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Abstract. We show that the problem of unconstrained minimization of a

function in abs-normal form is equivalent to identifying a certain stationary
point of a counterpart Mathematical Program with Equilibrium Constraints
(MPEC). Hence, concepts introduced for the abs-normal forms turn out to

be closely related to established concepts in the theory of MPECs. We give
a number of proofs of equivalence or implication for the kink qualifications
LIKQ and MFKQ. We also show that the counterpart MPEC always satisfies

MPEC-ACQ. We then consider non-smooth nonlinear optimization problems
(NLPs) where both the objective function and the constraints are presented
in abs-normal form. We show that this extended problem class also has a

counterpart MPEC problem.

1. Introduction

Non-smooth finite-dimensional optimization models arise in many application
problems from engineering, economics, and other areas. One typical source of
non-smoothness are equilibrium conditions or complementarity conditions. Another
typical source are models with piecewise definitions and models involving the absolute
value, maximum, and minimum functions. Many of the practical applications
essentially lead to NLPs with finitely many kinks, which gives rise to more general
standard problem classes like MPECs [8] and (unconstrained) optimization problems
in abs-normal form [4]. In this paper we provide a systematic comparison of the
two problem classes in terms of constraint qualifications and stationarity concepts.
It turns out that the two classes are intimately related and that the extended class
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2ON THE RELATION BETWEEN MPECS AND OPTIMIZATION PROBLEMS IN ABS-NORMAL FORM

of constrained optimization problems in abs-normal form is in fact equivalent to the
class of MPECs.
Notation. We write n̄ := {1, . . . , n} for some n ∈ N, denote by ∂i the partial
derivative w.r.t. the i-th argument, and by ∂i,j the partial derivative w.r.t. the j-th
component of the i-th argument vector. For a matrix or vector A, the bracket [A]i∈S
is the submatrix or subvector composed from rows with indices in the set S.

MPEC variables will be denoted y (smooth), u and v (complementarity) and the
symbol ⊥ indicates complementarity between two vectors of unknowns. Lagrange
multipliers are denoted by Greek lowercase letters.

Abs-normal form variables will be denoted x (smooth) and z (non-differentiable).
The bracket [x]+ := max(x, 0) denotes the nonnegative part, and [x]− := max(−x, 0)
denotes the modulus of the non-positive part. For signatures σ ∈ {−1, 0, 1}, we
use the partial order σ � σ̂ :⇔ σσ̂ ≥ σ̂2, i.e., σ is arbitrary if σ̂ = 0, and σ = σ̂
otherwise.

Definition 1 (Abs-Normal Form). For an open set D ⊂ Rn we say that a function
φ ∈ C0(D̄,R) is in abs-normal form if functions f ∈ C1(D̄ × Rs≥0,R) and F ∈
C1(D̄ × Rs≥0,Rs) exist such that

φ(x) = f(x, |z|) for all x ∈ D̄,(1a)

z = F (x, |z|) with L := ∂2F (x, |z|) strictly lower triangular.(1b)

Note that (1b) defines z(x) implicitly while in fact the strict lower triangular
form of the Jacobian L allows to compute the components of z one by one from
previously computed ones, zi = Fi(x, |z1|, . . . , |zi−1|) for i ∈ s̄. The abs-normal form
is an ingenious way of exposing structured non-smoothness. It allows for comparably
easy generation of algorithmic derivatives and subdifferentials as has been shown in
[4, 5]. In particular, one defines

a := ∂1f(x, |z|), b := ∂2f(x, |z|), Z := ∂1F (x, |z|), L := ∂2F (x, |z|),(2)

and introduces the following notation.

Definition 2 (Signature of z). With σ(zi) := sign(zi) ∈ {−1, 0, 1} we define the
signature vector σ(z) := (σ(z1), . . . , σ(zs))

T and signature matrix Σ(z) := diag(σ(z)).
A signature vector σ ∈ {−1, 1}s is called definite, otherwise we call σ indefinite.

Note that |z| = Σz and that the system z = F (x,Σz) has a locally unique solution
z(x) for fixed Σ by the implicit function theorem, where (I − ∂2F (x, |z|)Σ)∂xz(x) =
∂1F (x, |z|). Using the chain rule for ∂xφ(x), one then obtains

∂xφ(x) = ∂1f(x, |z|) + ∂2f(x, |z|)∂zabs(z) [∂1F (x, |z|) + ∂2F (x, |z|)∂zabs(z)∂xz(x)] .

Using (2) and Def. 2, this yields

∂xφ(x) = aT + bTΣ[Z + LΣ∂xz(x)]

= aT + bTΣ∂xz(x)(3)

= aT + bTΣ(I − LΣ)−1Z.

We say that a component of z ∈ Rs is active at x ∈ D̄ if zi(x) = 0. We denote
the index set of active components of z(x) by α(x) = {i ∈ s̄ : σ(zi(x)) = 0}.

Definition 3 (Kink Qualifications). We say that a point x ∈ D̄ satisfies LIKQ if
the matrix [∂xz(x)]i∈α has full row rank |α|.
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We say that a point x ∈ D̄ satisfies MFKQ if for all definite σ � σ(z(x)) the
linear inequality system [Σ∂xz(x)]i∈α w > 0 admits a solution w ∈ Rn, unless
[Σ∂xz(x)]i∈α w ≥ 0 admits only the solution w = 0.

Indefinite signatures σ � σ(z(x)) must be excluded in the definition of MFKQ: if
σk = 0, then k ∈ α(x) and [Σ∂xz(x)]i∈α w > 0 cannot admit a solution since row k
of the matrix is zero.
Contributions. In this article, we consider the unconstrained non-smooth minimiza-
tion problem

min
x∈Rn

φ(x) = f(x, |z(x)|)(4)

and its extension to an abs-normal constrained minimization problem of the form

min
x∈Rn

f(x, |z(x)|) s.t. g(x, |z(x)|) = 0, h(x, |z(x)|) ≥ 0.

We show that both problem classes may identically be cast as mathematical pro-
grams with equilibrium constraints and that, in case of the unconstrained problem
(4), constraint qualifications and optimality conditions presented in [5, 7, 6] have
counterparts in the established theory of MPECs. In particular, we prove equivalence
between LIKQ and MPEC-LICQ in Lemma 15, equivalence between MFCQ for all
branch problems and MPEC-MFCQ for the counterpart MPEC of an abs-normal
form in Lemma 16, and the fact that all MPEC counterpart problems of abs-normal
forms satisfy MPEC-ACQ in Lemma 18. Then, we proceed to show that minimizers
of abs-normal forms under LIKQ are strongly stationary points in Prop. 19, and
that they are M-stationary points otherwise in Prop. 20.
Structure. The remainder of this article is structured as follows. In Section 2 we
present some prerequisites about MPECs. In Section 3 we consider the unconstrained
setting of minimizing a function in abs-normal form, and prove connections to the
theory of MPECs concerning constraint qualifications and stationarity concepts. In
Section 4, we consider a class of non-smooth NLPs where the objective function
and constraints are presented in abs-normal form, and show equivalence with a
certain counterpart MPEC. We conclude in Section 5 and provide an appendix with
auxiliary results.

2. Some Prerequisites about MPECs

In this section, we briefly review some necessary prerequisites about MPECs. For
details, proofs, and literature, the reader may wish to consult, e.g., [8]. As smooth
MPEC constraints we consider only equalities c(y, u, v) = 0 since inequalities are
not needed.

Definition 4 (Mathematical Program with Equilibrium Constraints). An optimiza-
tion problem of the form

(5a)

(5b)

(5c)

min
y,u,v

ϕ(y, u, v)

s.t. c(y, u, v) = 0, | λ
0 ≤ u ⊥ v ≥ 0, | µu, µv

with ϕ ∈ C1(Rn × Rs≥0 × Rs≥0,R), c ∈ C1(Rn × Rs≥0 × Rs≥0,Rnc) is called a Mathe-

matical Program with Equilibrium Constraints (MPEC).
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Definition 5 (Index Sets). We denote by U0 := {i ∈ s̄ : ui = 0} the set of indices of
active inequalities ui ≥ 0, and by U+ := {i ∈ s̄ : ui > 0} the set of indices of inactive
inequalities ui ≥ 0. Analogous definitions hold of V0 and V+. By D := U0 ∩ V0 we
denote the set of indices of non-strict (degenerate) complementarity pairs.

We deviate from contemporary MPEC literature, which frequently makes reference
to the sets

I+0 = U+ ∩ V0, I0+ = U0 ∩ V+, I00 = U0 ∩ V0.

Note that by complementarity we have U+ ∩ V0 = U+, U0 ∩ V+ = V+, U+ ∩ V+ = ∅,
and hence the partitioning s̄ = D ∪ U+ ∪ V+.

Definition 6 (MPEC Constraint Qualifications). We say that a feasible point
(ŷ, û, v̂) of (5) satisfies MPEC-LICQ if

rank
[
∂yc(ŷ, û, v̂) ∂U+c(ŷ, û, v̂) ∂V+c(ŷ, û, v̂)

]
= nc.(6)

We say that a feasible point (ŷ, û, v̂) of (5) satisfies MPEC-MFCQ if the linear
system

∂yc(ŷ, û, v̂)dy + ∂U+c(ŷ, û, v̂)du + ∂V+c(ŷ, û, v̂)dv = 0(7)

admits a solution (dy, du, dv) ∈ Rn × R|U+| × R|V+|, and additionally (6) holds.
We say that a feasible point (ŷ, û, v̂) of (5) satisfies MPEC-ACQ if the linearized

cone and the tangential cone of the tightened NLP (see Appendix A) are identical.

Note that the above definitions are already specialized to our particular MPEC
formulation, see Appendix A for details. In general LICQ implies, but is stronger
than, MPEC-LICQ, which in turn implies, but is stronger than, MPEC-MFCQ.
The MPEC in our purely equality constrained case c = 0 is an exception: here
MPEC-MFCQ is equivalent to MPEC-LICQ because the tightened NLP has no
active inequalities and (6) implies that (7) has a solution. Finally, when considering
MPEC-ACQ we use results from the literature and do not need the two cones of
the definition.

Definition 7. A feasible point (ŷ, û, v̂) is a strongly stationary or S-stationary point
if (ŷ, û, v̂) is a minimizer of the relaxed NLP defined as

(8a)

(8b)

(8c)

(8d)

(8e)

min
y,u,v

ϕ(y, u, v)

s.t. c(y, u, v) = 0,

0 = ui, 0 ≤ vi if ûi = 0, v̂i > 0 (i ∈ V+),

0 ≤ ui, 0 = vi if ûi > 0, v̂i = 0 (i ∈ U+),

0 ≤ ui, 0 ≤ vi if ûi = 0, v̂i = 0 (i ∈ D).

Proposition 8 (Strongly Stationary Point). A feasible point (ŷ, û, v̂) of (5) is an
S-stationary point if there exist MPEC multipliers (λ, µu, µv) satisfying

0 = ∂y,u,vL⊥(ŷ, û, v̂, λ, µu, µv) (stationarity),

0 = λT c(ŷ, û, v̂), 0 = µTu û, 0 = µTv v̂ (complementary slackness),

0 ≤ µu,i, 0 ≤ µv,i ∀i ∈ D(û, v̂) (strong stationarity).

Herein, L⊥(y, u, v, λ, µu, µv) is the MPEC-Lagrangian function associated with (5),

L⊥(y, u, v, λ, µu, µv) := ϕ(y, u, v)− λT c(y, u, v)− µTu u− µTv v.
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Proof. Immediate by comparison to the first order necessary conditions of (8). �

Proposition 9. Under MPEC-LICQ, all local minimizers of (5) are S-stationary
points.

Proof. A proof may be found in [3]. �

In absence of MPEC-LICQ, local minimizers may exist that do not qualify as
strongly stationary points. Such points are characterized as follows.

Proposition 10 (M-Stationary Point). Let (ŷ, û, v̂) be a local minimizer of (5),
and let MPEC-ACQ be satisfied. Then there exist MPEC multipliers (λ, µu, µv)
satisfying

0 = ∂y,u,vL⊥(ŷ, û, v̂, λ, µu, µv) (stationarity),

0 = λT c(ŷ, û, v̂), 0 = µTu û, 0 = µTv v̂, (complementary slackness),

(0 < µu,i, 0 < µv,i) ∨ (0 = µu,iµv,i) ∀i ∈ D(û, v̂) (M-stationarity).

The point (ŷ, û, v̂) is called a Mordukhovich stationary or M-stationary point.

Proof. A proof may be found in, e.g., Theorem 5.25 in [1]. �

Finally, the strongest necessary condition based on first order information that
holds in absence of a constraint qualification is characterized as follows.

Definition 11 (Bouligand Stationary Point). A feasible point (ŷ, û, v̂) of (5) is
called a Bouligand stationary or B-stationary point if (ŷ, û, v̂) is a minimizer of all
branch problems for the subsets P ⊆ D(û, v̂). For a subset P ⊆ D(û, v̂) and denoting
the complement of P in the set D(û, v̂) by P̄ , the associated branch problem NLP(P)
is defined by

(9a)

(9b)

(9c)

(9d)

min
y,u,v

ϕ(y, u, v)

s.t. c(y, u, v) = 0,

0 ≤ ui, 0 = vi ∀i ∈ U+ ∪ P,
0 = ui, 0 ≤ vi ∀i ∈ V+ ∪ P̄.

If (ŷ, û, v̂) solves the tightened NLP (see appendix), then (ŷ, û, v̂) solves all branch
problems. Hence, strong stationarity under MPEC-LICQ is a sufficient condition
for Bouligand stationarity. There are 2|D| branch problems and, if this sufficient
condition does not hold, verifying Bouligand stationary has exponential effort in
the number of non-strict complementarities.

Proposition 12. A feasible point (ŷ, û, v̂) of (5) is a Bouligand stationary point if
for all subsets P ⊆ D(û, v̂), there exist MPEC multipliers (λ, µu, µv) satisfying

0 = ∂y,u,vL⊥(ŷ, û, v̂, λ, µu, µv) (stationarity),

0 = λT c(ŷ, û, v̂), 0 = µTu û, 0 = µTv v̂ (complementary slackness),

0 ≤ µu,i ∀i ∈ P, 0 ≤ µv,i ∀i ∈ P̄ (Bouligand stationarity).

Proof. Again immediate by comparison to the first order necessary conditions of (9)
for all subsets P ⊆ D(û, v̂). �

Proposition 13. Local minimizers of (5) are Bouligand stationary points of (5).

Proof. See, for example, [1]. �
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3. Optimizing the Abs-Normal Form is a Subclass of MPECs

In this section, we model the problem of unconstrained minimization of a function
given in abs-normal form by a particular counterpart MPEC. We show that the
kink qualification LIKQ is equivalent to MPEC-LICQ and MPEC-MFCQ for the
counterpart MPEC. We also investigate the relation of the kink qualification MFKQ
with MPEC-MFCQ and MPEC-ACQ. We then show that under LIKQ, local mini-
mizers of the function in abs-normal form coincide with strongly stationary points
of the counterpart MPEC. If LIKQ fails to hold, local minimizers of the function in
abs-normal form coincide with M-stationary points of the counterpart MPEC.

Definition 14. We call the MPEC

(10a)

(10b)

(10c)

min
y,u,v

f(y, u+ v)

s.t. u− v − F (y, u+ v) = 0, | λ
0 ≤ u ⊥ v ≥ 0, | µu, µv

the counterpart MPEC of the minimization problem (4) in abs-normal form (1).

For future reference, the MPEC-Lagrangian function associated with (10) is

L⊥(y, u, v, λ, µu, µv) = f(y, u+ v)− λT (u− v − F (y, u+ v))− µTu u− µTv v.
At a feasible point (ŷ, û, v̂), the signature components of (10) are σ̂i = +1 for
i ∈ U+, σ̂i = −1 for i ∈ V+, and σ̂i = 0 for indices i in the active set, i ∈ D ≡ α.
At a feasible point (ŷ, û, v̂) with at least one pair of non-strict complementarities,

ûi = v̂i = 0, the signature Σ̂ has at least one zero entry σ̂i = 0. The family of
branch problems for (10) then gives rise to all definite signatures ΣP � Σ̂.

In this section, we are first concerned with constraint qualifications. Figure 1
gives an overview of the interrelations of the different constraint qualifications that
are known from the literature cited, or that are proved in this article. We start
by showing that the kink qualification LIKQ for (1) is equivalent to MPEC-LICQ
for (10).

Lemma 15 (Equivalence of LIKQ and MPEC-LICQ). A feasible point (x̂, ẑ) of (1)
satisfies LIKQ if and only if the point (ŷ, û, v̂) = (x̂, [ẑ]+, [ẑ]−) of (10) satisfies
MPEC-LICQ.

Proof. For the MPEC (10) with c(y, u, v) = u− v − F (y, u+ v) = 0, MPEC-LICQ
means that

rank
[
−Z (I − L)PU+ (−I − L)PV+

]
= rank

[
−Z (I − L)PU+ (I − (−L))PV+

]
= s.

Here PS denote projectors onto the subset of variables ui and vi with indices
i ∈ S ⊆ s̄. By complementarity, any index i is in at most one of the sets U+ and V+,
and because of the regularity of I −LΣ, cf. also Eq. (27) in [5], we may equivalently
ask that

rank
[
−Z (I − LΣ)PU+∪V+

]
= rank

[
−(I − LΣ)−1Z PU+∪V+

]
= s.

For the strict indices i ∈ U+ ∪ V+ we have exactly one unit entry in every row
[PU+∪V+ ]i and at most one entry per column. For the non-strict indices i ∈ D we
have [PU+∪V+ ]i = 0 and hence the condition is equivalent to asking that

[(I − LΣ)−1Z]i∈D

has full rank. Because D = α(x), we find the condition to be LIKQ. �
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MPEC-LICQ
LICQ for all
P ⊆ D LIKQ

MPEC-MFCQ
MFCQ for all
P ⊆ D MFKQ

MPEC-ACQ
ACQ for all
P ⊆ D

MPEC-counterpart-land Abs-normal-land

Def. 6

Lemma 3.5 in [2]

Lemma 16

[6, 7]

Lemma 15

Corollary 3.4 in [2]

Lemma 17

Figure 1. Relations between constraint qualifications for the abs-
normal form (right) and MPEC constraint qualifications for the
particular class of counterpart problems (left). Vertical implications
may be found in, e.g., [2, 8] for MPECs and in [6, 7] for the abs-
normal form. Grey single-lined arrows denote implied relations that
need not be proved explicitly. Note that MPEC-ACQ always holds
without prerequisite.

Notably, the additional regularity provided by the abs-normal form, i.e., existence
of the inverse (I −LΣ)−1, enables the definition of LIKQ, which is seemingly weaker
in only making a regularity statement for active components i ∈ α. The regularity
for the inactive components is afforded by the lower triangular structure of L, and
both are required to satisfy MPEC-LICQ in the counterpart MPEC.

It is known that MPEC-MFCQ implies MFCQ for all branch problems, cf. [2,
Lemma 3.5]. The converse is not true in general, but holds for the counterpart
MPEC of an abs-normal form. We observe in the following lemma and proof that
MFCQ for all branch problems can only hold if s ≤ n. This case may be considered
rare.

Lemma 16 (MFCQ for all abs-normal counterpart branch problems implies
MPEC-MFCQ). Let (ŷ, û, v̂) be a feasible point of (10) and let the branch problems
(9) satisfy MFCQ for all P ⊆ D(û, v̂). Then MPEC-MFCQ holds at (ŷ, û, v̂).

Proof. MFCQ for all branch problems means that for all P ∈ D,

(1) the Jacobian of the equality constraints has full row rank,

rank

−Z I − L −I − L
PV+∪P̄

PU+∪P

 = rank

−Z I − L I − (−L)
PV+∪P̄

−PU+∪P

 = 2s.

Observing that each of the last s rows contains precisely one unit entry
in PV+∪P̄ or PU+∪P and keeping the s remaining columns associated with
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variables PU+∪Pu and PV+∪P̄v, this is equivalent to

rank
[
−Z I − ΣL

]
= rank

[
−(I − ΣL)−1Z I

]
= s,

which is always satisfied.
(2) there is a vector d = (dy, du, dv), possibly dependent on the particular set
P, such that−Z I − L −I − L

PV+∪P̄
PU+∪P

 d = 0,

[
0 PU+∪P 0
0 0 PV+∪P̄

]
d > 0.

This means [du]V+∪P̄ = 0, [dv]U+∪P = 0, [du]U+∪P > 0, and [dv]V+∪P̄ > 0.
By complementarity feasibility, the index sets of the nonzero components of
du and −dv are disjoint. Hence, we may combine the s nonzero components
of du and −dv in a compound vector duv ∈ Rs, and may write

0 = −Zdy + (I − L)du + (I − (−L))(−dv)

⇐⇒ 0 < Σduv = (I − ΣL)−1Zdy.

Thus, MFCQ for only one branch problem already implies that Z ∈ Rs×n
is surjective on Rs, hence rank(Z) = s ≤ n.

To obtain MPEC-MFCQ for the counterpart MPEC (10), we need to show that

rank
[
−Z (I − L)PU+ (−I − L)PV+

]
= s,

which is satisfied if Z ∈ Rs×n with s ≤ n has full row rank. As mentioned, this is
implied by MFCQ for all branch problems, and MPEC-MFCQ holds. �

With similar tools, we may investigate the relation of MFKQ for the abs-normal
form (1) to MPEC-MFCQ for the counterpart MPEC (10). As MPEC-MFCQ,
MPEC-LICQ and LIKQ are equivalent in the case of abs-normal forms, but LIKQ
and MFKQ are not, equivalence cannot hold. We show that MFKQ is implied
by MPEC-MFCQ via MFCQ for all branch problems. Note that the following
Lemma 17 need not have been proven separately, as it is implied by the chain of
Lemma 16, Def. 6, and Lemma 15.

Lemma 17 (MFCQ for all MPEC branch problems implies MFKQ). A feasible
point (x̂, ẑ) of (1) satisfies MFKQ if the point (ŷ, û, v̂) = (x̂, [ẑ]+, [ẑ]−) of (10)
satisfies MFCQ for all MPEC branch problems.

Proof. We first consider MFCQ for a branch problem P ⊆ D(û, v̂) of (10). The
substantial condition is that there is a direction d = (dy, du, dv) such that

−Zdy + (I − L)PU+∪Pdu + (−I − L)PV+∪P̄dv = 0, PPdu > 0, PP̄dv > 0

⇐⇒ −Zdy + (I − LΣ̂)PU+∪Pdu + (I − LΣ̂)PV+∪P̄dv = 0, PPdu > 0, PP̄dv < 0,

where Σ̂ = Σ(ẑ) only depends on ẑ = z(x̂). The sets U+ ∪P and V+ ∪ P̄ are disjoint,
so merging vectors du and dv as above and using the regularity of the abs-normal
form, we may equivalently ask that there is a direction d = (dy, duv) ∈ Rn×Rs such
that {

[−(I − LΣ̂)−1Zdy + duv]i∈U+∪V+
[−(I − LΣ̂)−1Zdy + duv]i∈D

= 0,
= 0 and Σduv > 0,
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where we have written the condition separately for the strict complementarities and
for the non-strict set D = P ∪ P̄.

The first condition can always be satisfied by appropriate choice of [duv]i, i ∈
U+ ∪ V+.

In the second condition, the signature matrix Σ = diag(σi) depends on the branch
P selected and is defined by σi = +1 if i ∈ P, σi = −1 if i ∈ P̄, and σi = σ̂i 6= 0 if
i /∈ D. It is, in general, different from Σ̂. The second condition is thus equivalent to
asking that dy satisfy

[Σ(I − LΣ̂)−1Zdy]i∈D = [Σduv]i∈D > 0 ⇐⇒ [Σ∂xz(x)dy]i∈D > 0.

Now, since D = α(x̂), the right hand side condition becomes

[Σ∂xz(x)]i∈αdy > 0.

Finally the signatures σ associated with the branch problems P are precisely the
definite signatures that satisfy σ � σ̂ = σ(ẑ). Thus, MFCQ for all MPEC branch
problems P ⊆ D implies MFKQ. �

Note that, because of the above relation to definite signatures, the MPEC branch
problems NLP(P) are precisely the branch NLPs of the abs-normal problem (1).

The converse of Lemma 17 holds only if |α| ≤ n, i.e., not too many indefinite
signatures are present, and if the additional regularity condition rank(Z) = |α| is
satisfied. As a consequence, MFKQ and LIKQ are identical for such problems.

Next, one would be interested in learning of an MPEC constraint qualification
that is implied by MFKQ, such that it holds in absence of LIKQ. Unfortunately, we
do not know how to obtain a result based on MFKQ to this end.

Finally, the following lemma proves that Abadie’s constraint qualification (MPEC-
ACQ) even holds without prerequisite. Key is, again, the absence of inequality
constraints from (10), besides the complementarities.

Lemma 18 (MPEC-ACQ holds). Any feasible point (ŷ, û, v̂) of (10) satisfies
MPEC-ACQ.

Proof. We introduce the following representations of the MPEC-linearized cone and
the tangent cone of the counterpart MPEC at (ŷ, û, v̂),

T lin
MPEC(ŷ, û, v̂) :=

d = (dy, du, dv)

∣∣∣∣∣∣∣∣
0 ≤ dui, 0 = dvi if i ∈ U+

0 = dui, 0 ≤ dvi if i ∈ V+

0 ≤ dui ⊥ dvi ≥ 0 if i ∈ D(û, v̂)
0 = du − dv − Zdy − L(du + dv)

 ,

T (ŷ, û, v̂) :=

d = (dy, du, dv)

∣∣∣∣∣∣
∃ (yk, uk, vk)k∈N ⊂ FMPEC, tk ↘ 0:
(yk, uk, vk)→ (ŷ, û, v̂),
(tk)−1(yk − ŷ, uk − û, vk − v̂)→ d

 ,

with FMPEC :=

(y, u, v)

∣∣∣∣∣∣∣∣
0 ≤ ui, 0 = vi if i ∈ U+

0 = ui, 0 ≤ vi if i ∈ V+

0 ≤ ui ⊥ vi ≥ 0 if i ∈ D(û, v̂)
0 = u− v − F (y, u+ v)

 .

To show MPEC-ACQ, i.e., T lin
MPEC = T , it suffices to show T lin

MPEC ⊆ T as the
reverse inclusion is well known to hold, cf. [2]. A direction d ∈ T lin

MPEC satisfies

(I − LΣ̂)−1Zdy = du − dv and Σ̂(du − dv) ≥ 0.
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Now, fix a direction d = (dy, du, dv) ∈ T lin
MPEC, choose tk = 1/k, and choose a

sequence (yk) ⊂ Rn such that yk → ŷ and (yk − ŷ)/tk → dy.

The solution map z(x) = F (x, Σ̂z) (see Def. 2) is locally unique, i.e., there is a

small number ε > 0 and a number k1 such that we have a unique zk = F (yk, Σ̂zk) for
all k ≥ k1. Defining (uk, vk) := ([zk]+, [zk]−), we have (yk, uk, vk) ∈ FMPEC since
uk, vk have feasible signs and are complementary by construction. We also have
zk → ẑ by continuity of F and hence obtain a convergent sequence (uk, vk)→ (û, v̂).
Finally, since

zk − ẑ = F (yk, Σ̂zk)− F (ŷ, Σ̂ẑ)

= Z(yk − ŷ) + LΣ̂(zk − ẑ) + o(‖(yk − ŷ, zk − ẑ)‖),

we obtain

(uk − û)

tk
− (vk − v̂)

tk
− (I − LΣ̂)−1Z

yk − ŷ
tk

→ 0,(11)

which means (tk)−1((uk− û)− (vk− v̂))→ du− dv. It remains to show the separate
convergence (tk)−1(uk − û, vk − v̂)→ (du, dv). We argue separately for components
i of the vectors:

• For components with ûi > 0, we have v̂i = 0 by feasibility and from the
definition of T lin

MPEC we have dui ≥ 0 and dvi = 0, and there is an index
k2 ≥ k1 such that uki > 0 and by complementarity vki = 0 for all k ≥ k2.
Then we have (tk)−1(uki − ûi)− (vki − v̂i)) = (tk)−1(uki − ûi). By uniqueness
of the solution map, (tk)−1(uki − ûi)→ dui must hold.
• Similar reasoning holds for components with v̂i > 0.
• For components with ûi = v̂i = 0, for any direction with either dui > 0 or
dvi > 0 (both cannot hold simultaneously by definition of T lin

MPEC) we must
have (tk)−1(uki − vki )→ dui − dvi and because of signs (tk)−1uki → dui and
(tk)−1vki → dvi.
• Finally, for components with ûi = v̂i = 0 and dui = dvi = 0, we have

(tk)−1(uki − vki )→ 0.

Because of signs and complementarity, this can only be true if (tk)−1uki →
0, (tk)−1vki → 0 also holds.

This proves separate convergence of uk − û → du and vk − v̂ → dv, and hence
membership of d in the tangential cone T . �

Having discussed constraint qualifications, we now proceed by showing that a
local minimizer of an abs-normal form satisfying LIKQ defines a corresponding
strongly stationary point of the counterpart MPEC satisfying MPEC-LICQ.

Proposition 19 (Strongly Stationary Points and Minimizers of the Abs-Normal
Form). Let (1) satisfy LIKQ. If (x, z) is a local minimizer of (1), then (y, u, v) =
(x, [z]+, [z]−) is a strongly stationary point of (10).

Proof. First, let (x, z) be a local minimizer of (1). Then, we need to have

0 ∈ ∂xφ(x) = ∂1f(x, |z|) + ∂2f(x, |z|)Σ(z)∂xz(x)(12a)

⇐⇒ −∂1f(x, |z|) ∈ ∂2f(x, |z|)Σ(z)∂xz(x)(12b)
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Second, a strongly stationary point of (10) satisfies

0 = ∂yL⊥(y, u, v, λ, µu, µv) = ∂1f(y, u+ v) + λT∂yz(y),

0 = ∂uL⊥(y, u, v, λ, µu, µv) = ∂2f(y, u+ v)− λT I − µTu I,
0 = ∂vL⊥(y, u, v, λ, µu, µv) = ∂2f(y, u+ v) + λT I − µTv I.

Identifying (x, z) with (y, u−v) and using LIKQ, we have λT = −∂1f(x, |z|)(∂xz(x))−1.
We now distinguish the case of active and inactive components zi = ui − vi:

• In the inactive case, ui > 0 and vi = 0, or ui = 0 and vi > 0. Strong
stationarity then requires µu,i = 0 or µv,i = 0, respectively. We present the
first case; the second one follows analogously.

0 = µu,i = ∂2,if(y, u+ v)− λi
⇐⇒ ∂2,if(y, u+ v) = −[∂1f(x, |z|)(∂xz(x))−1]i(13)

• In the active case 0 = ui − vi = zi = |zi|, strong stationarity requires

µu,i = ∂2,if(y, u+ v)− λi ≥ 0,

µv,i = ∂2,if(y, u+ v) + λi ≥ 0.

Substituting u+ v = |z|, we obtain 0 ≤ ∂2,if(x, |z|) by adding up, and

−∂2,if(x, |z|) ≤ ±λi ≤ +∂2,if(x, |z|).

After substituting λi = −[∂1f(x, |z|)(∂xz(x))−1]i, we find that

− ∂2,if(x, |z|) ≤ ±[∂1f(x, |z|)(∂xz(x))−1]i ≤ ∂2,if(x, |z|)(14)

Collecting (13) and (14) for all i ∈ s̄ and using Σ of Def. 2, we may write this more
compactly,

−∂1f(x, |z|)(∂xz(x))−1 ∈ ∂2,if(x, |z|)Σ.

This condition is equivalent to (12b). �

We finally show that in absence of LIKQ but in presence of MFKQ, a local
minimizer of (1) is an M-stationary point of (10).

Proposition 20 (M-Stationary Points and Minimizers of the Abs-Normal Form).
If a feasible point (x̂, ẑ) of (1) is a local minimizer, the point (ŷ, û, v̂) = (ŷ, [ẑ]+, [ẑ]−)
of (10) is an M-stationary point.

Proof. We have shown in Lemma 18 that MPEC-ACQ holds for (10). It was
shown in [1] that M-stationarity is a necessary condition for optimality under
MPEC-ACQ. �

A necessary condition that only requires the weaker constraint qualification
Guignard CQ to hold for all branch problems is Bouligand stationarity, cf. [1]. The
effort of verification of B-stationarity is, in general, exponential in the number
|D(û, v̂)| = |{i | σi(x̂) = 0}| of non-strict complementarity pairs or indefinite
signatures. Interestingly, since MPEC-ACQ always holds, this computationally
costly case only arises when verifying first order optimality of an M-stationary point
of a counterpart MPEC for an abs-normal form that violates MFKQ.
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4. Abs-Normal NLPs

In this section, we extend the idea of minimizing a function in abs-normal form
to non-smooth NLPs with objective function, equality and inequality constraints
in abs-normal form. Likewise, we now consider general MPECs that have smooth
equality and inequality constraints:

(15a)

(15b)

(15c)

(15d)

min
y,u,v

ϕ(y, u, v)

s.t. cE(y, u, v) = 0,

cI(y, u, v) ≥ 0,

0 ≤ u ⊥ v ≥ 0,

with ϕ ∈ C1(W,R), cE ∈ C1(W,RnE ), cI ∈ C1(W,RnI ), W = Rn × Rs≥0 × Rs≥0.

Definition 21 (Abs-Normal NLP). We say that a non-smooth NLP is in abs-normal
form if functions f ∈ C1(D̄×Rn≥0,R), g ∈ C1(D̄×Rn≥0,Rng ), h ∈ C1(D̄×Rn≥0,Rnh),

and F ∈ C1(D̄ × Rs≥0,Rs) exist such that the problem reads as follows.

(16a)

(16b)

(16c)

(16d)

min
x,z

f(x, |z|)

s.t. g(x, |z|) = 0,

h(x, |z|) ≥ 0,

z = F (x, |z|) with L := ∂2F (x, |z|) strictly lower triangular.

Similar to what has been presented for the unconstrained case in §2, the MPEC
counterpart problem to (16) may be defined as follows.

Definition 22 (Counterpart MPEC of Abs-Normal NLP). The counterpart MPEC
of (16) reads as follows.

(17a)

(17b)

(17c)

(17d)

(17e)

min
y,u,v

f(y, u+ v)

s.t. g(y, u+ v) = 0,

h(y, u+ v) ≥ 0,

u− v − F (y, u+ v) = 0,

0 ≤ u ⊥ v ≥ 0.

Here g = 0 with u− v−F = 0 corresponds to cE = 0 in (15), and h ≥ 0 corresponds
to cI ≥ 0 in (15).

Conversely, we can rewrite every MPEC as an abs-normal NLP.

Definition 23 (Counterpart Abs-Normal NLP of an MPEC). With smooth variables
x = (xy, xu, xv) = (y, u, v), the counterpart abs-normal NLP of the MPEC (15)
reads

(18a)

(18b)

(18c)

(18d)

(18e)

min
x,z

ϕ(x)

s.t. cE(x) = 0,

cI(x) ≥ 0,

xu + xv − |z| = 0,

z = xu − xv.
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Here (18d) with z = xu−xv is the standard reformulation of min(xu, xv) = 0, which
in turn is equivalent to the complementarity requirement 0 ≤ xu ⊥ xv ≥ 0. Thus
cE = 0 with xu + xv − |z| = 0 corresponds to g = 0, cI ≥ 0 corresponds to h ≥ 0,
and z = xu − xv corresponds to z = F (with L = 0) in (16).

It is thus apparent that the problem class (16) of non-smooth NLPs admitting an
abs-normal form is equivalent to the problem class (15) of general MPECs. Close
relations between respective constraint qualifications and stationarity concepts for
MPECs and for the abs-normal NLPs are likely and a subject of ongoing research.

5. Conclusion

The abs-normal form is a convenient way of exposing structured non-smoothness
in objective function and constraints. It allows for comparably easy generation of
algorithmic derivatives and subdifferentials. In this article, we have shown that under
LIKQ (or MPEC-LICQ), there are no theoretical differences between unconstrained
problems in abs-normal form and certain MPECs. The abs-normal form however
automatically implies regularity properties for inactive components, such that kink
qualifications can be formulated with seemingly less restrictive requirements than is
the case for MPECs. Moreover, we have shown MFKQ to be weaker than asking
that MFCQ holds for all branch problems. In absence of LIKQ, we have shown
that M-stationarity is a necessary condition for a local minimizer of the abs-normal
counterpart MPEC. We have also proposed an extension of the problem class to
abs-normal NLPs, and have suggested equivalent MPEC counterpart problems that
are likely to expose similarly close links between both settings. This is a subject of
ongoing research.
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Appendix A. On the definition of MPEC-LICQ and MPEC-MFCQ

Here we provide a brief derivation of MPEC-LICQ and MPEC-MFCQ in Defini-
tion 6. Given a feasible point (x̂, û, v̂) of the MPEC (5) with associated active sets
U0,V0, the tightened NLP is defined as

(19a)

(19b)

(19c)

(19d)

(19e)

min
y,u,v

ϕ(y, u, v)

s.t. c(y, u, v) = 0,

0 = ui, 0 ≤ vi if ûi = 0, v̂i > 0 (i ∈ V+),

0 ≤ ui, 0 = vi if ûi > 0, v̂i = 0 (i ∈ U+),

0 = ui, 0 = vi if ûi = 0, v̂i = 0 (i ∈ D).

Its equality constraints read

c(y, u, v) = 0, ui = 0 ∀i ∈ U0, vi = 0 ∀i ∈ V0,

and the inequality constraints read

ui ≥ 0 ∀i ∈ U+, vi ≥ 0 ∀i ∈ V+.

The active set at (y, u, v) = (x̂, û, v̂) is n̄c ∪ U0 ∪ V0. Note that there are no active
inequalities at (y, u, v) = (x̂, û, v̂), and in particular not for the counterpart MPEC
(10).

Thus, MPEC-LICQ at (y, u, v) = (x̂, û, v̂), which is defined as LICQ for the
tightened NLP, requires linear independence of the following constraint derivatives:

∂y,u,vc(y, u, v), PU0u = I, PV0v = I.

This is equivalent to

rank

∂yc(y, u, v) ∂U+c(y, u, v) ∂V+c(y, u, v) ∂U0c(y, u, v) ∂V0c(y, u, v)
I

I


= nc + |U0|+ |V0|,

http://www.optimization-online.org/DB_HTML/2017/11/6314.html
http://www.optimization-online.org/DB_HTML/2017/11/6314.html
http://www.optimization-online.org/DB_HTML/2017/11/6328.html
http://www.optimization-online.org/DB_HTML/2017/11/6328.html
https://github.com/alexandrabschwartz/Winterschool2018/blob/master/LectureNotes.pdf
https://github.com/alexandrabschwartz/Winterschool2018/blob/master/LectureNotes.pdf
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where we have reordered the columns of the matrix according to indices in sets
U+, V+, U0, V0, respectively. Exploiting the identity block on the lower right, one
obtains the formulation in Definition 6.

Similarly, MPEC-MFCQ at (y, u, v) = (x̂, û, v̂), which is defined as MFCQ for
the tightened NLP, requires the existence of a vector (dy, du, dv) that satisfies

∂yc(y, u, v)dy + ∂uc(y, u, v)du + ∂vc(y, u, v)dv = 0,

PU0du = 0,

PV0dv = 0,

where rank[∂y,u,vc(y, u, v)] = nc is additionally required. Clearly, this is equivalent
to the formulation in Definition 6.
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