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MULTI-DIMENSIONAL SUM-UP ROUNDING FOR ELLIPTIC CONTROL1

SYSTEMS∗2

PAUL MANNS† AND CHRISTIAN KIRCHES†3

Abstract. Partial outer convexification has been used to derive relaxations of Mixed-Integer Optimal4
Control Problems (MIOCPs) that are constrained by time-dependent differential equations. The family of5
Sum-Up Rounding (SUR) algorithms provides a means to approximate feasible points of these relaxations,6
i.e. [0, 1]-valued control trajectories, with {0, 1}-valued points. The approximants computed by a SUR7
algorithm converge in a weak sense when the coarseness of the rounding grid of the SUR algorithm is8
driven to zero, which in turn induces norm convergence of the corresponding sequence of state vectors.9
We show that this approximation property can be transferred to MIOCPs with integer control variables10
distributed in more than one dimension when carrying out an appropriate grid refinement strategy. We11
deduce a norm convergence result for the state vector of elliptic PDE systems and provide computational12
results illustrating the applicability of the theoretical framework.13

Key words. Mixed-Integer PDE-Constrained Optimization, Approximation Theory14

AMS subject classifications. 49M20, 90C59, 65L50, 49J20, 90C1115

1. Introduction. Let Ω ⊂ Rd be a bounded domain. We consider partial outer con-16

vexification reformulations [17, 19] of Mixed-Integer Optimal Control Problems (MIOCPs)17

constrained by elliptic state equations. In more detail, we consider optimization problems18

of the form19

inf
y,ω

J(y)

s.t. Ay =

M∑
i=1

ωifi, 1 =

M∑
i=1

ωi and ω ∈ {0, 1}M a.e. on Ω,
(BC)20

21

where Ay =
∑M
i=1 ωifi is an elliptic state equation. The distributed binary-valued variable22

vector ω : Ω → {0, 1}M acts as a one-hot or Special Ordered Set of Type 1 (SOS1)23

encoding of the (spatially distributed) activation of the available discrete functions (right-24

hand sides) f1, . . . , fM . This means that for a.a. s ∈ Ω, we have ωi(s) = 1 for exactly25

one i ∈ {1, . . . ,M} and ωj(s) = 0 for j 6= i. The fi may take an additional continuous26

control as an input variable, but we omit this as it does not affect the theory we present27

and we refer to the articles [19, 13] for further information. Relaxing the SOS1 property to28

convex combinations increases the set of feasible activations. The relaxed problem reads29

min
x,α

J(x)

s.t. Ax =

M∑
i=1

αifi, 1 =

M∑
i=1

αi and α ∈ [0, 1]
M a.e. on Ω,

(RC)30

31

where α : Ω → [0, 1]M is a continuous relaxation of ω. We assume that the relaxed32

problem (RC) is well-posed and has a solution. From a function space point of view, SUR33
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2 P. MANNS, AND C. KIRCHES

is an abstract algorithm to compute approximations of solutions of (RC) that are feasible34

for (BC) and does so by rounding on a suitable grid. The feasible point may be obtained35

in linear time w.r.t. the number of grid cells. In general, the solution of (RC) cannot be36

obtained exactly and only finite dimensional approximations (RCh) can be solved. Thus,37

we aim to find a minimizing sequence for (BC) by executing Algorithm 1.1, which computes38

solutions of improved finite-dimensional approximations (RC
(n)
h ) of (RC) and uses them as39

inputs to the SUR algorithm, which is executed on a sequence of refined rounding grids.40

Assumption 3.1 states the precise functional analytic setting for our considerations on41

(BC), (RC), the abstract SUR algorithm and Algorithm 1.1. The aim of the methodology42

is to approximate the state vector x by means of the state approximants y(n), which arise43

from solving the Boundary Value Problem (BVP) for the binary-valued controls ω(n).44

Our analysis will show that this approximation behavior can be obtained even if no infimal45

sequence of (BC) converges in norm, i.e. (BC) does not admit a minimizing binary control.46

Algorithm 1.1 MIOCP Approximation

Input: J continuous in x
Input: Initial rounding grid S(0)

for n = 1, . . . do
S(n) ← refine S(n−1)

x(n), α(n) ← solve (RC
(n)
h )

ω(n) ← SUR(α(n), S(n))

y(n) ← A−1
∑M
i=1 ω

(n)
i fi

end for

SUR is well-understood for time-dependent47

problems, i.e. α, ω ∈ L∞((0, T ),RM ). We re-48

fer to the results by Sager et al. [17, 21, 18,49

19, 6, 11] for ODE and DAE constraints, and50

Hante, Sager [9, 8] and the authors [13] for51

semilinear evolution equation constraints. In52

these settings, the SUR algorithm and its vari-53

ants are applied to problems where the dis-54

crete variables are distributed in one dimen-55

sion. Hahn and Sager [7] have transferred some56

ideas of partial outer convexification and SUR57

to elliptic PDEs and while revising this arti-58

cle, Yu and Anitescu [27] published a multi-59

dimensional variant of SUR for application to integral operators from optimum experi-60

mental design problems. We do not, know, however, of any rigorous analysis of a multi-61

dimensional variant of SUR from the function space point of view and the consequences62

on the approximation relationship between (BC) and (RC). Our work closes this gap.63

Contribution. We generalize the SUR algorithm, which computes roundings based on64

intervals discretizing [0, T ] for T > 0, to dissections of multi-dimensional domains (see65

Definition 4.1). We show that the approximation properties from the one-dimensional66

setting translate to the multi-dimensional one. As the SUR algorithm is formulated from67

a function space point of view, we deduce that a sequence of roundings (ω(n))n computed68

on suitably refined grids approximates relaxed controls α in L∞ equipped with the weak-69
∗ topology, an approximation property we cannot obtain for finite-dimensional control70

spaces where the weak topology coincides with the norm topology. This leverages the71

applicability of compactness properties from PDE theory to ensure the existence of a72

sequence of state vectors y(ω(n)) feasible for (BC) that converges to x(α) that minimizes73

(RC) in the norm topology. The continuity of J with respect to the state vector yields a74

minimizing sequence for (BC) even if no minimizing control function exists. This yields75

convergence of Algorithm 1.1 under an additional regularity assumption on the sequence76

of rounding grids, which has similarities to the assumptions in [27]. We have published a77

preliminary step in these results in the short proceedings article [14].78

Furthermore, we provide computational experiments that demonstrate the theoretical79

results. We demonstrate both the behavior and the practical limits of Algorithm 1.1. We80

also test the method out of its intended scope in a staged control reconstruction problem.81
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SUM-UP ROUNDING FOR ELLIPTIC CONTROL SYSTEMS 3

Structure of the remainder. In Section 2, we introduce the one-dimensional SUR al-82

gorithm and summarize its properties. Section 3 outlines the PDE setting of this work and83

the techniques that establish convergence of the sequence of state vectors in the norm84

topology once weak-∗ convergence of the rounding approximation has been established.85

In Section 4, we introduce the multi-dimensional SUR algorithm and prove weak-∗ con-86

vergence for SUR when applied to the refined grids. Section 4 closes with a convergence87

proof of Algorithm 1.1 under suitable assumptions. We summarize the approximation88

relationship between (BC) and (RC) in Section 5. Section 6 illustrates the theoretical89

results computationally. Finally, we offer a conclusion in Section 7.90

Notation. We denote the usual Lebesgue measure by the symbol λ. In cases of91

possible ambiguity, it is denoted by λRd . The Borel σ-algebra of a set A ⊂ Rd is denoted92

by B(A). The characteristic function of a set A is denoted by χA. The topological dual93

of a Banach space E is denoted by E∗. Convergence in the norm topology is indicated94

by →, convergence in the weak topology by ⇀, and convergence in the weak-∗ topology95

by ⇀∗. For continuous (compact) embeddings from one Banach space into another, we96

use the symbol ↪→ (↪→c). Hk
0 (Ω) is the space of all square-integrable functions over97

Ω that vanish on the boundary and whose k-th derivative is square-integrable, see [16].98

We introduce the notation below for the feasible sets of (BC) and (RC) to simplify later99

statements:100

FBC :=
{

(y, ω) ∈ V × L∞(Ω,RM ) : (y, ω) feasible for (BC)
}
,101

FRC :=
{

(x, α) ∈ V × L∞(Ω,RM ) : (x, α) feasible for (RC)
}
,102103

where V denotes our state space, which will be detailed in Assumption 3.1.104

2. What is Sum-Up Rounding (SUR)? We introduce names for the functions α105

and ω that appear in the constraints of (RC) and (BC).106

Definition 2.1 (Binary and relaxed control). Let Ω ⊂ Rd be a bounded domain.107

A measurable function ω : Ω → {0, 1}M that satisfies
∑M
i=1 ωi = 1 a.e. in Ω is called108

binary control. A measurable function α : Ω → [0, 1]M that satisfies
∑M
i=1 αi = 1 a.e.109

in Ω is called relaxed control.110

Next, we state the SUR algorithm.111

Definition 2.2 (Sum-Up Rounding Algorithm, [17, 21, 19]). Let 0 = t0 < . . . <112

tN = T be a discretization of the interval Ω̄ = [0, T ] with maximum discretization113

width ∆t := maxi∈{0,N−1} ti+1 − ti. For a relaxed control α, we define a binary-valued114

piecewise-constant function ω(α) : [0, T ]→ {0, 1}M iteratively for i = 0, . . . , N − 1 by115

ω(α)j(t)|[ti,ti+1) :=

1 : j = arg max
k∈{1,...,M}

∫ ti+1

0

αk(t) dt−
∫ ti

0

ω(α)k(t) dt,

0 : otherwise

116

and ω(α)j(tN ) := ω(α)j(tN−1) for j ∈ {1, . . . ,M}. If a tie arises with respect to the117

maximizing index k, one of the maximizing indices is chosen arbitrarily. In our implemen-118

tation, we pick the smallest applicable index.119

The rationale behind SUR can be described as follows. The algorithm proceeds120

forward with the index i = 0, . . . , N − 1 that identifies the current time interval on121

which the rounding is performed. The index j ∈ {1, . . . ,M} identifies the discrete value122

under consideration. First, the entry of ω corresponding to the highest weighted mean123 ∫ t1
0
α is set to one on the interval [t0, t1). All other entries of ω are set to zero on that124
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4 P. MANNS, AND C. KIRCHES

interval. The algorithm proceeds iteratively: for the i-th time interval index, it determines125

the integrated difference between α and ω up to time point ti, the so-called integrated126

control deviation, which is denoted by Φ(ti) in the remainder. To this quantity, it adds127

the weighted mean of the relaxed control over time interval i:
∫ ti+1

ti
α. This sum is called128

sum-up rounding gap, and is denoted γ in the literature [12]. Then, the entry of ω to be129

set to one on interval [ti, ti+1] is determined by choosing the one with maximum sum-up130

rounding gap. Again, all other entries of ω are set to zero on that interval. Now, the131

integrated control deviation until ti+1 can be computed and the algorithm loops with132

i← i+ 1. Clearly, SUR has a runtime complexity of O(N).133

We define the notion of vanishing integrality gap to describe the type of approximation134

of feasible points of (RC) by feasible points of (BC) constructed by rounding as follows.135

Definition 2.3 (Vanishing integrality gap). Let (φ(n))n ⊂ L∞((0, T ),RM ) be136

a bounded sequence such that the sequence of the antiderivatives Φ(n)(t) :=
∫ t

0
φ(n)137

satisfies the convergence property138

Φ(n) → 0 in L∞((0, T ),RM ) (and in C([0, T ],RM )).139140

Then, we call (φ(n))n a sequence of vanishing integrality gap.141

The following result is due to Sager and shows consistency of SUR, i.e. that the142

so-called control deviation φ(n) := α − ω(n) is of vanishing integrality gap if the grid143

coarseness tends to zero.144

Proposition 2.4 (Vanishing Integrality Gap for SUR, [19]). Let Ω = (0, T ). There145

exists C > 0 such that for all relaxed controls α and all ω(n), computed with SUR from146

α at a maximum discretization width ∆(n) for n ∈ N, we have147

1. ω(n)|(0,T ) is a binary control,148

2. the sequence of control deviations φ(n) := α− ω(n) fulfills149

sup
t∈[0,T ]

∥∥∥∥∫ t

0

φ(n)(s) ds

∥∥∥∥
∞
≤ C∆(n)

150

151

In particular, (φ(n))n is of vanishing integrality gap if ∆(n) → 0.152

�153

From Lemma 2.1 in [13], we can deduce the following.154

Proposition 2.5. Let α be a relaxed control on Ω = (0, T ). Let ω(n) be computed155

with SUR from α and let ∆(n) → 0. Then, φ(n) ⇀∗ 0 in L∞((0, T ),RM ). �156

This result is generalized in Section 4 to multi-dimensional domains and is key to157

obtaining norm convergence of the corresponding sequence of solutions (y(n))n of the158

state equation in Section 3.159

3. State vector convergence for elliptic systems. This section establishes con-160

vergence of (weak) solutions of the state equation of (BC) to the (weak) solution of the161

state equation of (RC) in the norm topology if the binary controls approach the relaxed162

ones in L∞(Ω) endowed with the weak-∗ topology (i.e. “in a weak sense”). This is shown163

in Theorem 3.2. We make the following assumption on our PDE setting.164

Assumption 3.1. V is a Hilbert space such that the so-called Gelfand triple V ↪→c165

L2(Ω) ∼= L2(Ω)∗ ↪→c V ∗ holds with continuous, dense and compact embeddings and166

A : V → V ∗ is an isomorphism with bounded inverse, i.e. there exists C > 0 such that167

the estimate ‖y‖V ≤ C‖f‖V ∗ holds when y solves Ay = f weakly for a given f ∈ V ∗.168

This manuscript is for review purposes only.



SUM-UP ROUNDING FOR ELLIPTIC CONTROL SYSTEMS 5

This is a common setting for linear elliptic PDEs and operators, e.g. with V = Hk
0 (Ω)169

for k ≥ 1. For the most famous representative for this type of operator, the Dirichlet170

Laplacian, the derived results are illustrated numerically in Section 6.171

Theorem 3.2. Let Assumption 3.1 hold and let fi ∈ L2(Ω) for i ∈ {1, . . . ,M}. Let172

α be a relaxed control and let (x, α) ∈ FRC . Let (ω(n))n ⊂ L∞(Ω,RM ) be a sequence173

of binary controls and (y(n))n ⊂ V be such that (y(n), ω(n))n ⊂ FBC . Let (φ(n))n with174

φ(n) := α− ω(n) satisfy175

φ
(n)
i ⇀∗ 0 in L∞(Ω).176

for all i ∈ {1, . . . ,M}. Then,177

y(n) → x in V.178

Proof. We observe that (φ(n))n ⊂ L∞(Ω,RM ) and for all v ∈ L2(Ω), we have179

vfi ∈ L1(Ω). The duality (L1(Ω,RM ))∗ ∼= L∞(Ω,RM ), see e.g. [5, Thm IV.1], implies180 ∫
Ω

∑M
i=1 φ

(n)
i ψi dλ→ 0 for all test functions ψ ∈ L1(Ω,RM ). Let g ∈ L2(Ω). Then, we181

have fig ∈ L1(Ω,RM ) and we may choose ψi := fig, which implies
∫

Ω

∑M
i=1 φ

(n)
i fig dλ→182

0. As
∑M
i=1 φ

(n)
i fi ∈ L2(Ω) by Hölder’s inequality and ‖φ(n)‖L∞ ≤ 1, we obtain the weak183

convergence
∑M
i=1 φ

(n)
i fi ⇀ 0 in L2(Ω).184

The compact embedding L2(Ω) ↪→c V ∗ in Assumption 3.1 implies
∑M
i=1 φ

(n)fi → 0185

in V ∗. Employing the norm estimate in Assumption 3.1 we arrive at186 ∥∥∥x− y(n)
∥∥∥
V
≤ C

∥∥∥∥∥
M∑
i=1

φ(n)fi

∥∥∥∥∥
V ∗

→ 0,187

which proves the claim.188

4. SUR on multi-dimensional domains. This section rephrases the SUR algorithm189

of Definition 2.2 and the convergence property of Proposition 2.5 for the multi-dimensional190

setting. Previous proofs of the approximation properties of the SUR algorithm have191

relied on the forward progression in time. We show that a spatial coherence property192

of the grid refinements can defined to transfer the approximation properties to multi-193

dimensional domains. Subsection 4.1 introduces the multi-dimensional SUR algorithm194

and an approximation property of relaxed controls, which are constant per cell on a fixed195

grid. Subsection 4.2 gives a sufficient condition on grid refinement strategies and the196

proofs that establish weak-∗ convergence of the sequence of binary controls that are197

computed on the refined rounding grids to a relaxed control. Subsection 4.3 uses these198

results to prove convergence of Algorithm 1.1.199

4.1. Multi-dimensional SUR and vanishing integrality gap. We postulate the200

existence of a finite partition of Ω and compute a binary control ω from a relaxed control201

α using SUR.202

Definition 4.1 (SUR on multi-dimensional domains). Let Ω ⊂ Rd be a bounded203

domain. Let {S1, . . . , SN} ⊂ B(Ω) be a finite partition of Ω indexed by i ∈ {1, . . . , N}.204

Let α be a relaxed control. For indices j ∈ {1, . . . ,M} of discrete controls, we define205

recursively206

ω̃i,j :=


1 : j = arg max

k∈{1,...,M}

∫
Si

αk dλ+

∫
⋃i−1

`=1 S`

αk − ω(α)k dλ,

0 : otherwise,

207

ω(α)|Si :≡ ω̃i.208209

This manuscript is for review purposes only.



6 P. MANNS, AND C. KIRCHES

If a tie arises with respect to the maximizing index k, one of the maximizing indices is210

chosen arbitrarily. In our implementation, we pick the smallest applicable index.211

First, we transfer Proposition 2.4 to the multi-dimensional setting. By Definition 4.1,212

we have213

ω =

N∑
i=1

ω̃iχSi
.(4.1)214

215

Analogously, we introduce piecewise-averaged versions of α,216

α̃i :=
1

λ(Si)

∫
Si

α dλ and ᾱ :=

N∑
i=1

α̃iχSi
(4.2)217

218

and the control deviation φ,219

φ̄ := ᾱ− ω.(4.3)220221

Applying Proposition 2.4 to the one-dimensional SUR algorithm, the multi-dimensional222

can be reduced to the one-dimensional setting.223

Corollary 4.2 (Vanishing integrality gap for multi-dimensional SUR). There ex-224

ists C > 0 such that for all relaxed controls α and ω(α) that are computed by the225

multi-dimensional variant of SUR of Definition 4.1, we obtain that226

1. ω is a binary control and227

2. for φ := α− ω(α) the following estimate holds:228

max
i∈{1,...,N}

∥∥∥∥∥
∫
⋃i

j=1 Sj

φ dλ

∥∥∥∥∥
∞

≤ C ·max
i∈{1,...,N}

λ(Si).229

230

Proof. We investigate ω produced by the SUR algorithm of Definition 4.1. We observe
that by setting

ti := λ

 i⋃
j=1

Si


for i ∈ {0, . . . , N} and231

α∗ :=
N∑
i=1

α̃iχ[ti−1,ti), ω
∗ :=

N∑
i=1

ω̃iχ[ti−1,ti), φ
∗ := α∗ − ω∗,232

233

we obtain a curve α∗ : [0, λ(Ω)] → [0, 1]M for which the application of SUR of Defini-234

tion 2.2 would have produced the same result. This means that it would have produced235

the same sequence of piecewise constant function values on pieces with the same Lebesgue236

measure values as the multi-dimensional case, but in linear ordering along the time in ω∗.237

The equations (4.2) and (4.3) yield238 ∫
Si

φdλRd =

∫
Si

φ̄ dλRd239

240

for i ∈ {1, . . . , N}. Now, splitting the integral of φ over Rd into a sum and recombining241

it into an integral of φ∗ over R gives242 ∫
⋃i

j=1 Sj

φdλRd =

∫ ti

0

φ∗ dλR1 .243

244
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SUM-UP ROUNDING FOR ELLIPTIC CONTROL SYSTEMS 7

Thus, we can apply Proposition 2.4 to obtain245

max
i∈{1,...,N}

∥∥∥∥∥
∫
⋃i

j=1 Sj

φdλRd

∥∥∥∥∥
∞

≤ sup
t∈[0,T ]

∥∥∥∥∫ t

0

φ∗ dλR1

∥∥∥∥
∞
≤ C ·max

i∈{1,...,N}
λ(Si).246

247

The constant C > 0 can be improved by using different algorithms than SUR such as248

the integer optimization approach from [20] to minimize the integrated control deviation.249

These algorithms may be transferred to the multi-dimensional setting analogously.250

4.2. Convergence for suitable grid refinements. Before stating the weak-∗ con-251

vergence of the binary controls to the relaxed control, we define a condition on sequences252

of grids, which will be sufficient to prove it.253

Definition 4.3 (Admissible sequences of refined rounding grids). Let Ω ⊂ Rd be254

a bounded domain. Then, we call a sequence
({
S

(n)
1 , . . . , S

(n)

N(n)

})
n
⊂ 2B(Ω) an order255

conserving domain dissection of Ω if256

1.
{
S

(n)
1 , . . . , S

(n)

N(n)

}
is a finite partition of Ω for all n ∈ N.257

2. maxi∈{1,...,N(n)} λ(S
(n)
i )→ 0.258

3. for all n and all i ∈ {1, . . . , N (n−1)}, there exist 1 ≤ j < k ≤ N (n) such that259 ⋃k
l=j S

(n)
l = S

(n−1)
i and260

4. the cells S
(n)
j shrink regularly, that is there exists C > 0 such that for each S

(n)
j261

there exists a Ball B
(n)
j such that S

(n)
j ⊂ B(n)

j and λ(S
(n)
j ) ≥ Cλ(B

(n)
j ).262

The third property is particularly important for the proof below and means that the263

order of the grid cells is recursively preserved from grid iteration n − 1 to grid iteration264

n. This is similar to the two-level decomposition scheme introduced in [27] for the case265

rectangular grid cells. We also note that the fourth property in Definition 4.3 bears266

similarities with finite element triangulations. It is similar to requiring a quasi-uniform267

mesh, which is refined with an isotropic strategy, see [2]. However, for our purpose, it is268

sufficient to restrict the eccentricity with a bound on the ratio between the measures of269

a cell and the circumscribed sphere without caring about the ratio of the diameter to the270

one of an inscribed sphere.271

In fact, Definition 4.3 was obtained by studying the Hilbert curve, a so-called space-272

filling curve, which is a continuous and surjective mapping from [0, 1] to [0, 1]2. Space-273

filling curves can be defined as limits of approximating curves. The first three iterations274

of the Hilbert curve are displayed in Figure 1, a facsimile of the figure in Hilbert’s article275

from 1891 [10]. The third property in Definition 4.3 can be observed in Figure 1. For276

example, the second square from iteration 1 is decomposed into squares 5-8 in iteration277

2 and squares 17-32 in iteration 3, etc. In our proofs this property allows us to maintain278

a spatial coherence of the vanishing integrality gap, the error quantity, which can be279

controlled for the SUR algorithm by virtue of Corollary 4.2.280

The following lemma provides an approximation argument that allows us to obtain281

the desired weak-∗ convergence. A preliminary version of this argument is published in282

the short proceedings article [14].283

Lemma 4.4. Let Ω ⊂ Rd be a bounded domain. Let α ∈ L∞(Ω,RM ) be [0, 1]M -284

valued and let an order conserving domain dissection
{
S

(n)
1 , . . . , S

(n)

N(n)

}
of Ω be given.285

Let (φ(n))n be a sequence of [−1, 1]M -valued measurable functions. Let C > 0 be such286
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Fig. 1: Hilbert curve iterates H1, H2, H3 (left to right) on Ω̄ = [0, 1]2. The (additional)
extension to the boundary is marked red (light gray in grayscale print). The induced
discretization squares are circumscribed by the gray lines. Their ordering along the Hilbert
curve iterates is indicated by the small numbers inside the cells.

that287

max
i∈{1,...,N(n)}

∥∥∥∥∥
∫
⋃i

j=1 S
(n)
j

φ(n) dλ

∥∥∥∥∥
∞

≤ C max
i∈{1,...,N}

λ
(
S

(n)
i

)
.288

Let f ∈ L1(Ω) and let i ∈ {1, . . . ,M}. Then,289 ∫
Ω

φ
(n)
i f dλ→ 0.290

Proof. In the remainder of the proof we abbreviate φ(n) = φ
(n)
i to avoid a bloated291

notation. We note that the products φ(n)f are integrable for all n ∈ N because φ(n) ∈292

L∞(Ω) for all n ∈ N.293

We have to show
∫

Ω
φ

(n)
i f dλ→ 0. Since integrable functions can be written as the294

difference f = f+− f− with f+ and f− being positive integrable functions, it suffices to295

show the claim for functions f ∈ L1(Ω) that are positive almost everywhere.296

We use two approxmation steps. First, we approximate the function f+ by simple297

functions. Second, we use the properties of Definition 4.3 to approximate the function298

by its average on the domain dissection of grid iteration n. This will allow us to apply299

Corollary 4.2, which then drives the integral to zero.300

We recall that f+ is the pointwise monotone limit of a sequence of simple functions,301

that is 0 ≤ f (1)(x) ≤ f (2)(x) ≤ . . . ≤ f(x) for a.a. x ∈ Ω and limk

∫
Ω
|f − f (k)| = 0.302

Let ε > 0. We pick k ∈ N such that
∫

Ω
|f − f (k)| < ε/3 and obtain that303 ∣∣∣∣∫

Ω

fφ(n)

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

f (k)φ(n)

∣∣∣∣+

∣∣∣∣∫
Ω

(f − f (k))φ(n)

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

f (k)φ(n)

∣∣∣∣+
ε

3
304

for all n ∈ N, where we have used the triangle inequality and that ‖φ(n)‖L∞ ≤ 1.305

Next, we set g := f (k) and consider
∣∣∫

Ω
gφ(n)

∣∣. Again, g ≥ 0 almost everywhere. For306

grid iteration n ∈ N, we define the function g(n)307

g(n)(x) :=

N(n)∑
i=1

χ
S

(n)
i

(x)
1

λ(S
(n)
i )

∫
S

(n)
i

g dλ for x ∈ Ω308

The functions g(n) converge to g in a pointwise almost everywhere sense by virtue309

of Lebesgue’s differentiation theorem, see [23, Chap. 3, Cor. 1.6 & 1.7], which may be310

applied because of the regular shrinkage assumption ensured by the fourth property of311

This manuscript is for review purposes only.



SUM-UP ROUNDING FOR ELLIPTIC CONTROL SYSTEMS 9

Definition 4.3. Moreover, it holds that the g(n) pointwise almost everywhere are bounded312

by ‖g‖L∞ , which is finite because g is a simple function. Thus, we apply Lebesgue’s313

dominated convergence theorem to deduce g(n) → g in L1(Ω). Therefore, we may choose314

n0 ∈ N such that315

‖g − g(n0)‖L1 <
ε

3
.(4.4)316

317

Let n ∈ N. We use the triangle inequality and estimate318 ∣∣∣∣∫
Ω

gφ(n) dλ

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

g(n0)φ(n) dλ

∣∣∣∣+

∣∣∣∣∫
Ω

(g − g(n0))φ(n) dλ

∣∣∣∣ .319
320

For the first term it holds that321 ∣∣∣∣∫
Ω

(g − g(n0))φ(n) dλ

∣∣∣∣ ≤ ∥∥∥g − g(n0)
∥∥∥
L1
‖φ(n)‖L∞

‖φ(n)‖L∞≤1
<

(4.4)

ε

3
.322

Thus the proof is complete if we are able to show there exists n1 ∈ N such that for all323

n ≥ n1 it holds that324 ∣∣∣∣∫
Ω

g(n0)φ(n) dλ

∣∣∣∣ < ε

3
.325

For the remainder of the proof, we abbreviate gi := 1

λ(S
(n0)
i )

∫
S

(n0)
i

g(n0) dλ. We can326

rewrite327 ∫
Ω

g(n0)φ(n0) dλ =

N(n0)∑
i=1

gi

∫
S

(n0)
i

φ(n0) dλ.328

The third property of Definition 4.3 implies that the grid cell S
(n0)
i is decomposed into329

finitely many grid cells in iteration n0 +1. Since this property holds recursively, we deduce330

for all n ≥ n0 that331 ∫
Ω

g(n0)φ(n) dλ =

N(n0)∑
i=1

gi

∫
S

(n0)
i

φ(n) dλ.(4.5)332

333

Let i ∈ {1, . . . , N (n0)} be fixed. The recursive decomposition property three of334

Definition 4.3 implies the following. For all n ≥ n0 there exist indices a(i, n), b(i, n) ∈335

N (n) such that a(i, n) is the starting index and b(i, n) the end index of the cells into336

which S
(n0)
i is decomposed in grid iteration n ≥ n0. Thus we have the decomposition337

S
(n0)
i =

⋃b(i,n)
j=a(i,n) S

(n)
j . This means that This allows us to perform the following estimate338 ∣∣∣∣∣

∫
S

(n0)
i

φ(n) dλ

∣∣∣∣∣ =

∣∣∣∣∣
∫
⋃b(i,n)

j=a(i,n)
S

(n)
j

φ(n) dλ

∣∣∣∣∣339

=

∣∣∣∣∣
∫
⋃b(i,n)

j=1 S
(n)
j

φ(n) dλ−
∫
⋃a(i,n)−1

j=1 S
(n)
j

φ(n) dλ

∣∣∣∣∣340

≤ 2 max
k∈{1,...,N(n)}

∣∣∣∣∣
∫
⋃k

j=1 S
(n)
j

φ(n) dλ

∣∣∣∣∣ ,341

342

where the first equality follows by inserting the considerations above and the last inequality343

follows from the triangle inequality.344
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From the second property of Definition 4.3 and the prerequisites we deduce that345 ∣∣∣∣∣
∫
S

(n0)
i

φ(n) dλ

∣∣∣∣∣ < ε

6
∑N(n0)

i=1 gi
346

for all n ≥ n1, where n1 ≥ n0 is chosen such that347

max
k∈{1,...,N(n)}

λ
(
S

(n)
k

)
<

ε

6 max{C, 1}
∑N(n0)

i=1 gi
348

holds for all n ≥ n0.349

We insert the estimates we just obtained into (4.5), which gives350 ∣∣∣∣∫
Ω

g(n0)φ(n) dλ

∣∣∣∣ < ε

3
351

for all n ≥ n1.352

Thus for all ε > 0 there exists n0 ∈ N such that for all n ≥ n0 it holds that353 ∣∣∣∣∫
Ω

fφ(n) dλ

∣∣∣∣ < ε,354

which finishes the proof.355

Lemma 4.4 immediately establishes the desired weak-∗ and weak convergence prop-356

erties, which we summarize in the following theorem.357

Theorem 4.5. Let Ω ⊂ Rd be a bounded domain and let
({
S

(n)
1 , . . . , S

(n)

N(n)

})
n
⊂358

2B(Ω) be an admissible sequence of refined rounding grids of Ω. Let α be a relaxed control359

and for n ∈ N, let ω(n) be the binary control computed by the multi-dimensional SUR360

algorithm on the n-th rounding grid. Let φ(n) := α−ω(n) be the control deviation vector361

of the n-th grid. Then,362

φ(n) ⇀ 0 in Lp(Ω,RM ) for 1 ≤ p <∞363364

and365

φ(n) ⇀∗ 0 in Lp(Ω,RM ) for 1 < p ≤ ∞.366367

Proof. We consider the sequence of (ω(n))n, where ω(n) : Ω→ {0, 1}M is generated368

by the multi-dimensional SUR algorithm on the n-th domain dissection along the subscript369

ordering. The function of the control deviation vector of the n-th grid is denoted by370

φ(n) := α− ω(n). It is [−1, 1]M -valued and satisfies the required estimate of Lemma 4.4371

by virtue of Corollary 4.2.372

We identify RM ∼= (RM )∗ and use Lp-space duality for vector-valued function spaces,373

see e.g. [5, Thm IV.1], together with Lemma 4.4 and an ε/M -argument.374

This shows that the approximation properties hold for integral operators with L1-375

kernels, which generalizes the results from [27] from Lipschitz continuous to L1-functions.376

A spatial coherence property like the third property of Definition 4.3 is indeed necessary377

to obtain convergence in the weak∗ topology of L∞(Ω). We give a counterexample below378

that shows that one can choose a sequence of rounding grids such that weak∗ convergence379

does not follow.380
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Example 4.6. For n ∈ N, we decompose the set Ω = [0, 1) and define the n-th381

rounding grid {S(n)
1 , . . . , S

(n)

N(n)} consisting of N (n) = 2n intervals by setting382

S
(n)
2i :=

[
(i− 1)2−n, i2−n

)
and S

(n)
2i−1 :=

[
0.5 + (i− 1)2−n, 0.5 + i2−n

)
383384

for i ∈ {1, . . . , 2n−1}. This implies that S
(n)
k ⊂ [0, 0.5) if k is even and S

(n)
k ⊂ [0.5, 1) if k385

is odd. The resulting sequence of rounding grids satisfies all properties from Definition 4.3386

except the third.387

Let M = 2 and consider the function α :≡
(
0.5 0.5

)T
. Then the SUR algorithm388

applied to α on the n-th rounding yields a function ω that satisfies389

ω(n)(x) =

{(
0 1

)T
if x ∈ S(n)

2i for some i ∈ {1, . . . , 2n−1}, and(
1 0

)T
else, that is if x ∈ S(n)

2i−1 for some i ∈ {1, . . . , 2n−1}.
(4.6)390

391

Now, we consider the function f = χ[0,0.5) and obtain392 ∫
Ω

f(α− ω(n))1 dλ =

∫ 0.5

0

(α− ω(n))1 dλ =

∫
⋃2n−1

i=1 S
(n)
2i

(α− ω(n))1 dλ393

because the cells S
(n)
k for even k decompose [0, 0.5) for all n. We insert (4.6) and obtain394 ∫

Ω

f(α− ω(n))1 dλ = 0.5λ

2n−1⋃
i=1

S
(n)
2i

 = 0.5λ([0, 0.5)) = 0.25395

for all n ∈ N. Thus there exists f ∈ L1(Ω) such that
∫

Ω
f(α − ω(n)) 6→ 0, and conse-396

quently, ω(n) 6⇀∗ α in L∞(Ω).397

4.3. Algorithmic consequences. We prove our main result, the convergence of398

Algorithm 1.1 under Definition 4.3 with the results from Section 3 and Section 4 in the399

theorem below.400

Theorem 4.7 (Convergence of Algorithm 1.1). Let Ω ⊂ Rd be a bounded domain.401

Let Assumption 3.1 hold. Let J : V → R be continuous. Let f1, . . . , fM ∈ L2(Ω). Let the402

sequence
(
S(n)

)
n

produced by Algorithm 1.1 be an order conserving domain dissection.403

Then, for every norm-weak-∗-accumulation point (x∗, α∗) ∈ FRC with approximating404

subsequences405

α(nk) ⇀∗ α∗ and x(nk) → x∗,406

produced by Algorithm 1.1, the corresponding iterates (y(nk), ω(nk)) ∈ FBC produced by407

Algorithm 1.1 satisfy408

J(y(nk))→ J(x∗).409

Proof. To ease the notation, we denote the subsequence (nk)k by (n)n. It suffices410

to show y(n) → x∗ in V as J is continuous. This in turn follows from Theorem 3.2 if we411

can show ω(n) ⇀∗ α∗, i.e.412 ∫
Ω

(α∗i − ω
(n)
i )g =

∫
Ω

(α∗i − α
(n)
i )g +

∫
Ω

(α
(n)
i − ω(n)

i )g → 0413

for all g ∈ L1(Ω) and i ∈ {1, . . . ,M}.414

The first term converges to zero by assumption. We observe that φ(n) := α(n)−ω(n)415

satisfies the estimate required by Lemma 4.4 by virtue of Corollary 4.2 because ω(n)416

is computed by SUR from the relaxed control function α(n) on the n-th rounding grid.417

Consequently, the proof of Lemma 4.4 implies that for all g ∈ L1(Ω) we have
∫

Ω
gφ

(n)
i → 0418

for all i ∈ {1, . . . ,M}, which finishes the proof.419
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12 P. MANNS, AND C. KIRCHES

5. Approximation relationship of (BC) and (RC). The previous sections show that420

the SUR algorithm gives an efficient means to compute binary-valued approximations of421

relaxed controls in weaker topologies. This is as good as we can expect and is not true422

in the norm topology if the relaxed control assumes fractional values on a set of positive423

measure. Regarding Theorem 4.7, we observe that if an accumulation point (α∗, x∗)424

minimizes (RC), we obtain a minimizing sequence for (RC) with binary controls. Thus,425

(BC) approximates (RC), which we summarize below.426

Theorem 5.1. Let Assumption 3.1 hold. Let J : V → R be continuous. Let427

f1, . . . , fM ∈ L2(Ω). Then, a sequence (y(n), ω(n))n ⊂ FBC exists such that428

lim
n→∞

J(y(n))→ inf
(y,ω)∈FBC

J(y).429

Furthermore,430

min
(x,α)∈FRC

J(x) = inf
(y,ω)∈FBC

J(y).431

Proof. By construction of (RC) and (BC), we have inf{J(x) : (x, α) ∈ FRC} ≤432

inf{J(y) : (y, ω) ∈ FBC} as FBC ⊂ FRC . The set {
∑M
i=1 αifi : α is a relaxed control}433

is convex, closed and bounded and consequently weakly compact in L2(Ω) by virtue of434

the Banach-Alaoglu theorem. The map α 7→ x(α) = A−1
∑M
i=1 αifi is continuous from435

the weak-∗ topology of L∞(Ω) to the norm topology of V with the same arguments as436

in Theorem 3.2. Thus the reduced objective map α 7→ J(x(α)) is continuous from the437

weak-∗ topology of L∞(Ω) to R. Thus, there exists a minimizer (x∗, α∗) ∈ FRC by virtue438

of the Weierstrass extreme value theorem for topological vector spaces, see [15].439

The application of SUR to α∗ on a sequence of uniformly refined uniform rounding440

grids (or any admissible sequence of rounding grids) yields existence of binary controls441

ω(n) such that ω(n) ⇀∗ α∗ by virtue of Theorem 4.5. The arguments above imply that442

the corresponding state vectors y(n) = A−1
∑M
i=1 fiω

(n)
i satisfy y(n) → x∗ in V and thus,443

inf
(y,ω)∈FBC

J(y) ≤ J(y(n))→ J(x∗) = min
(x,α)∈FRC

J(x).
444

The result is constructive as applying SUR on sequences of rounding grids that are445

order conserving domain dissections yields sequences with these characteristics. Consider446

f1, . . . , fM ∈ R and assume that (RC) is solved by means of an auxiliary variable v :=447 ∑M
i=1 αifi subject to box-constraints of the form v ∈ [fL, fU ] with fL = mini fi, fU =448

maxi fi. Section 6 discloses that it may be more realistic to assume that the objective449

functional has the structure450

J1(x, α) = J(x) +
γ

2

∥∥∥∥∥
M∑
i=1

αifi

∥∥∥∥∥
2

L2

451

or similar to ensure that (RC) is well-posed. If we keep the other assumptions the same and452

apply a similar reasoning, we obtain the following result, which introduces a suboptimality,453

but may be of interest in practice.454

Corollary 5.2. There exists a sequence (y(n), ω(n))n ⊂ FBC such that455

min
(x,α)∈FRC

J1(x, α) ≤ lim
n→∞

J1(y(n), ω(n)) ≤ inf
(y,ω)∈FBC

J(y) +
γ

2
‖max{|fL|, |fU |}‖2L2 .456
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Proof. Pointwise factorization, 0 ≤ α ≤ 1 a.e. and
∑M
i=1 αi = 1 a.e. give457

γ

2

∥∥∥∥∥
M∑
i=1

αifi

∥∥∥∥∥
2

L2

≤ γ

2
‖max{|fL|, |fU |}‖2L2 =: K.(5.1)458

459

Let (x∗, α∗) ∈ arg min{J1(x, α) : (x, α) ∈ FRC}. Then,460

J1(x∗, α∗) = J(x∗) +
γ

2

∥∥∥∥∥
M∑
i=1

α∗i fi

∥∥∥∥∥
2

L2

≤ inf
(x,α)∈FRC

J(x) +K.461

462

If we assume the converse, (5.1) implies the contradictory inequality J(x∗) > inf{J(x) :463

(x, α) ∈ FRC}. The claim follows from Theorem 5.1, in particular from the existence of464

(y(n), ω(n))n such that J(y(n))→ J(x∗), and (5.1) applied to the ω(n).465

The box constraints v ∈ [fL, fU ] imply the existence of a (usually non-unique) feasible α.466

Thus, solving the relaxation for v is a consistent reduction of the problem. Furthermore,467

by rounding, the box constraints still hold as
∑M
i=1 ωifi ∈ [fL, fU ] for binary controls ω.468

Thus, the corollary states that we can approximate the infimum of (BC) up to a subop-469

timality in O(γ). Choosing γ small enough allows to control the limiting suboptimality a470

priori. However, γ may also be fixed a priori in practice. Corollary 5.2 can be generalized471

for arbitrary L∞-functions fi, i.e. we may solve for v in the convex hull of the fi.472

6. Numerical experiments. We illustrate our results computationally. All meshes473

and PDE solutions have been implemented in FEniCS [1]. As mentioned above, we474

consider the Dirichlet Laplacian, which satisfies our assumptions, see Example 6.1 below.475

Example 6.1. We consider the Dirichlet Laplacian on the unit square Ω̄ = [0, 1]2,476

i.e. the constraint −∆x =
∑M
i=1 αifi, x|∂Ω = 0 for relaxed controls α in (RC). In the477

interest of completeness, we note that the embeddings H1
0 (Ω) ↪→c L2(Ω) ↪→c H−1(Ω) are478

continuous, compact and dense, see [16, Thm 7.29], and that the Lax-Milgram theorem,479

see [16, Thm 9.14], yields the existence of a bounded inverse A−1 : H−1(Ω) → H1
0 (Ω).480

Thus, Assumption 3.1 is satisfied.481

First, we demonstrate the approximation properties of SUR. Next, we use Algo-482

rithm 1.1 to approximately solve a tracking-type problem that is constrained by the Dirich-483

let Laplacian. Finally, we test the methodology outside of the intended scope in a control484

reconstruction problem.485

6.1. Approximation properties of the SUR algorithm. We demonstrate Theo-486

rems 3.2 and 4.5 by computing the SUR approximation for eight uniformly refined square487

grids, where the side lengths of the cells are halved in each refinement, i.e. the number488

of grid cells quadruples from iteration to the next. The SUR approximation is computed489

along the orderings induced by the Hilbert curve approximants. A grayscale image of490

David Hilbert is used as input (relaxed control) for the SUR algorithm, see Figure 2491

for the weak-∗ approximation with the Hilbert curve induced ordering of the cells. The492

resulting approximation errors for solutions of the state equation in Example 6.1, i.e.493

Theorem 3.2, are illustrated in Figure 3.494

The weak-∗ convergence of ω(n), i.e. Theorem 4.5, can be perceived visually in Fig-495

ure 2 and the output of SUR resembles a dithering technique from computer graphics to496

display grayscale images with coarsely quantized gray colors such as the Floyd-Steinberg497

algorithm [24] or the digital half-toning algorithm from [25], which is very similar to SUR498

and also executed along a space-filling curve.499
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ω
(1)
HC ω

(3)
HC ω

(5)
HC ω

(7)
HC ω

(9)
HC

Fig. 2: Weak-∗ approximants computed with SUR for a grayscale image of David Hilbert
along the order defined by the 1st, 3rd, 5th, 7th and 9th Hilbert curve approximant.

1 2 3 4 5 6 7 8

10−4

10−2

SUR iteration n

‖y
(α

)
−
y
(ω

(n
)
)‖
L

2

Fig. 3: State approximation error for SUR for uniformly refined grids and along the Hilbert
curve approximant-induced orderings.

All results in the subsequent sections have been computed by executing the SUR500

algorithm along the cell ordering induced by Hilbert curve approximants.501

6.2. Approximating the solution of an MIOCP with Algorithm 1.1. We consider502

the following problem503

min
y,f

1

2
‖y − yd‖2L2 +

γ

2
‖f‖2L2

s.t. −∆y = f, y|∂Ω = 0, f ∈ {f1, . . . , fM} ⊂ R a.e. on Ω

(P)504

505

with f1 < . . . < fM . (P) is similar to problem (1.1) considered by Clason and Kunisch in506

[4] where they introduce the notions of multi-bang controls and generalized multi-bang507

principle for controls f satisfying the discrete-value constraint almost everywhere. Com-508

pared to (1.1) in [4], (P) lacks the term β
∫

Ω

∏M
i=1 |f − fi|0 with |t|0 = 1− δt0 (using the509

real-valued Kronecker delta) that promotes {f1, . . . , fM}-valued solutions. Furthermore,510

the box constraint f1 ≤ f ≤ fM has been replaced by f ∈ {f1, . . . , fM}. This is not a511

coincidence because, in an informal way, we can regard (P) as a limit problem of (1.1) in512

[4] for the homotopy arising from increasing their parameter β penalizing non-discreteness.513

Reformulation and relaxation. We consider the following relaxed partial outer con-514

vexification of (P).515

min
x,f

1

2
‖x− yd‖2L2 +

γ

2
‖f‖2L2

s.t. −∆x =

M∑
i=1

αifi, x|∂Ω = 0, α ∈ [0, 1]M and
M∑
i=1

αi = 1 a.e. on Ω.

(P RC1)516

517
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Of course, we reduce solving (P RC1) to solving518

min
x,f

1

2
‖x− yd‖2L2 +

γ

2
‖f‖2L2

s.t. −∆x = f, x|∂Ω = 0, f ∈ [f1, fM ] a.e. on Ω

(P RC2)519

520

and compute α from f afterwards. Note that (P RC1) is ill-posed as the representation521

of f with convex combinations of the fi is not unique and thus, the particular outcome522

of SUR and Algorithm 1.1 may depend on the chosen representation. The convergence523

results hold independently of the representation, but different α(n) are computed and524

approximated by the ω(n) in the weak-∗ sense. We have chosen the most natural rep-525

resentation from our point of view. Specifically, we represent a value f(s) for s ∈ Ω as526

the convex combination of its two neighboring points in {f1, . . . , fM}. This means, we527

choose fi and fi+1 such that fi ≤ f(s) ≤ fi+1 and compute αi(s), αi+1(s) = 1− αi(s)528

such that αi(s)fi + (1− αi(s))fi+1 = f(s). αj(s) := 0 for all j /∈ {i, i+ 1}. Of course,529

a convex combination of neighboring points always exists due to Caratheodory’s theorem.530

It is well-known that L1-regularized problems tend to produce large areas where the531

control is exactly zero. Thus, if there exists f∗ ∈ {f1, . . . , fM} that can be assumed532

to dominate the resulting control on large areas, it may be beneficial to solve an L1-533

regularized problem with regularizer ‖f − f∗‖L1 as a relaxed problem. Therefore, we534

include the following problem into our computational experiments:535

min
x,f

1

2
‖x− yd‖2L2 +

γ

2
‖f‖2L2 + η‖f‖L1

s.t. −∆x = f, x|∂Ω = 0, f ∈ [f1, fM ] a.e. on Ω

(P RC3)536

537

If γ > 0, the L2-term improves the regularity of the solution without having to smooth538

the L1-term. Elliptic control problems of the type of (P RC3) have been analyzed in [22]539

and [26] and we compute the solutions of the discretizations of (P RC3) with the active540

set method presented in [22]. We choose γ � η to obtain a dominating effect of the541

L1-regularization over the L2-regularization.542

Application of Algorithm 1.1. As the objective depends on α in (P RC2), we have a
slight deviation from the setting in (BC) and (RC) and can only expect norm-convergence
in the tracking type summand of the objective. Clearly, ω(n) ⇀∗ α implies v(n) ⇀ v with

v(n) :=

M∑
i=1

ω
(n)
i fi and v =

M∑
i=1

αifi,

but the norm ‖ · ‖L2 is weakly lower semicontinuous and we obtain

lim inf
n→∞

γ

2

∥∥v(n)
∥∥2

L2 ≥
γ

2
‖v‖2L2

and equality holds if and only if v(n) → v which cannot be assumed for the considered543

problems. Hence, we expect convergence of the tracking type summand in the progression544

of Algorithm 1.1 and convergence of the L2-regularization to a suboptimal value.545

We have taken yd and the control quantization into f1 = −2, . . . , f5 = 2 from [4]546

to use their code for plausibility checks of our results. We solve (P RC2) approximately547

(with γ = 10−3) and (P RC3) approximately (with γ = 10−5 and η = 5 ·10−4) on refined548

triangular grid with first order Lagrange finite elements. For the right hand sides, we use549

a piecewise-constant discontinuous Galerkin discretization on square cells, which consist550
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of two triangles each. The SUR algorithm is executed on the these square cells. We551

computed 9 iterations of Algorithm 1.1. The relative errors of the tracking term (Jt), the552

regularization term (Jr) and the state vector produced by SUR to the solution of (RC
(9)
h )553

as well as the state vector difference along the iterates are given in Table 1 for (P RC2)554

and 2 for (P RC3).

Table 1: Self-convergence of the tracking term, the suboptimality gap in the regularizer,
and the state vector iterates against the solution of the finest approximation of (P RC2) as
well as convergence of the difference between the relaxed state vector and corresponding
SUR approximation for the parameter γ = 10−3.

It.
|Jt(ω(n))−Jt(α(9))|

Jt(α(9))

|Jr(ω(n))−Jr(α(9))|
Jr(α(9))

‖y(n)−x(9)‖
L2

‖x(9)‖
L2

∥∥y(n) − x(n)
∥∥
L2

1 2.396× 10−1 4.231× 10−1 7.350× 10−1 7.366× 10−3

2 3.277× 10−1 9.867× 10−2 5.013× 10−1 8.496× 10−3

3 8.537× 10−3 2.752× 10−2 2.044× 10−1 3.881× 10−3

4 9.384× 10−3 6.808× 10−2 4.916× 10−2 7.960× 10−4

5 3.807× 10−3 5.963× 10−2 1.747× 10−2 3.888× 10−4

6 1.021× 10−3 6.174× 10−2 3.852× 10−3 8.069× 10−5

7 2.254× 10−4 6.146× 10−2 9.843× 10−4 2.233× 10−5

8 6.627× 10−5 6.142× 10−2 3.053× 10−4 7.945× 10−6

9 7.381× 10−6 6.142× 10−2 3.472× 10−5 1.214× 10−6

Table 2: Self-convergence of the tracking term, the suboptimality gap in the regularizer,
and the state vector iterates against the solution of the finest approximation of (P RC3) as
well as convergence of the difference between the relaxed state vector and corresponding
SUR approximation for the parameters γ = 10−5 and η = 5 · 10−4.

It.
|Jt(ω(n))−Jt(α(9))|

Jt(α(9))

|Jr(ω(n))−Jr(α(9))|
Jt(α(9))

‖y(n)−x(9)‖
L2

‖x(9)‖
L2

∥∥y(n) − x(n)
∥∥
L2

1 2.287× 10−1 5.981× 10−1 7.580× 10−1 7.366× 10−3

2 3.333× 10−1 1.963× 10−1 5.030× 10−1 6.179× 10−3

3 1.793× 10−2 2.049× 10−2 3.112× 10−1 9.469× 10−3

4 9.653× 10−3 1.091× 10−2 7.762× 10−2 1.549× 10−3

5 2.654× 10−3 1.441× 10−3 1.372× 10−2 2.181× 10−4

6 6.477× 10−4 2.443× 10−3 3.326× 10−3 5.095× 10−5

7 1.728× 10−4 5.189× 10−4 8.461× 10−4 2.011× 10−5

8 5.953× 10−5 1.904× 10−4 3.318× 10−4 5.539× 10−6

9 5.382× 10−6 4.918× 10−5 3.012× 10−5 1.110× 10−6

555
The difference between the tracking type terms converges to zero in both cases while556

the difference between the regularizing terms converges to a suboptimal value in the case of557

(P RC2) due to the weak lower semicontinuity of ‖·‖L2 and the fact that (v(ω(n)))n does558

not converge in norm. In the case of (P RC3), the same happens, but the suboptimality is559

significantly smaller because the v(ω(n)) approximate the v(α(n)) closely in norm for fine560

grids. This strengthens our argument to employ L1-regularization terms when possible.561

The relaxed solutions v(α(n)), their SUR approximants v(ω(n)) and the corresponding562

state vectors produced by Algorithm 1.1 are plotted in Figure 4 for the L2-case and in563
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Figure 5 for the L1-case. Due to their similarity to the L2-case, the state vectors are564

omitted in the L1-case. The better approximation of the right hand sides in the norm565

topology in the L1 case is clearly visible when comparing the two figures.

Fig. 4: Visualization of the (weak) convergence of (v(α(n)))n, (x(α(n)))n, (v(ω(n)))n and
(y(ω(n)))n for (P RC2).

Fig. 5: Visualization of the (weak) convergence of (v(α(n)))n and (v(ω(n)))n for (P RC3).

566

6.3. Employing SUR for control reconstruction. We have shown that the multi-567

dimensional SUR algorithm is able to produce discrete-valued control trajectories such that568

a given state vector can be approximated arbitrarily well. Optimality of the approximated569
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state vector holds if SUR is embedded into Algorithm 1.1. However, as we have only570

weak-∗ convergence in control space, a good approximation in control space in norm can571

only be expected if large parts of the relaxed control are already discrete-valued. We give572

it a try for control reconstruction and stage the following reconstruction problem to assess573

it. We pre-define a true binary control ω∗ : [0, 1]→ {0, 1}. Then, we solve the BVP574

(−ν∆ + I)yd = ω∗, yd|∂Ω = 0575

to get a corresponding state yd. Then, we employ the projected subgradient method to576

solve for the first order optimality conditions of a discretization of577

min
x,f

1

2
‖x− yd‖2L2

s.t. (−ν∆ + I)x = α, x|∂Ω = 0, α ∈ [0, 1] a.e. on Ω,

578

579

which yields a control α. The original pair (yd, ω
∗) is a (non-unique) minimizer with580

objective value zero. The optimization yields a blurred version α of the original control581

ω∗. We apply the SUR algorithm to compute ω̃ from α and compare it to ω∗. We use582

a binary image of David Hilbert as original control ω∗. The operator (−ν∆ + I) has a583

blurring effect, which can be controlled using the parameter ν. We have set ν = 10−4584

and ν = 10−3 for our experiment. For the resulting relative L2-error, we obtain ‖ω∗ −585

ω̃‖L2/‖ω∗‖L2 = 1.6232× 10−1 for ν = 10−4 and ‖ω∗ − ω̃‖L2/‖ω∗‖L2 = 2.8460× 10−1586

for ν = 10−3. The controls ω∗, α and ω̃ are visualized in Figure 6.587

Fig. 6: Original binary-valued control ω∗ (left), blurred reconstruction α (center) and
binary-valued reconstruction ω̃ (right) for ν = 10−4 (top) and ν = 10−3 (bottom).

The choice of which binary control is rounded to one by the SUR algorithm on a588

grid cell only depends on the average of the relaxed control on the current cell and the589

decisions for the previous grid cells. In particular, desirable features like edge detection590

or preservation cannot be expected as there is no optimality of the rounding with respect591

to any (semi-)norm like the Total Generalized Variation that is known to favor edge592
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preservation, see [3]. This can be observed by closely inspecting the images in the bottom593

row, where the higher blurring was chosen.594

7. Conclusion. We have addressed mixed-integer optimal control of elliptic PDEs.595

Theorem 5.1 shows that the infimal value of such problems may be approximated arbitrarily596

well by applying the SUR algorithm to a solution of a relaxation on a sufficiently fine597

rounding grid. The result is constructive and Theorem 4.7 shows that the approximations598

can be obtained on a computer by applying SUR with the input of a sufficiently fine599

approximation of the relaxed solution on a sufficiently fine rounding grid. An a priori600

estimate for the state vector convergence holds for piecewise constant relaxed controls601

under an ellipticity assumption on the differential operator.602

If the relaxed control problem is regularized as in Section 6 to compute solutions more603

easily, the infimal value lies in the interval between the minimum of the regularized relaxed604

problem and the same value minus the upper bound of the regularizer. This interval605

can be controlled by the value of the penalty parameter in the regularizer. Regarding606

Theorems 4.5 and 4.7 we emphasize that Algorithm 1.1 and SUR are not restricted to607

Partial Differential Equation (PDE) settings but work for compact solution operators of608

dynamical systems in general.609

Our approximation arguments have been known for MIOCPs with integer variables610

distributed in one dimension, i.e. the time domain, and are now available for integer611

variables distributed in more than one dimension for appropriate grid refinement strategies.612

We have applied the arguments to an elliptic PDE system and presented computational613

validations in an optimal control setting, which also showed the limitations of the approach614

mentioned in Section 5. The results in Subsection 6.3 indicate the difficulties arising when615

applying the method to recover a binary-valued control instead of approximating a desired616

state variable.617
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Henri Poincaré (c) Analysé Non Linéaire, vol. 31, Elsevier, 2014, pp. 1109–1130.631
doi:10.1016/j.anihpc.2013.08.005.632

[5] J. Diestel and J. J. Uhl, Vector measures, no. 15, 1977.633
doi:http://dx.doi.org/10.1090/surv/015.634

[6] M. Gerdts and S. Sager, Mixed-Integer DAE Optimal Control Problems: Necessary635
conditions and bounds, in Control and Optimization with Differential-Algebraic Con-636
straints, L. Biegler, S. Campbell, and V. Mehrmann, eds., SIAM, 2012, pp. 189–212.637
doi:10.1137/9781611972252.ch9.638

[7] M. Hahn and S. Sager, Combinatorial integral approximation for mixed-integer PDE-constrained639
optimization problems, ANL/MCS Preprint P9037-0118, (2017). http://www.mcs.anl.gov/640
papers/P9037-0118.pdf.641

[8] F. M. Hante, Relaxation methods for hyperbolic PDE mixed-integer optimal control problems,642
Optimal Control Applications and Methods, 38 (2017), pp. 1103–1110. doi:10.1002/oca.2315.643

This manuscript is for review purposes only.

https://doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.1016/j.anihpc.2013.08.005
http://dx.doi.org/http://dx.doi.org/10.1090/surv/015
http://dx.doi.org/10.1137/9781611972252.ch9
http://www.mcs.anl.gov/papers/P9037-0118.pdf
http://www.mcs.anl.gov/papers/P9037-0118.pdf
http://www.mcs.anl.gov/papers/P9037-0118.pdf
http://dx.doi.org/10.1002/oca.2315


20 P. MANNS, AND C. KIRCHES

[9] F. M. Hante and S. Sager, Relaxation methods for mixed-integer optimal control of partial644
differential equations, Computational Optimization and Applications, 55 (2013), pp. 197–225.645
doi:10.1007/s10589-012-9518-3.646
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