈ N, de�ne the two open sets

Pk :=
{
x ∈ Rd

���∏d
j=1

sin(kπx j ) > 0

}
,

Qk :=
{
x ∈ Rd

���∏d
j=1

sin(kπx j ) < 0

}
.

Now, set uk := χΩ∩Pk and vk := χΩ∩Qk . Obviously, (uk ,vk ) ∈ C̃ holds true for all k ∈ N.
Furthermore, the sequence {(uk ,vk )}k ∈N ⊂ L2(Ω)2 converges weakly to the point ( 1

2
χΩ,

1

2
χΩ),

which does not belong to C̃. Thus, C̃ is not weakly sequentially closed.

It may still happen that there exists an optimal solution of the complementarity-constrained

problem (OCL2 ), as illustrated by the following example. For D := L2(Ω) and Y := H 1(Ω),
consider the elliptic optimal control problem

1

2
‖E[y] − yd‖

2

L2(Ω) +
α1

2
‖u‖2L2(Ω) +

α2

2
‖v ‖2L2(Ω) → min

y ,u ,v

−∇ · (C∇y) + ay = χΩuu + χΩvv a.e. on Ω

®n · (C∇y) + qy = 0 a.e. on bd Ω

(u,v) ∈ C̃


(2.2)

where α1,α2 > 0 are constants,C ∈ L∞(Ω; Sd (R)) (where Sd (R) denotes the set of real symmetric

d × d matrices) satis�es the condition of uniform ellipticity, i.e.,

∃c0 > 0 ∀x ∈ Ω ∀ξ ∈ Rd
: ξ>C(x)ξ ≥ c0 |ξ |

2

2
. (2.3)

Moreover, a ∈ L∞(Ω) and q ∈ L∞(bd Ω) are nonnegative and satisfy ‖a‖L∞(Ω) + ‖q‖L∞(bd Ω) > 0,

and Ωu ,Ωv ⊂ Ω are measurable sets of positive measure satisfying Ωu ∪ Ωv = Ω. Here, the

PDE constraint is interpreted in the weak sense. It is well known that the associated di�erential

operator A is elliptic, see [Evans, 2010, Section 6], and, thus, an isomorphism.

Proposition 2.6. The problem (2.2) possesses an optimal solution.
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Proof. Assume without loss of generality thatα1 ≤ α2; the other case can be handled analogously.

Consider then the surrogate optimal control problem

1

2
‖E[y] − yd‖

2

L2(Ω) +
1

2



(√α1χΩu +
√
α2χΩv \Ωu

)
z


2

L2(Ω)
→ min

y ,z

−∇ · (C∇y) + ay = z a.e. on Ω

®n · (C∇y) + qy = 0 a.e. on bd Ω

z ∈ L2

+(Ω).


(2.4)

Note that its objective is equivalent to

H 1(Ω) × L2(Ω) 3 (y, z) 7→ 1

2
‖E[y] − yd‖

2

L2(Ω) +
α1

2



χΩuz

2

L2(Ω)
+

α2

2



χΩv \Ωuz

2

L2(Ω)
∈ R.

The ellipticity of the underlying PDE in (2.4) implies that the associated control-to-observation

operator Š : L2(Ω) → L2(Ω) is linear and continuous, see [Evans, 2010, Section 6.2]. Observing

that Ωu ∪ Ωv = Ω holds by assumption, the reduced objective functional

L2(Ω) 3 z 7→ 1

2



Š[z] − yd



2

L2(Ω)
+

α1

2



χΩuz

2

L2(Ω)
+

α2

2



χΩv \Ωuz

2

L2(Ω)
∈ R

is convex, continuous, and coercive. This shows that the optimal control problem (2.4) possesses

an optimal solution (ȳ, z̄) ∈ H 1(Ω) × L2(Ω) with objective value m̄ ∈ R.

Let (y,u,v) ∈ H 1(Ω) × L2(Ω) × L2(Ω) be feasible to (2.2). De�ning z := χΩuu + χΩv \Ωuv , (y, z)
is feasible for (2.4). Then, the estimate

1

2
‖E[y] − yd‖

2

L2(Ω) +
α1

2
‖u‖2L2(Ω) +

α2

2
‖v ‖2L2(Ω)

≥ 1

2
‖E[y] − yd‖

2

L2(Ω) +
α1

2



χΩuu

2

L2(Ω)
+

α2

2



χΩv \Ωuv

2

L2(Ω)

= 1

2
‖E[y] − yd‖

2

L2(Ω) +
α1

2



χΩuz

2

L2(Ω)
+

α2

2



χΩv \Ωuz

2

L2(Ω)
≥ m̄

is obtained. In particular, the objective value of (2.2) is bounded from below by m̄.

De�ne ū := χΩu z̄ and v̄ := χΩv \Ωu z̄. Then, (ȳ, ū, v̄) is feasible to (2.2) since ȳ is the state

associated with z̄ and χΩu ū + χΩv v̄ = z̄ holds true. Moreover, the relation

1

2
‖E[ȳ] − yd‖

2

L2(Ω) +
α1

2
‖ū‖2L2(Ω) +

α2

2
‖v̄ ‖2L2(Ω)

= 1

2
‖E[ȳ] − yd‖

2

L2(Ω) +
α1

2



χΩu z̄

2

L2(Ω)
+

α2

2



χΩv \Ωu z̄

2

L2(Ω)
= m̄

follows. Thus, (ȳ, ū, v̄) is an optimal solution of (2.2). �

Note that the proof of Proposition 2.6 yields a strategy for the solution of (2.2) by means of

standard arguments from optimal control by solving the surrogate problem (2.4).

3. Optimality conditions

Consider the so-called state-reduced problem

1

2
‖S[u,v] − yd‖

2

D + J (u,v) → min

u ,v

(u,v) ∈ C

}
(3.1)
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which is equivalent to (OC
4
) by de�nition of the control-to-observation operator S. Using the

embedding operator E : H 1(Ω) → L2(Ω), (3.1) can be stated equivalently as

1

2
‖S[u,v] − yd‖

2

D + J (u,v) → min

u ,v

E[u] ∈ L2

+(Ω)

E[v] ∈ L2

+(Ω)

〈E[u],E[v]〉L2(Ω) = 0


(3.2)

which is a generalized MPCC in the Banach space L2(Ω). It was shown in [Mehlitz and

Wachsmuth, 2016, Lemma 3.1] that Robinson’s constraint quali�cation does not hold at the

feasible points of this problem. Moreover, since E is not surjective, the constraint quali�cations

needed to show that local optimal solutions of this problem satisfy MPCC-tailored stationarity

conditions (e.g., the weak or strong stationarity conditions) are not satis�ed, see Mehlitz and

Wachsmuth [2016], Wachsmuth [2015] for details.

On the other hand, it is still possible to derive necessary optimality conditions for (3.1) using

a standard trick from �nite-dimensional MPCC theory: De�ne appropriate surrogate problems

which do not contain a complementarity constraint anymore and thus can be handled with the

classical KKT conditions in Banach spaces.

In order to formulate an appropriate surrogate problem, let (ū, v̄) ∈ H 1(Ω)2 be a feasible point

of (3.1) and de�ne the measurable sets

I+0(ū, v̄) := {x ∈ Ω | ū(x) > 0 ∧ v̄(x) = 0}, (3.3)

I 0+(ū, v̄) := {x ∈ Ω | ū(x) = 0 ∧ v̄(x) > 0}, (3.4)

I 00(ū, v̄) := {x ∈ Ω | ū(x) = 0 ∧ v̄(x) = 0}. (3.5)

If (ū, v̄) is a locally optimal solution of (3.1), then it is also a locally optimal solution of the

auxiliary problems

1

2
‖S[u,v] − yd‖

2

D + J (u,v) → min

u ,v

u ≥ 0 a.e. on I+0(ū, v̄)

u = 0 a.e. on I 0+(ū, v̄) ∪ I 00(ū, v̄)

v ≥ 0 a.e. on I 0+(ū, v̄) ∪ I 00(ū, v̄)

v = 0 a.e. on I+0(ū, v̄)


(rNLPū )

and

1

2
‖S[u,v] − yd‖

2

D + J (u,v) → min

u ,v

u ≥ 0 a.e. on I+0(ū, v̄) ∪ I 00(ū, v̄)

u = 0 a.e. on I 0+(ū, v̄)

v ≥ 0 a.e. on I 0+(ū, v̄)

v = 0 a.e. on I+0(ū, v̄) ∪ I 00(ū, v̄)


(rNLPv̄ )
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since their respective feasible sets are smaller than C but contain (ū, v̄). By standard notion,

see Pang and Fukushima [1999], Scheel and Scholtes [2000], Wachsmuth [2015], (rNLPū ) and

(rNLPv̄ ) are referred to as restricted nonlinear problems. Furthermore, the corresponding relaxed
nonlinear problem is introduced by means of

1

2
‖S[u,v] − yd‖

2

D + J (u,v) → min

u ,v

u ≥ 0 a.e. on I+0(ū, v̄) ∪ I 00(ū, v̄)

u = 0 a.e. on I 0+(ū, v̄)

v ≥ 0 a.e. on I 0+(ū, v̄) ∪ I 00(ū, v̄)

v = 0 a.e. on I+0(ū, v̄).


(RNLP)

Note that the feasible points (u,v) ∈ H 1(Ω)2 of (RNLP) do not necessarily satisfy the comple-

mentarity condition (u,v) ∈ C. Combining standard techniques from �nite-dimensional MPCC

theory and optimization in Banach spaces, the following result is obtained, see also [Wachsmuth,

2015, Theorems 3.1 and 5.2].

Theorem 3.1. Let (ū, v̄) ∈ H 1(Ω)2 be a locally optimal solution of (3.1). Then, there exist multipliers
µ,ν ∈ H 1(Ω)? satisfying

0 = S?
[
S[ū, v̄] − yd

]
+ J ′(ū, v̄) + (µ,ν ), (3.6a)

µ ∈

{
z ∈ H 1(Ω)

�����z ≥ 0 a.e. on I+0(ū, v̄) ∪ I 00(ū, v̄)

z = 0 a.e. on I 0+(ū, v̄)

}◦
, (3.6b)

〈µ, ū〉H 1(Ω) = 0, (3.6c)

ν ∈

{
z ∈ H 1(Ω)

�����z ≥ 0 a.e. on I 0+(ū, v̄) ∪ I 00(ū, v̄)

z = 0 a.e. on I+0(ū, v̄)

}◦
, (3.6d)

〈ν, v̄〉H 1(Ω) = 0. (3.6e)

Proof. Introducing the cones

K+0 :=

{
z ∈ H 1(Ω)

�����z ≥ 0 a.e. on I+0(ū, v̄)

z = 0 a.e. on I 0+(ū, v̄) ∪ I 00(ū, v̄)

}
,

K0+,00 :=

{
z ∈ H 1(Ω)

�����z ≥ 0 a.e. on I 0+(ū, v̄) ∪ I 00(ū, v̄)

z = 0 a.e. on I+0(ū, v̄)

}
,

(rNLPū ) is equivalent to

1

2
‖S[u,v] − yd‖

2

D + J (u,v) → min

u ,v

u ∈ K+0

v ∈ K0+,00.


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Since (ū, v̄) is a locally optimal solution of (rNLPū ), there exist multipliers µ1,ν 1 ∈ H 1(Ω)? which

satisfy the corresponding KKT conditions

0 = S?
[
S[ū, v̄] − yd

]
+ J ′(ū, v̄) + (µ1,ν 1),

µ1 ∈ K◦+0
∩ ū⊥,

ν 1 ∈ K◦
0+,00

∩ v̄⊥,

 (3.7)

see [Bonnans and Shapiro, 2000, Theorem 3.9]. Considering (rNLPv̄ ) in a similar way, there

exist µ2,ν2 ∈ H 1(Ω)? which satisfy

0 = S?
[
S[ū, v̄] − yd

]
+ J ′(ū, v̄) + (µ2,ν2),

µ2 ∈ K◦+0,00
∩ ū⊥,

ν2 ∈ K◦
0+ ∩ v̄

⊥,

 (3.8)

where

K+0,00 :=

{
z ∈ H 1(Ω)

�����z ≥ 0 a.e. on I+0(ū, v̄) ∪ I 00(ū, v̄)

z = 0 a.e. on I 0+(ū, v̄)

}
,

K0+ :=

{
z ∈ H 1(Ω)

�����z ≥ 0 a.e. on I 0+(ū, v̄)

z = 0 a.e. on I+0(ū, v̄) ∪ I 00(ū, v̄)

}
.

Combining the respective �rst condition in (3.7) and (3.8) yields µ1 = µ2
and ν 1 = ν2

. Since

K◦+0,00
∩ ū⊥ is a subset ofK◦+0

∩ ū⊥ whileK◦
0+,00

∩ v̄⊥ is a subset ofK◦
0+ ∩ v̄

⊥
, the desired result

is obtained by setting µ := µ2
and ν := ν 1

. �

Note that the system (3.6) coincides with the KKT conditions of (RNLP). In this regard, it is

reasonable to call the conditions (3.6) a strong stationarity-type system.

Remark 3.2. It is di�cult to give an explicit characterization of the multipliers µ,ν ∈ H 1(Ω)?.
Assume that Ω has a Lipschitz boundary. IntroducingHA := {z ∈ H 1(Ω) | z = 0 a.e. on A} for a
�xed measurable set A ⊂ Ω and using the relation H 1

+(Ω)
◦ = H 1(Ω)? ∩M−(Ω), see [Bonnans

and Shapiro, 2000, Section 6.4.3], it holds that

µ ∈
(
H 1

+(Ω) ∩ HI 0+(ū ,v̄)
)◦
= cl

(
H 1(Ω)? ∩M−(Ω) +H

⊥
I 0+(ū ,v̄)

)
whereM−(Ω) denotes the set of all �nite, nonpositive Borel measures on Ω. A similar result can be
obtained to characterize ν . However, due to the appearance of the closure as well as the annihilated
subspace associated withHI+0(ū ,v̄), this characterization is of limited practical use; in particular,
it cannot be deduced that µ and ν are measures. Applying the machinery of capacity theory, see
Attouch et al. [2006], Bonnans and Shapiro [2000], a more advanced approach to the characterization
of µ and ν can be attempted. For this purpose, one could strengthen the constraints in (rNLPū ),
(rNLPv̄ ), and (RNLP) to hold quasi-everywhere on the respective subdomains, i.e., the respective
conditions hold up to sets of H 1-capacity zero. Then, one needs to �nd explicit expressions for the
polar cone associated with sets of type{

z ∈ H 1(Ω)

����� z ≥ 0 quasi-everywhere on A

z = 0 quasi-everywhere on Ω \ A

}
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where A ⊂ Ω is measurable.

In order to state necessary optimality conditions of strong stationarity-type that avoid the

appearance of multipliers and allow a numerical implementation, one can exploit the de�nition

of the polar cone in the system (3.6).

Corollary 3.3. Let (ū, v̄) ∈ H 1(Ω)2 be a locally optimal solution of (3.1). Then, the condition

0 = 〈S[ū, v̄] − yd,S[ū, v̄]〉D2 + J ′(ū, v̄)[ū, v̄]

holds, and for any pair (zu , zv ) ∈ H 1

+(Ω) × H
1

+(Ω),

supp zu ⊂ I+0(ū, v̄) ∪ I 00(ū, v̄)

supp zv ⊂ I 0+(ū, v̄) ∪ I 00(ū, v̄)

}
=⇒

〈
S?

[
S[ū, v̄] − yd

]
+ J ′(ū, v̄), (zu , zv )

〉
H 1(Ω)2

≥ 0.

Proof. Due to Theorem 3.1, there exist µ,ν ∈ H 1(Ω)? satisfying (3.6). Testing (3.6a) with (ū, v̄)
while exploiting (3.6c), (3.6e), and the de�nition of the adjoint operator, the �rst statement of

the corollary follows.

The second statement is a consequence of (3.6a), (3.6b), and (3.6d). �

Remark 3.4. According to standard terminology for MPCCs, the necessary optimality conditions
(3.6) are of strong stationarity-type, see, e.g., [Wachsmuth, 2015, De�nition 5.1] and [Ye, 2005,
De�nition 2.7]. Recall that a feasible point (ū, v̄) ∈ H 1(Ω)2 of (3.1) and thus of (3.2) is a strongly
stationary point of (3.2) in the sense of [Wachsmuth, 2015, De�nition 5.1] if and only if there are
multipliers (µ,ν ) ∈ L2(Ω)2 satisfying

0 = S?
[
S[ū, v̄] − yd

]
+ J ′(ū, v̄) + (E,E)?[µ,ν ], (3.9a)

µ = 0 a.e. on I+0(ū, v̄), (3.9b)

ν = 0 a.e. on I 0+(ū, v̄), (3.9c)

µ ≤ 0 ∧ ν ≤ 0 a.e. on I 00(ū, v̄), (3.9d)

see also [Mehlitz and Wachsmuth, 2018, De�nition 4.1]. If C is replaced by C̃ and ε = 0 (in this case,
E is the identity mapping), the systems (3.6) and (3.9) are equivalent. However, for C and ε > 0, the
necessary optimality conditions (3.6) are weaker than (3.9), which can be seen as follows: It is clear
that whenever (µ̃, ν̃ ) ∈ L2(Ω)2 satisfy the classical strong stationarity conditions (3.9), then the
multipliers µ := E?[µ̃] and ν := E?[ν̃ ] satisfy (3.6). On the other hand, by means of Theorem 3.1,
the multipliers appearing in the system (3.6) may come from H 1(Ω)? \ L2(Ω) in general.

Remark 3.5. In this section, only the property of S to be a bounded, linear operator has been
exploited. Thus, the optimality conditions obtained in Theorem 3.1 and Corollary 3.3 are applicable
in many di�erent situations, e.g., in case where S is the control-to-observation operator associated
with a linear elliptic equation where u and v only operate on some subdomain, or for a linear
parabolic equation where the controls u and v only depend on time. The latter problems are closely
related to the switching-constrained problems examined in Clason et al. [2016a,b, 2017].

It should be noted that similar necessary optimality conditions can be derived if S : H 1(Ω)2 → D
is Fréchet di�erentiable but not necessarily linear.
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4. Penalization of complementarity constraints

In order to �nd optimal solutions of (OC
4
), an obvious idea would be to penalize the violation

of the equilibrium condition

u(x)v(x) = 0 a.e. on Ω (4.1)

in (OC
4
). This is related to the approaches used in Clason et al. [2016a,b, 2017] for the treatment

of switching-constrained optimal control problems. However, the resulting penalized problem

would still involve inequality constraints for the controls in H 1(Ω), and thus the associated KKT

conditions would involve Lagrange multipliers from H 1(Ω)?, see [Deng et al., 2018b, Section 5]

for details. This, however, may provoke theoretical and numerical di�culties that should be

avoided here.

To get around these issues, the penalization of the overall complementarity constraint using

the Fischer–Burmeister function is proposed here, which leads to penalized problems in which

the only constraint is the state equation.

4.1. Penalty term

Let ϕ : R2 → R denote the Fischer–Burmeister function introduced in (1.1) and let the mapping

Φ : L2(Ω)2 → L2(Ω) be the associated Nemytskii operator de�ned by

∀(w, z) ∈ L2(Ω)2 ∀x ∈ Ω : Φ(w, z)(x) := ϕ(w(x), z(x)).

This operator is well-de�ned since

‖Φ(w, z)‖L2(Ω) ≤

(∫
Ω

(
w2(x) + z2(x)

)
dx

)
1/2

+ ‖w ‖L2(Ω) + ‖z‖L2(Ω)

≤

(∫
Ω

(
|w(x)| + |z(x)|

)
2

dx

)
1/2

+ ‖w ‖L2(Ω) + ‖z‖L2(Ω)

≤ 2

(
‖w ‖L2(Ω) + ‖z‖L2(Ω)

)
< +∞,

i.e., Φ maps from L2(Ω)2 to L2(Ω), see also [Ulbrich, 2011, Section 3.3].

The violation of the complementarity constraint (u,v) ∈ C can then be penalized using the

functional F : H 1(Ω)2 → R+
0

de�ned by

∀(u,v) ∈ H 1(Ω)2 : F (u,v) := 1

2

∫
Ω
ϕ2(u(x),v(x))dx = 1

2
‖Φ(E[u],E[v])‖2L2(Ω) . (4.2)

Recall that E ∈ L
[
H 1(Ω), L2(Ω)

]
represents the natural embedding H 1(Ω) ↪→ L2(Ω).

It is obvious that Φ cannot be Fréchet di�erentiable since ϕ is not smooth. In contrast, F is a

continuously Fréchet di�erentiable mapping.

Lemma 4.1. Let (ū, v̄) ∈ H 1(Ω)2 be arbitrary. Then, F is continuously Fréchet di�erentiable at
(ū, v̄). The associated Fréchet derivative is given by

∀(δu , δv ) ∈ H 1(Ω)2 : F ′(ū, v̄)[δu , δv ] =

∫
Ω
ϕ(ū(x), v̄(x))

(
ηū (x)δ

u (x) + ηv̄ (x)δ
v (x)

)
dx,

12



where ηū ,ηv̄ ∈ L∞(Ω) are de�ned by

∀x ∈ Ω : ηū (x) =


ū(x )√

ū(x )2+v̄(x )2
− 1 if x < I 00(ū, v̄),

0 if x ∈ I 00(ū, v̄),
(4.3a)

∀x ∈ Ω : ηv̄ (x) =


v̄(x )√

ū(x )2+v̄(x )2
− 1 if x < I 00(ū, v̄),

0 if x ∈ I 00(ū, v̄),
(4.3b)

and I 00(ū, v̄) is de�ned by (3.5).

Proof. Let f : R2 → R be given by

∀(a,b) ∈ R2
: f (a,b) := 1

2
ϕ(a,b)2.

One can check that f is continuously di�erentiable with gradient

∀(a,b) ∈ R2
: ∇f (a,b) =


ϕ(a,b)

(
a√

a2+b2

− 1

b√
a2+b2

− 1

)
if (a,b) , (0, 0),(

0

0

)
if (a,b) = (0, 0).

Clearly, the Nemytskii-operator F associated with f maps from L2(Ω)2 to L1(Ω), since Φ
maps L2(Ω)2 to L2(Ω). Noting that a/

√
a2 + b2 ∈ [−1, 1] and b/

√
a2 + b2 ∈ [−1, 1] hold for

all (a,b) ∈ R2 \ {(0, 0)}, the Nemytskii operator associated with ∇f maps from L2(Ω)2 to L2(Ω).
Applying [Goldberg et al., 1992, Theorems 4 and 7], F : L2(Ω)2 → L1(Ω) is continuously Fréchet

di�erentiable. Furthermore,

∀x ∈ Ω : F ′(w, z)[δw , δz ](x) = ∇a f (w(x), z(x))δw (x) + ∇b f (w(x), z(x))δw (x)

for any (w, z), (δw , δz ) ∈ L
2(Ω)2.

De�ne L ∈ L
[
L1(Ω),R

]
by L[w] :=

∫
Ω
w(x)dx . Then, F = L ◦ F ◦ (E,E). Since all involved

mappings are continuously Fréchet di�erentiable, the assertion of the lemma follows by exploit-

ing the chain rule for Fréchet di�erentiable functions, see [Tröltzsch, 2010, Theorem 2.20]. �

Remark 4.2. As the penalty functional F is smooth, it cannot lead to exact penalization of the
complementarity constraints. Although Section 6 demonstrates that a penalty method using F
behaves well in numerical practice, in principle any other NCP-function, see Sun and Qi [1999] for
an overview, can be used to construct similar penalty methods.
One possible alternative would be to use F1 : H 1(Ω)2 → R+

0
given by

∀(u,v) ∈ H 1(Ω)2 : F1(u,v) :=

∫
Ω
|ϕ(u(x),v(x))|dx =



Φ̃(E[u],E[v])

L1(Ω)
,

where Φ̃ : L2(Ω)2 → L1(Ω) is the mapping EL2→L1 ◦ Φ where EL2→L1 represents the continuous
embedding L2(Ω) ↪→ L1(Ω). This leads to a nonsmooth but Lipschitz continuous mapping.
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Another approach would be to exploit the so-called smoothed Fischer–Burmeister function
ϕθ : R2 → R given by

∀(a,b) ∈ R2
: ϕθ (a,b) :=

√
a2 + b2 + 2θ − a − b,

which is continuously di�erentiable for any θ > 0, see Kanzow [1996]. Using [Goldberg et al., 1992,
Theorems 4 and 7], one can check that the associated Nemytskii operator Φ̃θ : L2(Ω)2 → L1(Ω) is
continuously Fréchet di�erentiable. De�ne F1,θ : H 1(Ω)2 → R+

0
by means of

∀(u,v) ∈ H 1(Ω)2 : F1,θ (u,v) :=

∫
Ω
|ϕθ (u(x),v(x))|dx =



Φ̃θ (E[u],E[v])

L1(Ω)
.

Clearly, F1,0 corresponds to F1. For θ > 0 this approach can be seen as a mixture of a penalty and a
smoothing method. However, it needs to be noted that F1,θ is nonsmooth even for positive values of
θ .

4.2. Existence, convergence results, and optimality conditions

Using the penalty functional F de�ned in (4.2) to penalize the complementarity constraints in

(3.1) leads to the family of penalized problems

1

2
‖S[u,v] − yd‖

2

D + J (u,v) + σkF (u,v) → min

u ,v
, (Pk )

where {σk }k ∈N ⊂ R+ is a sequence of positive real numbers tending to in�nity as k →∞. The

�rst question is about the existence of solutions of (Pk ).

Proposition 4.3. For any σk > 0, the penalized problem (Pk ) possesses an optimal solution.

Proof. Let {(ul ,vl )}l ∈N ⊂ H 1(Ω)2 be a minimizing sequence for (Pk ) and let m̄ ∈ R be the

corresponding in�mal value. Since J is, due to ε > 0, coercive and bounded from below, this

sequence is bounded in H 1(Ω)2 and, thus, possesses a weakly convergent subsequence (without

relabeling) with weak limit (ū, v̄) ∈ H 1(Ω)2. Due to the compactness of H 1(Ω) ↪→ L2(Ω), the

strong convergencesul → ū andvl → v̄ hold in L2(Ω). Noting that the operator Φ is continuous

on L2(Ω)2, see [Goldberg et al., 1992, Theorem 4], it follows that

lim

l→∞
F (ul ,vl ) = F (ū, v̄).

Thus, the continuity of S and the weak lower semicontinuity of norms imply that

1

2
‖S[ū, v̄] − yd‖

2

D + J (ū, v̄) + σkF (ū, v̄)

≤ lim inf

l→∞

(
1

2
‖S[ul ,vl ] − yd‖

2

D + J (ul ,vl )
)
+ σk lim

l→∞
F (ul ,vl )

= lim inf

l→∞

(
1

2
‖S[ul ,vl ] − yd‖

2

D + J (ul ,vl ) + σkF (ul ,vl )
)
= m̄,

i.e., (ū, v̄) is a global minimizer of (Pk ). �

Next, the convergence of solutions of (Pk ) as σk →∞ is addressed.
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Proposition 4.4. Fix a sequence {σk }k ∈N ⊂ R+ tending to in�nity as k → ∞. For any k ∈ N,
let (uk ,vk ) ∈ H 1(Ω)2 be a global minimizer of (Pk ). Then, {(uk ,vk )}k ∈N contains a subsequence
converging strongly in H 1(Ω)2 to a point (ū, v̄) ∈ C such that (ȳ, ū, v̄), where ȳ ∈ Y is the state
associated with (ū, v̄), is an optimal solution of (OC

4
).

Moreover, any subsequence of {(uk ,vk )}k ∈N converging weakly to (ū, v̄) in H 1(Ω)2 produces a
global minimizer of (OC

4
) in the above sense.

Proof. For any k ∈ N, the estimate

1

2
‖S[uk ,vk ] − yd‖

2

D + J (uk ,vk ) + σkF (uk ,vk ) ≤
1

2
‖yd‖

2

D

follows from the feasibility of (0, 0) ∈ H 1(Ω)2 for (Pk ). Thus, since J is coercive and bounded

from below while F only takes nonnegative values, {(uk ,vk )}k ∈N is bounded and therefore

contains a weakly convergent subsequence (which, as all further subsequences, will not be

relabeled). Recalling the compactness of H 1(Ω) ↪→ L2(Ω), the sequence {(uk ,vk )}k ∈N converges

strongly to (ū, v̄) in L2(Ω)2 and thus pointwise almost everywhere at least along a subsequence.

Furthermore, the relation

0 ≤ ‖Φ(E[uk ],E[vk ])‖L2(Ω) ≤

√
1

σk
‖yd‖D → 0

is obtained as k →∞. Consequently, at least along a subsequence, {Φ(E[uk ],E[vk ])}k ∈N con-

verges pointwise a.e. to 0. By de�nition of Φ, (ū, v̄) ∈ C follows.

Now choose (u,v) ∈ C arbitrarily. Since this point is feasible to (Pk ), it follows for any k ∈ N
that

1

2
‖S[u,v] − yd‖

2

D + J (u,v) ≥
1

2
‖S[uk ,vk ] − yd‖

2

D + J (uk ,vk ) + σkF (uk ,vk )

≥ 1

2
‖S[uk ,vk ] − yd‖

2

D + J (uk ,vk ).

Thus, using the weak lower semicontinuity of the functionals, one obtains

1

2
‖S[ū, v̄] − yd‖

2

D + J (ū, v̄) ≤ lim inf

k→∞

(
1

2
‖S[uk ,vk ] − yd‖

2

D + J (uk ,vk )
)

≤ lim sup

k→∞

(
1

2
‖S[uk ,vk ] − yd‖

2

D + J (uk ,vk )
)

≤ lim sup

k→∞

(
1

2
‖S[uk ,vk ] − yd‖

2

D + J (uk ,vk ) + σkF (uk ,vk )
)

≤ 1

2
‖S[u,v] − yd‖

2

D + J (u,v)

for all (u,v) ∈ C. Consequently, (ū, v̄) is a global minimizer of the state-reduced problem (3.1).

Choosing u := ū and v := v̄ in the above estimate, one obtains

1

2
‖S[uk ,vk ] − yd‖

2

D + J (uk ,vk ) →
1

2
‖S[ū, v̄] − yd‖

2

D + J (ū, v̄),

and J (uk ,vk ) → J (ū, v̄) follows by Lemma A.1. Sinceuk → ū andvk → v̄ in L2(Ω), the de�nition

of J and ε > 0 imply that

‖uk ‖
2

H 1(Ω) + ‖vk ‖
2

H 1(Ω) → ‖ū‖
2

H 1(Ω) + ‖v̄ ‖
2

H 1(Ω) .
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Now, applying Lemma A.1 once more yields

‖uk ‖
2

H 1(Ω) → ‖ū‖
2

H 1(Ω) , ‖vk ‖
2

H 1(Ω) → ‖v̄ ‖
2

H 1(Ω) .

Combining this with the weak convergences uk ⇀ ū and vk ⇀ v̄ in H 1(Ω), the convergences

uk → ū and vk → v̄ in H 1(Ω) follow since the latter is a Hilbert space. This yields the �rst

assertion.

If {(uk ,vk )}k ∈N contains a subsequence converging weakly to (ū, v̄) ∈ H 1(Ω)2 in H 1(Ω), then

the above arguments can be partially repeated to show that (ū, v̄) is a global minimizer of (3.1).

This completes the proof. �

An obvious advantage of (Pk ) is that it is a smooth and unconstrained problem, allowing the

straightforward derivation of necessary optimality conditions. Hence, the following result is a

direct consequence of Fermat’s rule and Lemma 4.1.

Proposition 4.5. For �xed σk > 0, let (uk ,vk ) ∈ H 1(Ω)2 be a locally optimal solution of (Pk ).
Then, the corresponding functions ηuk ,ηvk ∈ L

∞(Ω) de�ned as in (4.3) satisfy

0 = S?
[
S[uk ,vk ] − yd

]
+ J ′(uk ,vk ) + σ (E,E)?[Φ(E[uk ],E[vk ])ηuk ,Φ(E[uk ],E[vk ])ηvk ].

Remark 4.6. Similar results as in this section can be shown for the penalty terms induced by
the nonsmooth functionals F1 and F1,θk given in Remark 4.2 using the continuity of the associated
Nemytskii operators Φ̃ and Φ̃θk as well as calculus rules for Clarke’s generalized derivative, see
Clarke [1990]. Obtaining a convergence result as in Proposition 4.4 for F1,θk additionally requires to
choose σk and θk such that σk

√
θk → 0 as k →∞.

5. Numerical treatment

This section deals with the numerical implementation of the penalization technique described

in Section 4 following a “�rst-discretize-then-optimize approach” based on a �nite element

discretization. In order to concentrate on the complementarity constraint, the state equation is

chosen as the elliptic model problem

−∇ · (C∇y) + ay = bu + cv a.e. on Ω

®n · (C∇y) = 0 a.e. on bd Ω.

}
(PDE)

Here, Ω ⊂ Rd
, C ∈ L∞(Ω; Sd (R)) satis�es the condition of uniform ellipticity (2.3), and the

functions a, b, c ∈ L∞(Ω) do not vanish while a is additionally nonnegative, see also Section 2.2.

Set D := L2(Ω) and Y := H 1(Ω). The operator D := E represents the natural embedding

H 1(Ω) ↪→ L2(Ω). Note that the weak formulation of the associated state equation can be

written in the abstract form A[y] − B[u] − C[v] = 0, where the bounded, linear operators
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A,B,C ∈ L[H 1(Ω),H 1(Ω)?] are given for all y,u,v,w ∈ H 1(Ω) as

〈A[y],w〉H 1(Ω) :=

∫
Ω
(C(x)∇y(x)) · ∇w(x)dx +

∫
Ω
a(x)y(x)w(x)dx,

〈B[u],w〉H 1(Ω) :=

∫
Ω
b(x)u(x)w(x)dx,

〈C[v],w〉H 1(Ω) :=

∫
Ω
c(x)v(x)w(x)dx .

It can be checked that the operatorA is elliptic and self-adjoint under the postulated assumptions,

see, e.g., [Evans, 2010, Section 6]. The operators B and C are self-adjoint as well.

5.1. Finite element discretization

The domain Ω is discretized by a suitable tessellation Ω∆. The �nite element space P1(Ω∆) of

piecewise a�ne elements is considered to replace the Sobolev space H 1(Ω). For later use, let np
denote the number of vertices in Ω∆ and ne the number of elements. Accordingly, since the state

y , the controls u and v , as well as the adjoint state p associated with the state equation (i.e., the

associated Lagrange multiplier) all come from the space H 1(Ω), they are represented via linear

combinations of the basis functions of the �nite element space P1(Ω∆). The corresponding

weight vectors will be denoted by ®y , ®u, ®v , and ®p, which can be interpreted as the discrete

counterparts of y , u, v , and p, respectively. The set of test functions H 1(Ω) is represented by the

same basis functions.

The coe�cient functions C, a, b, and c as well as the (interpolant of the) desired state yd are

assumed to be essentially bounded. Thus, they will be discretized analogously using the �nite el-

ement space P0(Ω∆) of piecewise constant functions. Their discrete approximations are denoted

by C , ®a,
®b, ®c , and ®yd, respectively. The matrix E10 ∈ R

ne×np
transforms the H 1

-approximations

into L2
-elements and corresponds to the natural embedding operator E : H 1(Ω) → L2(Ω). The

mass matrices M0(1) and M1(1) represent the �nite element spaces P0(Ω∆) and P1(Ω∆), respec-

tively, while the mass matrix M01 is used for the mixed �nite element systems and represents

the relationship between the di�erent elements evaluated at grid nodes and barycenters of the

elements. The sti�ness matrix associated with the (constant) identity matrix is denoted by K(1).
A detailed description of this discretization and the speci�c forms of these matrices can be found

in [Deng et al., 2018a].

This discretization leads to the �nite-dimensional problem associated with (Pk ) given by

1

2
(E10®y − ®yd)

>M0(1)(E10®y − ®yd) +
α1

2
®u>M1(1)®u +

α2

2
®v>M1(1)®v

+ ε
2
®u>(M1(1) + K(1))®u +

ε
2
®v>(M1(1) + K(1))®v + σk F̃ (®u, ®v) → min

®y , ®u , ®v

(M01(®a) + K(C))®y −M01(®b)®u −M01(®c)®v = 0,

 (5.1)

where F̃ (®u, ®v) denotes the discretized counterpart of the penalty term F (u,v).
The chief di�culty in deriving useful optimality conditions for (5.1) lies in the discretization

of the penalty term F (u,v) and its derivatives using a discrete penalty term F̃ (®u, ®v) for the

discretized controls ®u and ®v . Since the Fischer–Burmeister function is penalized with respect
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to the space L2(Ω), the mass matrix M0(1) can be used to evaluate integrals over all elements.

Interpreting powers and square roots of a vector in a componentwise fashion, a suitable choice

for F̃ is given by

F̃ (®u, ®v) = 1

2

(√
(E10®u)2 + (E10 ®v)2 − E10®u − E10 ®v

)>
M0(1)

(√
(E10®u)2 + (E10 ®v)2 − E10®u − E10 ®v

)
for all ®u, ®v ∈ Rnp

. The appearance of E10 is motivated by the proof of Lemma 4.1, where the

penalty functional F has been represented as the composition of three di�erentiable mapping: the

natural embedding E, the Nemytskii-operator associated with the squared Fischer–Burmeister

function (as a mapping from L2(Ω)2 to L1(Ω)), and some linear integral operator. The quadratic

function F̃ is �rst-order di�erentiable everywhere and its derivative at (®u, ®v) is given by

F̃ ′(®u, ®v) =
©­«
E>

10
diag (Tu (®u, ®v))M0(1)

(√
(E10®u)2 + (E10 ®v)2 − E10®u − E10 ®v

)
E>

10
diag (Tv (®u, ®v))M0(1)

(√
(E10®u)2 + (E10 ®v)2 − E10®u − E10 ®v

)ª®¬ , (5.2)

where the vectors Tu (®u, ®v),Tv (®u, ®v) ∈ R
ne

are de�ned for all i ∈ {1, . . . ,ne } as

Tu (®u, ®v)i :=


(E10 ®u)i√

(E10 ®u)2i+(E10 ®v)2i
− 1 if (E10®u)i , 0 or (E10 ®v)i , 0,

0 if (E10®u)i = (E10 ®v)i = 0,

Tv (®u, ®v)i :=


(E10 ®v)i√

(E10 ®u)2i+(E10 ®v)2i
− 1 if (E10®u)i , 0 or (E10 ®v)i , 0,

0 if (E10®u)i = (E10 ®v)i = 0.

Note that the case (E10®u)i = (E10 ®v)i = 0 corresponds to the biactive case, i.e., where the

discretized controls ®u and ®v (interpreted in the discretized counterpart of L2(Ω), i.e., elementwise)

are zero at the same time.

Combining (5.1) and (5.2), it is now possible to obtain for the problem (5.1) the KKT system

E>
10
M0(1)E10®y − E

>
10
M0(1)®yd − (M01(®a) + K(C))®p = 0 (5.3a)

[α1M1(1) + ε (M1(1) + K(1))] ®u + σk F̃
′
®u (®u, ®v) +M01(®b)®p = 0 (5.3b)

[α2M1(1) + ε (M1(1) + K(1))] ®v + σk F̃
′
®v (®u, ®v) +M01(®c)®p = 0 (5.3c)

−(M01(®a) + K(C))®y +M01(®b)®u +M01(®c)®v = 0. (5.3d)

Recall that ®p represents the discretized adjoint state and can also be considered as multiplier

related to the discretized state equation. Since the function F̃ ′ is nonsmooth but Lipschitz

continuous, the nonlinear system (5.3) can be solved using a damped semismooth Newton-type

method, see Qi and Sun [1999]. Note that the domain of nonsmoothness associated with the

mapping F̃ ′ : Rnp ×Rnp → Rnp ×Rnp
is given by

{(®u, ®v) ∈ Rnp ×Rnp | ∃i ∈ {1, . . . ,ne } : (E10®u)i = (E10 ®v)i = 0}.

A particular Newton derivative can then be chosen as an element of Clarke’s generalized

Jacobian, see Clarke [1990], associated with F̃ ′ at (®u, ®v) that is zero at indices corresponding to

biactive components of (®u, ®v). This choice will be used in the proposed method.
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Next, due to the well-known local convergence behavior of Newton’s method, the initialization

of ®u and ®v for the numerical solution of (5.3) has to be taken into consideration. For that purpose,

consider the (in�nite-dimensional) problem

1

2
‖E[y] − yd‖

2

L2(Ω) + J (u,v) → min

y ,u ,v

−∇ · (C∇y) + ay = bu + cv a.e. on Ω

®n · (C∇y) = 0 a.e. on bd Ω

u,v ≥ 0 a.e. on Ω


(OCNC)

which results from (OC
4
) by omitting the equilibrium condition (4.1) and merely imposing

nonnegativity constraints. Note that (OCNC) is convex and can be solved globally by combining

a penalty algorithm and a semismooth Newton method, see Deng et al. [2018b]. The associated

global minimizer is uniquely determined. If its solution already satis�es the equilibrium condition

(4.1), then a global minimizer of (OC
4
) has already been detected. The discretized counterpart

of (OCNC) can be derived similarly as stated above. The associated (discrete) optimal solution

(®y0, ®u0, ®v0) will be used as the starting vector of the semismooth Newton-type method. An

abstract description of the proposed numerical method for the computational solution of (OC
4
)

is presented in Algorithm 1. In step S2 of this algorithm, ‖·‖M denotes a weighted Euclidean

norm which represents the discretized H 1
-norm, see Deng et al. [2018b] for details.

Algorithm 1 Abstract algorithm

S0 Let {σk }k ∈N be a sequence of positive penalty parameters with σk → ∞ as k → ∞. Let a

tolerance eps > 0 be given. Let (®y0, ®u0, ®v0) be the (discrete) optimal solution associated

with (OCNC). Compute ®p0 as a solution of the discretized adjoint equation with source

E10®y0 − ®yd. Set k := 1.

S1 Solve the discretized KKT system (5.3) for �xed σk by a damped, semismooth Newton-type

method with starting point (®yk−1, ®uk−1, ®vk−1, ®pk−1). Let (®yk , ®uk , ®vk , ®pk ) be the associated

solution.

S2 If ‖(®uk , ®vk ) − (®uk−1, ®vk−1)‖M < eps holds true, then accept (®uk , ®vk ) as the discrete optimal

control. Otherwise, set k := k + 1 and go to S1.

5.2. Checking strong stationarity

It has to be noted that in step S1 of Algorithm 1 one generally only computes critical points to

(5.1). Since the penalty functional F de�ned in (4.2) is not convex, these cannot be guaranteed

to be global minimizers of (5.1) and therefore the convergence result of Proposition 4.4 does

not apply. It is therefore sensible to verify whether the output is at least a strongly stationary

point of (3.1) in the sense of Corollary 3.3, which is the best possible output of a method for the

numerical solution of complementarity problems, see, e.g., Hoheisel et al. [2013] for a discussion

of the �nite-dimensional situation. A possible approach for such a veri�cation is described in

the following.
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Let (y,u,v) ∈ H 1(Ω)3 be feasible to (OC
4
). If this point is a local minimizer, then Corollary 3.3

implies that

〈y − yd,y〉L2(Ω) + α1 〈u,u〉L2(Ω) + α2 〈v,v〉L2(Ω) + ε 〈u,u〉H 1(Ω) + ε 〈v,v〉H 1(Ω) = 0 (5.4)

and that〈
ȳ − yd, zy

〉
L2(Ω)

+ α1 〈u, zu〉L2(Ω) + α2 〈v, zv 〉L2(Ω) + ε 〈u, zu〉H 1(Ω) + ε 〈v, zv 〉H 1(Ω) ≥ 0 (5.5)

for any pair (zu , zv ) ∈ H
1

+(Ω)
2

with

supp zu ⊂ I+0(u,v) ∪ I 00(u,v), supp zv ⊂ I 0+(u,v) ∪ I 00(u,v),

where zy ∈ H
1(Ω) is the solution of the state equation A[zy ] − B[zu ] − C[zv ] = 0.

Using the same discretization technique as described in Section 5.1, a discrete counterpart to

(5.4) is

Θ := ®y>M1(1)®y − ®y
>M01®yd + α1®u

>M1(1)®u + α2 ®v
>M1(1)®v

+ ε ®u>(K(1) +M1(1))®u + ε ®v
>(K(1) +M1(1))®v = 0. (5.6)

Clearly, a certain tolerance for the violation of (5.6) needs to be imposed in practice.

The numerical veri�cation of condition (5.5) requires an appropriate choice of discrete test

functions ®zu , ®zv for given discretized controls (®u, ®v) in the �nite element space P1(Ω∆). Consid-

ering the employed �nite element discretization of (3.1), one particular choice is from the set

of basis functions associated with P1(Ω∆). Since the support of each of these “hat functions”

covers all elements adjoining a single vertex, a corresponding elementwise approximation of the

set I+0(u,v), I 00(u,v), and I 0+(u,v) is required as well. This can be de�ned using the projection

of ®u, ®v from P1(Ω∆) to P0(Ω∆) using the matrix E10, which will be denoted by ®u0
:= E10®u and

®v0
:= E10 ®v , respectively. This leads to the corresponding discrete sets

I+0(®u, ®v) :=
{
i ∈ {1, . . . ,ne }

�� ®u0

i > 0 and ®v0

i = 0

}
,

I 00(®u, ®v) :=
{
i ∈ {1, . . . ,ne }

�� ®u0

i = 0 and ®v0

i = 0

}
,

I 0+(®u, ®v) :=
{
i ∈ {1, . . . ,ne }

�� ®u0

i = 0 and ®v0

i > 0

}
.

For any pair of basis vectors (®zu , ®zv ) whose support is contained in I+0(®u, ®v) ∪ I 00(®u, ®v) and

I 0+(®u, ®v) ∪ I 00(®u, ®v), respectively, one can then check whether

Σ(®zu , ®zv ) := ®y>M1(1)®zy − ®z
>
yM01®yd + α1®u

>M1(1)®zu + α2 ®v
>M1(1)®zv

+ ε ®u>(K(1) +M1(1))®zu + ε ®v
>(K(1) +M1(1))®zv ≥ 0, (5.7)

where the state ®zy associated with (®zu , ®zv ) is obtained via

(M1(1) + K(1))®zy = M01(®b)®zu +M01(®c)®zv .

In numerical practice, a certain tolerance with respect to negative values of (®u0, ®v0) is necessary

since Algorithm 1 involves a penalty procedure and hence yields, in general, only almost feasible

points for (OC
4
). Rather than testing for nonnegativity, it is thus checked whether Σ(®zu , ®zv ) is

larger than a given negative tolerance.
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6. Numerical examples

The proposed numerical method from Section 5 is illustrated by means of several examples.

The implementation is carried out using the object oriented �nite element matlab class library

OOPDE, see Prüfert [2015].

Let Ω = (0, 1)2 ⊂ R2
. For all examples in this section, let C be the identity matrix in R2×2

and let a ≡ 1, b = χΩu , as well as c = χΩv hold where Ωu := {(x1, x2) ∈ Ω | x2 < 0.25} and

Ωv := {(x1, x2) ∈ Ω | x2 > 0.75} are �xed subdomains of Ω. The values α1 = α2 = 0 are �xed for

this section.

In order to construct examples where the controls are independent of x2, cf. [Clason et al.,

2016a, Section 6] where parabolic problems were considered and the controls only depend on

time, the problem (OC
4
) will be equipped with the additional restrictions

∂x2
u = ∂x2

v = 0 a.e. on Ω. (6.1)

These constraints realize controls depending only on x1 and being constant with respect to x2

while allowing to use the same �nite element space for the discretization of u, v , and y . Note

that the additional constraints do not in�uence the complementarity constraints (which are

now imposed on Ω rather than (0, 1)). A detailed discussion of optimal control problems with

gradient constraints can be found in Deng et al. [2018a].

To compare results, the solutions of the control problem (OCNC) without complementarity

constraints (equipped with the additional constraints (6.1)) will be considered. Recall that optimal

controls (u,v) ∈ H 1(Ω)2 of (OCNC) additionally ful�lling the equilibrium condition (4.1) solve

(OC
4
) as well, and that these controls are used as starting points for solving (OC

4
). Since the

computed controls are nearly constant with respect to x2, onlyu(x1, 0) andv(x1, 0) are plotted for

the sake of easier comparison. To evaluate the satisfaction of the complementarity conditions,

the maximal absolute value of the Fischer–Burmeister function applied componentwise to

(®u0, ®v0) is reported. Furthermore, Σ(®zu , ®zv ) from (5.7) is checked with a tolerance

tol := 0.01

��
min(®zu , ®zv ) feasible test pair

Σ(®zu , ®zv )
�� , (6.2)

and the number as well as distribution of pairs (®zu , ®zu ) for which Σ(®zu , ®zv ) > tol (“numerically

positive”), |Σ(®zu , ®zv )| ≤ tol (“numerically zero”), or Σ(®zu , ®zv ) < −tol (“numerically negative”)

holds is given.

Example 1 Here, the desired state is chosen to be the (weak) solution of the elliptic boundary

value problem

−∆y(x) = 0 a.e. on Ω

y(x) = 2 max{0;x1 cos(0.75πx1)} a.e. on Γ1

y(x) = 0.25 a.e. on Γ2

®n(x) · ∇y(x) = 0 a.e. on Γ3


where Γ1 := [0, 1]×{0}, Γ2 := [0, 1]×{1}, and Γ3 := {0, 1}×[0, 1] are �xed. Furthermore, ε := 10

−8
is

used. The optimal controls of the associated problem (OCNC) do not ful�ll the complementarity
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Figure 1: Example 1: computed controls

0 20 40 60 80

0

20

40

60

80

®zu

®z v

−10
−5

−10
−6

−10
−7

−10
−8

0

10
−8

10
−7

10
−6

10
−5

(a) Σ(®zu , ®zv )

0 20 40 60 80

0

20

40

60

80

®zu

®z v

(b) pairs marked numerically positive (white), nu-

merically zero (gray), numerically negative

(black)

Figure 2: Example 1: values of stationarity test and distribution of failed pairs

condition but already provide a biactive set, see Figure 1a. On the other hand, the computed

solution for (OC
4
) approximately satis�es the complementarity condition, see Figure 1b, with a

maximal absolute value of the Fischer–Burmeister function of approximately 3.58 · 10−6
.

The minimal value of Σ(®zu , ®zv ) was approximately −1.62 · 10−6
, cf. Figure 2a. Accordingly,

the tolerance for the stationarity test was chosen as tol = 1.617 · 10−8
. This leads to 4000 pairs

(®zu , ®zv ) marked as “numerically positive”, 2256 as “numerically zero”, and 305 as “numerically

negative” and thus failing the strong stationarity test (5.7), see Figure 2b. These amount to

approximately 4.7% of the total number 6561 of pairs. Note that pairs where the stationarity test

fails correlate with those basis functions associated with nodes where the subdomains I+0(®u, ®v)
and I 0+(®u, ®v) meet. Finally, Θ = −2.01 · 10−9

holds for the constant de�ned in (5.6).
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Figure 4: Example 2: values of stationarity test and distribution of failed pairs

Example 2 Here, the desired state is given by yd ≡ 1.5, while the parameter ε is the same as

in Example 1. The optimal controls for the problem (OCNC) are nearly constant functions, see

Figure 3a. The controls for the problem (OC
4
) computed via Algorithm 1 are complementary,

see Figure 3b. The maximal absolute value of the Fischer–Burmeister function is 2.02 · 10−6
.

Using the tolerance tol = 1.11 · 10−7
leads to 0 numerically positive, 5328 numerically zero, and

1233 numerically negative pairs, see Figure 4b. These are more than 18.5% of all tested pairs. In

this example, Θ = −3.35 · 10−10
holds true.
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Figure 5: Example 3: computed controls
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Figure 6: Example 3: values of stationarity test and distribution of failed pairs

Example 3 In this example, the desired state is given by the discontinuous function

yd(x) :=

{
3 for x ∈ [(0.25, 0.75) × (0, 0.25)] ∪ [(0, 0.5) × (0.75, 1)]

1 otherwise,

and the Tikhonov parameter is chosen to be ε = 10
−5

. In Figure 5, the computed solutions

of (OCNC) and (OC
4
) are visualized. The optimal control for (OC

4
) is again approximately

complementary with a maximal absolute value of the Fischer–Burmeister function of 3.18 · 10−4
.

Here, the minimal value of Σ(®zu , ®zv ) leads to the tolerance tol = 1.57 · 10−5
leading to 1911

numerically positive, 4422 numerically zero, and 228 numerically negative pairs, see Figure 6b.

The latter represent 3.5% of all tested pairs. Furthermore, Θ = −2.65 · 10−6
is obtained.
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Figure 8: Example 4: values of stationarity test and distribution of failed pairs

Example 4 Here, the setting of Example 3 is used except the Tikhonov parameter is chosen

to be ε = 10
−8

. In this case, the optimal controls of problem (OCNC) are already (numerically)

complementary, see Figure 7a, they provide a globally optimal solution of (OC
4
). Correspondingly,

they coincide with the controls computed for (OC
4
), see Figure 7b, for which the maximal

absolute value of the Fischer–Burmeister function is 2.08 · 10−5
. With the tolerance chosen as

tol = 2.27 · 10−10
, 5789 pairs are labeled as numerically positive, 228 as numerically zero, and 544

as numerically negative, see Figure 6b. Thus, only 8.3% of all tested pairs belong to the latter

category. Note that Θ = −1.65 · 10−7
holds.

Observing that Algorithm 1 computes the globally optimal solution of (OC
4
) in this example,

the above data represent an approximately passed stationarity test.
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Example 1 Example 2 Example 3 Example 4

yd in H 1(Ω) constant in L2(Ω) in L2(Ω)
ε 10

−8
10
−8

10
−5

10
−8

complementarity 3.58 · 10−6
2.02 · 10−6

3.18 · 10−4
2.08 · 10−5

tol 1.62 · 10−8
1.11 · 10−7

1.57 · 10−5
2.27 · 10−10

Θ −2.01 · 10−9 −3.35 · 10−10 −2.65 · 10−6 −1.65 · 10−7

num. neg. pairs 4.7% 18.5% 3.5% 8.3%

stationarity test passed failed passed passed

Table 1: summary of experiments

Summary The results of the numerical experiments are summarized in Table 1, where “com-

plementarity” refers to the maximal absolute value of the elementwise Fischer–Burmeister

function. Noting that Experiment 4 provides a benchmark for a passed stationarity test, a com-

puted solution of (OC
4
) is considered as approximately passing the strong stationarity test if

|Θ| ≤
√

tol holds for Θ de�ned in (5.6) and the tolerance de�ned in (6.2), while the number of

numerically negative tested pairs is at most 10% of the total number of tested pairs.

7. Conclusions

Optimal control problems with complementarity constraints on the controls admit solutions

if the controls are chosen from a �rst-order Sobolev space. Although necessary optimality

conditions of strong stationarity-type can be derived in this case, the explicit characterization of

the associated Lagrange multipliers is di�cult and remains the topic of further research. However,

a penalty method based on the Fischer–Burmeister function can be formulated that ensures

convergence to a global minimizers of the original complementarity-constrained problem.

In theory, this requires computing global minimizers of the penalized problems, and it has

to be investigated whether an adapted method based on KKT points is theoretically possible.

Nevertheless, numerical examples illustrate that combined with a computable check for a discrete

strong stationarity-type condition, this approach leads to a numerical procedure that in many

cases results in nearly strongly stationary points. In light of prominent literature which deals

with the numerical treatment of �nite-dimensional complementarity problems, see Hoheisel

et al. [2013] and the references therein, this seems to be the best to be hoped for.

A. A helpful lemma

In the proof of Proposition 4.4, the following lemma is used twice.

Lemma A.1. Let {αk }k ∈N, {βk }k ∈N ⊂ R be sequences such that αk + βk → α + β holds where
α, β ∈ R satisfy

α ≤ lim inf

k→∞
αk , β ≤ lim inf

k→∞
βk .

Then, the convergences αk → α and βk → β are valid.
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Proof. The assumptions imply that

α ≤ lim inf

k→∞
αk ≤ lim sup

k→∞
αk = lim sup

k→∞
(αk + βk − βk )

= lim

k→∞
(αk + βk ) + lim sup

k→∞
(−βk ) ≤ α + β − β = α,

which implies that αk → α . Now, βk → β follows from αk + βk → α + β . �
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