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CONFINEMENT OF DISLOCATIONS INSIDE A CRYSTAL WITH A

PRESCRIBED EXTERNAL STRAIN

ILARIA LUCARDESI, MARCO MORANDOTTI, RICCARDO SCALA, AND DAVIDE ZUCCO

Abstract. A system of n screw dislocations in an isotropic crystal undergoing antiplane shear
is studied in the framework of linear elasticity. Imposing a suitable boundary condition for the

strain, namely requesting the non-vanishing of its boundary integral, results in a confinement

effect. More precisely, in the presence of an external strain with circulation equal to n times
the lattice spacing, it is energetically convenient to have n distinct dislocations lying inside the

crystal. The result is obtained by formulating the problem via the core radius approach and
by studying the asymptotics as the core size vanishes. An iterative scheme is devised to prove

the main result. This work sets the basis for studying the upscaling problem, i.e., the limit as

n → ∞, which is treated in [17].

Keywords: Dislocations, core radius approach, harmonic functions, divergence-measure fields.
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1. Introduction

Starting with the pioneering work of Volterra [28], much attention has been drawn on dis-
locations in solids, as the ultimate cause of plasticity in crystalline materials [11, 20, 21, 26].
Dislocations are line defects in the lattice structure. The interest in dislocations became more
and more evident as soon as it was understood that their presence can significantly influence the
chemical and physical properties of the material. The measure of the lattice mismatch due to
a dislocation is encoded in the Burgers vector, whose magnitude is of the order of one lattice
spacing (see [16]). According to whether the Burgers vector is perpendicular or parallel to the
dislocation line, ideal dislocations are classified as edge dislocations or screw dislocations, respec-
tively. In nature, real dislocations come as a combination of these two types. For general treaties
on dislocations, we refer the reader to [14, 16, 19].

In this paper we focus our attention on screw dislocations in a single isotropic crystal which
occupies a cylindrical region Ω×R and which undergoes antiplane shear. According to the model
proposed in [5] in the context of linearized elasticity, this allows us to study the problem in the
cross section Ω ⊂ R2. Throughout the work, we will assume that

Ω is a bounded convex open set with C1 boundary. (H1)

We consider the lattice spacing of the material to be 2π and that all the Burgers vectors are
oriented in the same direction. Therefore, every dislocation line is directed along the axis of the
cylinder, is characterized by a Burgers vector of magnitude 2π along the same axis, and meets
the cross section Ω at a single point. Moreover, we assume that an external strain acts on the
crystal: we prescribe the tangential strain on ∂Ω to be of the form

f ∈ L1(∂Ω) with

∫
∂Ω

f(x) dH1(x) = 2πn (H2)

for some n ∈ N. This choice of the external strain will determine at most n distinct dislocations
inside Ω (see, e.g., [2, 23] for a comment on the topological necessity of the presence of exactly
n defects; see also [9], where an evolution problem in the fractional laplacian setting is also
studies), which we denote by a := (a1, . . . , an) ∈ Ωn \4n, where 4n := {x = (x1, . . . , xn) ∈ Ωn :
there exist i 6= j such that xi = xj}.

Since the elastic energy associated with a defective material is infinite and has a logarithmic
explosion in the vicinity of each dislocation ai (see, e.g., [5, 19]), we resort to the so-called core
radius approach, which consists in considering the energy far from the dislocations a1, . . . , an.
More precisely, given ε > 0, we aim at studying the elastic energy in the perforated domain
Ωε(a) := Ω\

⋃n
i=1Bε(ai). This approach is standard in the literature and it is employed in different
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contexts such as linear elasticity (see, for instance, [19, 25, 27]; also [4, 5, 22] for screw dislocations
and [6] for edge dislocations), the theory of Ginzburg-Landau vortices (see, for instance, [2, 23]
and the refereces therein), and liquid crystals (see, for instance, [12]). Since the core radius
approach eliminates the non-integrability of the strain field around the dislocations, classical
variational techniques can be used. Therefore, we consider the energy

E(n)
ε (a) := min

{
1

2

∫
Ωε(a)

|F |2 dx : F ∈ Xε(a), F · τ = f on ∂Ω \
n⋃
i=1

Bε(ai)

}
, (1.1)

where τ denotes the tangent unit vector to ∂Ω and

Xε(a) :=
{
F ∈ L2(Ωε(a);R2) : curlF = 0 in D′(Ωε(a)), 〈F · τ, 1〉γ = 2πm

}
,

where D′(Ωε(a)) is the space of distributions on Ωε(a) and γ is an arbitrary simple closed curve in
Ωε(a) winding once counterclockwise around m dislocations. Note that the boundary condition
F ·τ must be intended in the sense of traces and that 〈·, ·〉γ denotes the duality between H−1/2(γ)

and H1/2(γ) (see [7]). Since these spaces are encapsulated, the energy Eε is monotone: if 0 < ε < η
then

E(n)
ε (a) ≥ E(n)

η (a). (1.2)

If the ai’s are all distinct and inside Ω, the energy (1.1) scales like πn| log ε|. This suggests to

study the asymptotic behavior, as ε→ 0, of the functionals F (n)
ε : Ωn → R ∪ {+∞} defined by

F (n)
ε (a) := E(n)

ε (a)− πn| log ε|. (1.3)

In this context, we say that the sequence of functionals F (n)
ε continuously converges in Ωn to

F (n) as ε→ 0 if, for any sequence of points aε ∈ Ωn converging to a ∈ Ωn, the sequence (of real

numbers) F (n)
ε (aε) converges to F (n)(a).

In order to write the limit functional, we introduce two objects: we take g : ∂Ω→ R a primitive
of f with n jump points bi ∈ ∂Ω and jump amplitude 2π (see (2.3) for a precise definition), and
for every i ∈ {1, . . . , n} we set

di := min
j∈{1,...,n}

j 6=i

{
|ai − aj |

2
,dist(ai, ∂Ω)

}
, (1.4)

where dist(·, ∂Ω) is the distance function from ∂Ω.

Theorem 1.1. Under the assumptions (H1) and (H2), as ε→ 0 the functionals F (n)
ε defined by

(1.3) continuously converge in Ωn to the functional F (n) : Ωn → R ∪ {+∞} defined as

F (n)(a) :=

n∑
i=1

π log di +
1

2

∫
Ω

|∇va|2 dx+

n∑
i=1

1

2

∫
Ωdi (ai)

|Kai |2 dx

+

n∑
i=1

∫
Ωdi (ai)

∇va ·Kai dx+
∑
i<j

∫
Ω

Kai ·Kaj dx,

(1.5)

if a ∈ Ωn \ 4n, and F (n)(a) := +∞ otherwise. Here Kai(x) := ρ−1
ai (x)θ̂ai(x), being (ρai , θai) a

system of polar coordinates centered at ai, and va solves{
∆va = 0 in Ω,

va = g −
∑n
i=1 θai on ∂Ω.

In particular, F (n) is continuous in Ωn and diverges to +∞ if either at least one dislocation
approaches the boundary or at least two dislocations collide, that is, F (n)(a) → +∞ as di → 0
for some i. Thus, F (n)attains its minimum in Ωn \ 4n.

We notice that, by rotating the vector fields of π/2, (1.5) can also be expressed as the sum of
two terms: the self energy Eself, responsible for the contribution of individual dislocations, and
the interaction energy Eint, depending on the mutual position of two dislocations. In formulas,

Eself(ai) := π log dist(ai, ∂Ω) +
1

2

∫
Ωd(a)(a)

|∇φi +∇wi|2 dx+
1

2

∫
Bd(a)(a)

|∇wi|2 dx,

and

Eint(ai, aj) :=

∫
Ω

(∇φi +∇wi) · (∇φj +∇wj) dx.



CONFINEMENT OF DISLOCATIONS IN A CRYSTAL 3

Here, φi and wi are the solutions (with wi determined up to an additive constant) to{
∆φi = 2πδai in Ω,

φi(x) = log |x− ai| on ∂Ω,
and

{
∆wi = 0 in Ω,

∂νwi(x) = 1
nf − ∂νφi on ∂Ω.

A consequence of Theorem 1.1 is that also the energies (1.1) attain their minimum in Ωn at
an n-tuple of well separated points.

Corollary 1.2. Under the assumptions (H1) and (H2), there exists ε0 > 0 such that, for every
ε ∈ (0, ε0), the infimum problem

inf{E(n)
ε (a) : a ∈ Ωn}, (1.6)

admits a minimizer only in Ωn \ 4n. Moreover, if aε ∈ Ωn \ 4n is a minimizer for (1.6), then

(up to subsequences) we have aε → a and F (n)
ε (aε)→ F (n)(a), as ε→ 0, where a is a minimizer

of the functional F (n) defined in (1.5). In particular, for ε small enough, all the minimizers of
problem (1.6) are n-tuples of distinct points that stay uniformly (with respect to ε) far away from
the boundary and from one another.

Throughout the paper, we will always assume (H1) and (H2), even if it is not explicitly stated.
We stress that the convexity and regularity assumptions on Ω stated in (H1) provide a uniform
interior cone condition of angle between π/2 and π, i.e.,

there exist π/2 < α < π and εα > 0 such that for every b ∈ ∂Ω the disk Bεα(b)

meets ∂Ω at two points b1 and b2 forming an angle at least α with b.
(1.7)

We point out that convexity and regularity play different roles: the former is conveniently assumed
in order to simplify the exposition of the results (in fact, it can be removed without changing
their essence); the latter, on the other hand, is fundamental in our proofs. Finally, we observe
that the boundary condition of Dirichlet type F · τ = f , with f as in (H2), is fundamental to
keep the dislocations confined inside the material. In fact, the natural boundary conditions of
Neumann type imply that the dislocations migrate to the boundary and leave the domain, since,
in such a case, the Dirichlet energy of the system decreases as the dislocations approach ∂Ω (see,
e.g., [3, 15]).

A key feature in our analysis is the rescaling introduced in (1.3) (see also [1]), which is related
to the so-called Hadamard finite part of a divergent integral (see [13]). Such type of asymptotic
analysis has the advantage of keeping into account the energetic dependence on the position of
the dislocations a ∈ Ωn, whereas it is well-known that the standard rescaling obtained by dividing
the energy by | log ε| gives rise to an energy which only counts the number of dislocations in the
bulk (see again [1]).

Some results close to those presented in this paper can be found in the literature about
Ginzburg-Landau vortices (see [2] and also [23]). In this respect, the present paper can be con-
sidered as a self-contained presentation of the asymptotic results for the energy (1.3), presented
in a language that is familiar to the dislocation community, targeted, in particular, to applied
mathematicians and continuum mechanists. The statement of Theorem 1.1 is in fact similar to
that of [2, Theorems I.9 and I.10], but its proof is based on an original iterative procedure (close,
in spirit, to some combinatoric algorithms) which makes it quite different and useful for numer-
ical applications. The need for such an algorithm is dictated by the fact that in the core-radius
approach we allow for the cores around each dislocation to intersect with one another and with
the boundary of the domain, which was avoided in [2] by introducing a safety radius. Moreover,
we set here the bases and the notation for tackling the more challenging problem of the upscaling
of the system of dislocations. In [17] we study the limit as n → ∞ and obtain a limit energy
functional defined on measures describing the distribution of dislocations in the material.

Section 2 sets the notation and presents some preparatory results. Section 3 contains a result
on the properties of K and on some a priori bounds for harmonic functions. Section 4 is devoted to
proving Theorem 1.1 and Corollary 1.2. Section 5 contains numerical plots of F (n) in Ω = B(0, 1)
under different boundary conditions.

2. Preliminaries

In Subsection 2.1 we introduce the notation used throughout the paper. Then, in view of the

core radius approach, in Subsection 2.2 we rewrite the energy E(n)
ε in terms of the displacement

of a regular function.
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2.1. Notation.

- Br(x) denotes the open disk of radius r > 0 centered at x ∈ R2; Br(x) is its closure;
- for n ≥ 1, and for x1, . . . , xn ∈ Ω, we denote x := (x1, . . . , xn) whenever there is no risk of

misunderstanding; the symbol Ωr(x) denotes the open set

Ωr(x) := Ω \
( n⋃
i=1

Br(xi)

)
;

Ωr(x) is its closure;
- the function R2 3 x 7→ dist(x,E) denotes the distance of x from a set E ⊂ R2; in the particular

case E = ∂Ω, we define d(x) := dist(x, ∂Ω);
- we denote Ω(r) := {x ∈ Ω : d(x) > r} and by Ω(r) its closure;
- Ωn denotes the cartesian product of n copies of Ω and Ωn its closure;
- for 0 < r < R, ARr (x) := BR(x) \ Br(x) denotes the open annulus of internal radius r and

external radius R centered at x ∈ R2;
- χE denotes the characteristic function of E: χE(x) = 1 if x ∈ E; χE(x) = 0 if x /∈ E;
- given a set E with piecewise C1 boundary, ν and τ denote the outer unit normal and the

tangent unit vectors to ∂E, respectively;
- diamE denotes the diameter of a set E ⊂ R2;
- given x = (x1, x2) ∈ R2, we denote by x⊥ := (−x2, x1) the rotated vector;
- given x ∈ R2, we define (ρx, θx) as the standard polar coordinate system centered at x; ρ̂x and

θ̂x denote the corresponding unit vectors;

- given x ∈ R2, we denote by Kx the vector field Kx := ρ−1
x θ̂x. It is easy to see that ([18])

divKx = 0 in D′(R2),

curlKx = 2πδx in D′(R2),

Kx · ν = 0 on ∂Br(x), for any r > 0.

(2.1)

Notice that Kx is the absolutely continuous part of the gradient of the function θx, and the
jump set of θx is the half line starting from x and passing through y with [θx] = 2π across it;

- we define the function ω : Ω→ {1, 2} by

ω(a) =

{
1 if a ∈ Ω,

2 if a ∈ ∂Ω;
(2.2)

- sptϕ denotes the support of the function ϕ;
- given x ∈ R2, δx is the Dirac measure centered at x;
- H1 denotes the one-dimensional Hausdorff measure;
- the letter C alone represents a generic constant (possibly depending on Ω) whose value might

change from line to line.

2.2. Displacement formulation. We start by introducing the multiplicity of a dislocation.

Definition 2.1 (multiplicity of a dislocation). Let n ∈ N with n ≥ 2 and let a1, . . . , an ∈ Ω. We
label the dislocations in such a way that the first ` of them (` ≤ n) are all distinct, so that ai 6= ak
for all i, k ∈ {1, . . . , `}, i 6= k, and, for every j ∈ {`+ 1, . . . , n} there exists i(j) ∈ {1, . . . , `} such
that aj = ai(j). For every i = 1, . . . , ` we say that a point ai has multiplicity mi if there are

mi − 1 points aj , with j ∈ {`+ 1, . . . , n} that coincide with ai. Clearly,
∑`
i=1mi = n.

Given n dislocations a1, . . . , an ∈ Ω, we choose n (closed) segments Σ1, . . . ,Σn joining the
dislocations with the boundary, such that Ω \ (Σ1 ∪ · · · ∪ Σn) is simply connected. One possible
construction of such a family of segments is to fix a point a∗ /∈ Ω and take Σi as the portion of
the segment joining ai with a∗ lying inside Ω, for i = 1, . . . , `. With this construction, if ai = aj ,
then Σi = Σj . Moreover, we set bi := Σi ∩ ∂Ω, for i = 1, . . . , `. Given b ∈ ∂Ω \ {b1, . . . , b`}, we
denote by γxb the counterclockwise path in ∂Ω connecting b and x. Such parametrization induces
an ordering on the points of the boundary: we say that x precedes y on ∂Ω, and we write x � y,
if the support of γyb contains that ot γxb . Without loss of generality, we may relabel the bi’s (and
the ai’s, accordingly) so that b ≺ b1 � . . . � b`. According to this notation, for i = 1, . . . , `, we



CONFINEMENT OF DISLOCATIONS IN A CRYSTAL 5

define gbi : ∂Ω \ {bi} → R as

gbi(x) :=


1

n

∫
γxb

f dt if b � x ≺ bi,

1

n

∫
γxb

f dt− 2π if bi ≺ x ≺ b.

Moreover, we introduce

g(x) :=
∑̀
i=1

migbi(x) =

∫
γxb

f(y) dy − 2π

j−1∑
i=0

mi if bj−1 ≺ x ≺ bj , (2.3)

with j ∈ {1, . . . , ` + 1}, b0 = b`+1 := b, and m0 := 0. Note that, since gbi is continuous except
at bi, where it has a jump of 2miπ, we have that the boundary datum g has a jump of 2πmi at
every bi (whereas it is continuous at b).

In view of the construction above, for every ε > 0, every connected component of Ωε(a)\ (Σ1∪
. . . ∪ Σn) is simply connected. Therefore, the energy (1.1) can be expressed as

E(n)
ε (a) =

1

2

∫
Ωε(a)

|∇uεa|2 dx, (2.4)

where uεa ∈ H1(Ωε(a)) is characterized by

∆uεa = 0 in Ωε(a) \ (∪ni=1Σi),

[uεa] = 2πmi on Σi ∩ Ωε(a),

uεa =
∑`
i=1migbi = g on ∂Ω \ ∪ni=1Bε(ai),

∂uεa/∂ν = 0 on ∂Ωε(a) \ ∂Ω,

∂(uεa)+/∂ν = ∂(uεa)−/∂ν on (∪ni=1Σi) ∩ Ωε(a).

(2.5)

We point out that the expression (2.4) is consistent with the definition of the energy in (1.1); in
particular, when ai ≡ a for every i = 1, . . . , n, choosing bi ≡ b, the datum g in (2.3) is given by

g(x) =
∫
γxb
f(y) dy, and we have E(n)

ε (a, . . . , a) = n2E(1)
ε (a). Therefore, by (1.3), for every ε small

enough

F (n)
ε (a, . . . , a︸ ︷︷ ︸

n-times

) = n2F (1)
ε (a) + n(n− 1)π| log ε|. (2.6)

The following lemma shows that the construction of the Σi’s described above is arbitrary.

Lemma 2.2. The functional E(n)
ε does not depend on the choice of the discontinuity points bi’s,

nor the primitive g of f , nor the cuts Σi’s.

Proof. It is enough to prove the result for n = 1. Let Σ be a simple smooth curve in Ω connecting
a with b, intersecting ∂Bε(a) at a single point and ∂Ω only at b. Notice that each connected
component of Ωε(a)\Σ is simply connected. The condition curlF = 0 in Ωε(a) implies that there
exists u ∈ H1(Ωε(a) \ Σ) such that F = ∇u in Ωε(a) \ Σ. Therefore, the energy (2.4) can be
expressed as

E(1)
ε (a) = min

{
1

2

∫
Ωε(a)

|∇u|2dx : u ∈ H1(Ωε(a) \ Σ), u = g on ∂Ω \Bε(a)

}
. (2.7)

To show that the energy above does not depend on the choice of the discontinuity point b, nor
on the primitive g of f , nor on the curve Σ, we argue as follows.

Let g and g′ be two primitives of f with the same discontinuity point. Then the two boundary
data differ by a constant. The same holds true for the corresponding minimizers of (2.7), which
have the same gradient and the same energy.

Let now assume that g and g′ have two different discontinuity points, say b and b′. Denote by
Σ and Σ′ the segments joining a and b, and a and b′, respectively. Let φ and φ′ be the angles
associated with the discontinuity points b and b′, respectively, in the angular coordinate centered
at a. It is not restrictive to assume that φ < φ′. Let u be the solution to (4.2) associated with
g, b, and Σ; define v := u+ 2πχS , where S is the subset of Ωε(a) in which θa ∈ (φ, φ′). It is easy
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b1 b2
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Σ3

Σ5
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Figure 1. (a) A crystal with 4 dislocations. (b) A crystal with 5 dislocations.

to see that v is admissible for (2.7) associated with g′, b′, and Σ′. In particular, v is the solution
to (4.2) associated with g′, b′, and Σ′; moreover,

1

2

∫
Ωε(a)

|∇u|2 dx =
1

2

∫
Ωε(a)

|∇v|2 dx.

This concludes the proof of the invariance with respect to the discontinuity point in the case of
a straight cut.

For general curves Σ and Σ′, the region in Ωε(a) lying between Σ and Σ′ is the union of
some simply connected sets Si, i ≥ 1, bounded by portions of Σ and Σ′. In this case, the same
strategy applies, provided one adds or subtracts 2πχSi , according to whether the portions of Σ
bounding Si preceeds or follows that of Σ′ in the positive orientation of the angular coordinate.
This concludes the proof. �

Notice that the functional (2.4) and the system (2.5) are well defined even in the case that
there exists i ∈ {1, . . . , n} such that ai ∈ ∂Ω. In this case, Lemma 2.2 allows us to choose the
discontinuity point bi = ai and the cut Σi = ∅.

We may write ∇uεa as the sum of a singular and a regular part

∇uεa =

n∑
i=1

ω(ai)Kai +∇v̄εa, (2.8)

where the Kai satisfy (2.1) and ω is defined in (2.2). Here we impose that the angular coordinate
θai centered at ai which defines Kai has a jump of 2π on the half line containing Σi if ai ∈ Ω,
and on the half line containing the outer normal to the boundary at ai in case ai ∈ ∂Ω. The
function v̄εa ∈ H1(Ωε(a)) solves

∆v̄εa = 0 in Ωε(a),

v̄εa =
∑n
i=1

(
gbi − ω(ai)θai

)
on ∂Ω \ ∪ni=1Bε(ai),

∂v̄εa/∂ν = −
∑n
i=1Kai · ν on ∂Ωε(a) \ ∂Ω.

(2.9)

The weight ω(ai) is necessary in order to balance the jump of gbi at bi. Using (2.8), we can write
the energy (2.4) as

E(n)
ε (a) =

1

2

∫
Ωε(a)

∣∣∣ n∑
i=1

ω(ai)Kai +∇v̄εa
∣∣∣2dx.

Remark 2.3. By linearity, the function v̄εa introduced in (2.9) can be written as the superposition
v̄εa =

∑n
i=1 v̄

ε
ai of the solutions v̄εai to

∆v̄εai = 0 in Ωε(a),

v̄εai = gbi − ω(ai)θai on ∂Ω \ ∪nj=1Bε(aj),

∂v̄εai/∂ν = −Kai · ν on ∂Ωε(a) \ ∂Ω.

Fix i ∈ {1, . . . , n}. By linearity, the solution v̄εai of the system above can be written as a
superposition of one function satisfying a homogeneous Neumann boundary condition and another
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function satisfying a homogeneous Dirichlet boundary condition, namely v̄εai = ûεai + qεai , where
ûεai and qεai solve, respectively,

∆ûεai = 0 in Ωε(a),

ûεai = gbi − ω(ai)θai on ∂Ω \ ∪nj=1Bε(aj),

∂ûai/∂ν = 0 on ∪nj=1 ∂Bε(aj),


∆qεai = 0 in Ωε(a),

qεai = 0 on ∂Ω \ ∪nj=1Bε(aj),

∂qai/∂ν = −Kai · ν on ∪nj=1 ∂Bε(aj),∮
∂Bε(aj)

∂qεai/∂τ = 0 for every j = 1, . . . , n.

3. Auxiliary lemmas

We start by proving some useful properties of the function K satisfying (2.1).

Lemma 3.1 (Properties of K). Let y1, y2 ∈ R2. Set r := |y1 − y2|/2 and y the midpoint
(y1 + y2)/2. Then the vector fields Ky1

and Ky2
satisfy the following properties:

(i) the scalar product Ky1
·Ky2

is negative in the disk Br(y), is zero on ∂Br(y) \ {y1, y2},
and is positive in R2 \Br(y). In particular,

∫
Br(y)

Ky1
·Ky2

dx ≥ −2π;

(ii) the following estimate holds:
∫
Br(yi)

Ky1 ·Ky2 dx ≤ 2π, for i = 1, 2.

Moreover, let ` ∈ N, and let y1, . . . , y` ∈ Ω be distinct points. Then,

(iii) if yi ∈ Ω, for every 0 < ε < di (see (1.4)),

2π| log ε|+ 2π log di ≤
∫

Ωε(y1,...,y`)

|Kyi |2 dx ≤ 2π| log ε|+ 2π log(diam Ω); (3.1)

(iv) if yi ∈ ∂Ω, for every 0 < ε < minj 6=i{εα, |yi − yj |/2},

α| log ε|+ α log εα ≤
∫

Ωε(y1,...,y`)

|Kyi |2 dx ≤ π| log ε|+ π log(diam Ω). (3.2)

Proof. To prove (i) it is enough to notice that, given a point x ∈ R2 \ {y1, y2}, the angle ŷ1 x y2

is larger than, equal to, or smaller than π/2, according to whether x ∈ Br(y), x ∈ ∂Br(y),
x ∈ R2 \ Br(y), respectively. To prove the estimate, we consider the disk Br(y) whose diameter
is the axis of the segment joining y1 and y2, and we define Br(y)+ the half of Br(y) on the side
of y2. By symmetry, we have∫

Br(y)

Ky1
·Ky2

dx =− 2

∫
Br(y)+

|Ky1
·Ky2

|dx ≥ −2

r

∫
Br(y)+

|Ky2
|dx

≥− 2

r

∫ 3π/2

π/2

∫ r

0

dρ2dθ2 = −2π.

To prove (ii), observe that |Kyi | ≤ 1/r in R2 \Br(yi), so that∫
Br(yi)

Ky1
·Ky2

dx ≤ 1

r

∫
Br(0)

|x|−1
dx = π.

To prove (iii) and (iv) one integrates in polar coordinates centered at yi over the sets
Adiam Ω
ε (yi) ∩ Ω, Adiε (yi) ∩ Ω, Asε(yi) ∩ Ω with s := minj 6=i{εα, |yi − yj |/2}, and uses the con-

vexity assumption (H1) and (1.7). �

In the rest of this section, we prove some a priori bounds on harmonic functions that will be
useful in the sequel.

Lemma 3.2. Let a1, . . . , an ∈ Ω, let h ∈W 1,1(∂Ω), and let ûε be the solution to
∆ûε = 0 in Ωε(a),

ûε = h on ∂Ω \ ∪nj=1Bε(aj),

∂ûε/∂ν = 0 on ∂Ωε(a) ∩
(
∪nj=1 ∂Bε(aj)

)
.

(3.3)

Then ûε is the minimizer of the Dirichlet energy in H1(Ωε(a)) with prescribed boundary datum
h on ∂Ω \ ∪nj=1Bε(aj), and the following estimates hold

|ûε(x)| ≤ C‖h‖L∞(∂Ω), for all x ∈ Ωε(a) (3.4)

and ∫
Ωε(a)

|∇ûε|2 dx ≤ C‖h‖2H1/2(∂Ω) (3.5)
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for some constant C > 0 independent of ε. Moreover, in the case a1, . . . , an ∈ Ω are distinct
points and ε < mini di, also the estimate on the gradient holds

|∇ûε(x)| ≤ C‖h‖L∞(∂Ω), for all x ∈ ∪nj=1∂Bε(aj). (3.6)

Proof. The minimality of ûε follows from the uniqueness of the solution to (3.3); estimate (3.4)
is a consequence of the maximum principle and Hopf’s Lemma, while (3.5) is obtained by testing
ûε with the minimizer of the Dirichlet energy in H1(Ω) with prescribed boundary datum h on
∂Ω \ ∪nj=1Bε(aj) and using the continuity of the map which associates the minimizer with the
boundary datum. Finally, the proof of (3.6) is standard (see, e.g., [10]). �

As a simple consequence of Lemma 3.2, we have the following estimate in the case n = 1.

Lemma 3.3. Let a ∈ Ω and let ε ∈ (0, d(a)/2). Let wε be the harmonic extension in Bε(a) of
ūεa. Then there exists a constant C > 0 independent of ε such that∫

Bε(a)

|∇wε(x)|2 dx ≤ Cε2‖g − θa‖2L∞(∂Ω). (3.7)

Proof. By applying Lemma 3.2 with n = 1, we obtain that ūεa ∈W 1,∞(∂Bε(a)) and

‖ūεa‖W 1,∞(∂Bε(a)) ≤ C‖g − θa‖L∞(∂Ω). (3.8)

It is a known fact in the theory of harmonic functions (see [10]) that there exists a constant C > 0
such that for every harmonic function ϕ ∈ H1(B1(0))

‖∇ϕ‖2L2(B1(0)) ≤ C‖ϕ−m(ϕ)‖2H1/2(∂B1(0)),

where m(ϕ) is the average of ϕ on ∂B1(0). Using the Poincaré inequality we have

‖ϕ−m(ϕ)‖2H1/2(∂B1(0)) ≤C
(
‖ϕ−m(ϕ)‖2L2(∂B1(0)) +

∫
∂B1(0)

∫
∂B1(0)

|ϕ(x)− ϕ(y)|2

|x− y|2
dxdy

)
≤C
(∫

∂B1(0)

∣∣∣∣∂ϕ(x)

∂τ

∣∣∣∣2 dx+

∫
∂B1(0)

∫
∂B1(0)

|ϕ(x)− ϕ(y)|2

|x− y|2
dxdy

)
.

Therefore, using this and employing the change of variables x = εx′ + a and y = εy′ + a we have

‖∇wε‖2L2(Bε(a)) =

∫
B1(0)

|∇wε(εx′ + a)|2 dx′

≤C
(∫

∂B1(0)

∣∣∣∣∂wε(εx′ + a)

∂τ

∣∣∣∣2 dx′ +

∫
∂B1(0)

∫
∂B1(0)

|wε(εx′ + a)− wε(εy′ + a)|2

|x′ − y′|2
dx′dy′

)
=C

(
ε

∫
∂Bε(a)

∣∣∣∣∂wε(x)

∂τ

∣∣∣∣2 dx+

∫
∂Bε(a)

∫
∂Bε(a)

|wε(x)− wε(y)|2

|x− y|2
dxdy

)
.

Owing to the fact that wε = ūε on ∂Bε(a) and by (3.8), we obtain (3.7). �

The following result is similar to [2, Lemma I.5]; however, for the sake of completeness, we
present here a proof.

Lemma 3.4. Let D1, . . . , D` ⊂ R2 be open, bounded, simply connected sets with Lipschitz bound-
ary, such that D1, . . . , D` are pairwise disjoint and intersect Ω. Set Ω′ := Ω \ ∪`i=1Di and for
every i = 1, . . . , `, let hi ∈ C1(Ω′). Consider the minimum problem

min
c

min
u

1

2

∫
Ω′
|∇u|2dx, (3.9)

with c = (c1, . . . , c`) ∈ R` and u varying in the subset of functions in H1(Ω′) satisfying

u = hi + ci on ∂Di ∩ Ω, for i = 1, . . . , `. (3.10)

Then p ∈ H1(Ω′) is a solution to (3.9) if and only if it satisfies
∆p = 0 in Ω′,

∂p/∂ν = 0 on ∂Ω′ ∩ ∂Ω,

∂p/∂τ = ∂hi/∂τ on ∂Di ∩ Ω, for i = 1, . . . , `,∫
∂Di∩Ω

∂p/∂ν dH1 = 0 for i = 1, . . . , `.

(3.11)
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Moreover, a solution p satisfies∣∣max
Ω
′
p−min

Ω
′
p
∣∣ ≤ ∑̀

i=1

H1(∂Di ∩ Ω) max
∂Di∩Ω

∣∣∣∣∂hi(x)

∂τ

∣∣∣∣. (3.12)

Proof. First we remark that problem (3.9) is well posed, namely the class of admissible functions

is not empty: indeed, the function u :=
∑`
i=1 ζihi satisfies (3.10), being ζi suitable smooth

functions in Ω′ which are identically 1 in a neighborhood of Di.
If p satisfies the minimum problem (3.9), then it is easy to obtain system (3.11) as the Euler-

Lagrange conditions arising from minimality.
Conversely, assume that p satisfies (3.11). In order to show that p is optimal for (3.9), it is

enough to show that the (3.11) has a unique solution (up to a constant). Take two solutions of
(3.11); then their difference s is characterized by

∆s = 0 in Ω′,

∂s/∂ν = 0 on ∂Ω′ ∩ ∂Ω,

∂s/∂τ = 0 on ∂Ω′ \ ∂Ω,∫
∂Di∩Ω

∂s/∂ν dH1 = 0 for i = 1, . . . , `.

(3.13)

The third condition implies that s is constant on the boundary of the holes (intersected with Ω),
namely s = si on ∂Di∩Ω for some si ∈ R, for i = 1, . . . , `. In view of the maximum principle, we
infer that either s attains its maximum on the boundary ∂Ω′ \ ∂Ω or it is constant. The former
case is excluded by Hopf’s Lemma combined with the second and fourth conditions in (3.13);
therefore the latter case holds and the proof of the first statement is concluded.

We relabel the sets Di so that the local minima of p on their boundary are ordered as follows:

min
∂D1∩Ω

p ≥ min
∂D2∩Ω

p ≥ . . . ≥ min
∂D`∩Ω

p = min
Ω
′
p.

Notice that, for the last equality, we have used the maximum principle, combined with the Hopf’s
Lemma, which prevents the minimum of p to be on ∂Ω (the same holds true for the maximum).
We now define an ordered subfamily of indices as follows: we choose

j1 ∈
{
j : max

∂Dj∩Ω
p = max

Ω
′
p
}
,

and, by recursion, given ji we choose

ji+1 ∈
{
j : max

∂Dj∩Ω
p = max

∪k>ji∂Dk∩Ω
p
}
.

Since ji+1 > ji, in a finite number of steps, say i∗, we find ji∗ = ` and the procedure stops. We
clearly have

max
Ω′

p = max
∂Dj1∩Ω

p ≥ max
∂Dj2∩Ω

p ≥ . . . ≥ max
∂Dji∗∩Ω

p = max
∂D`∩Ω

p.

Moreover, we claim that, for every i = 1, . . . , i∗ − 1

min
∂Dji∩Ω

p ≤ max
∂Dji+1

∩Ω
p. (3.14)

Once proved the claim we are done, indeed∣∣max
Ω
′
−min

Ω
′
p
∣∣ = max

∂Dj1∩Ω
p− min

∂Dji∗∩Ω
p

=

i∗∑
i=1

( max
∂Dji∩Ω

p− min
∂Dji∩Ω

p) +

i∗−1∑
i=1

( min
∂Dji∩Ω

p− max
∂Dji+1

∩Ω
p)

≤
∑̀
i=1

( max
∂Di∩Ω

p− min
∂Di∩Ω

p) ≤
∑̀
i=1

H1(∂Di ∩ Ω) max
∂Di∩Ω

∣∣∣∣∂hi(x)

∂τ

∣∣∣∣,
where, in the last line, we have used the Mean Value Theorem. This proves (3.12).

In order to prove the claim (3.14), we argue by contradiction: we assume that there exists
i ∈ {1, . . . , i∗ − 1} such that

p := min
∂Dji∩Ω

p > p := max
∂Dji+1

∩Ω
p.
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Notice that, by construction, we have

min
∪jik=1∂Dk∩Ω

p > max
∪`k=ji+1

∂Dk∩Ω
p.

Consider the nonempty set E := {x ∈ Ω′ : p > p(x) > p} and the function

ψ(x) :=


p(x) if p(x) ≤ p,
p if x ∈ E,
p(x) + p− p if p(x) ≥ p.

The function ψ is an element of H1(Ω′), it is admissible for the minimum problem (3.9), and it
decreases the Dirichlet energy, contradicting the optimality of p. �

As a direct consequence of Lemma 3.4 we obtain the following corollary.

Corollary 3.5. Let a1, . . . , a` ∈ Ω be distinct points and let (aε1, . . . , a
ε
`) be a sequence of points

in Ω` converging to (a1, . . . , a`) as ε → 0, such that the disks Bε(a
ε
j) are pairwise disjoint. Fix

i ∈ {1, . . . , `} and let pεi be the solution (unique up to a constant) to

∆pεi = 0 in Ωε(a
ε
1, . . . , a

ε
`),

∂pεi/∂ν = 0 on ∂Ω \ ∪`j=1Bε(a
ε
j),

∂pεi/∂τ = −∂ log(|x− aεi |)/∂τ on ∂Bε(a
ε
j) ∩ Ω, for every j 6= i,

∂pεi/∂τ = 0 on ∂Bε(a
ε
i) ∩ Ω,∫

∂Bε(aεj)∩Ω
∂pεi/∂ν = 0 for j = 1, . . . , `.

(3.15)

Then, there exists a positive constant C independent of ε such that

||pεi ||L∞(Ωε(aε1,...,a
ε
`))
≤ Cε. (3.16)

Moreover, ∫
Ωε(aε1,...,a

ε
`)

|∇pεi |2 dx ≤ C

| log ε|
. (3.17)

Proof. By applying Lemma 3.4 with Dj = Bε(a
ε
j), and hj = − log(|x − aεi |) for every j ∈

{1, . . . , `} \ {i}, hi = 0, estimate (3.12) provides a positive constant C such that∣∣∣ max
Ωε(aε1,...,a

ε
`)
pεi − min

Ωε(aε1,...,a
ε
`)
pεi

∣∣∣ ≤ 2πεC.

which implies (3.16).
Let ζε be a smooth cut-off function which is identically 1 inside Bε(0) and 0 outside B√ε(0), and

whose support vanishes as ε → 0. From the minimality of pεi , comparing with c1 = · · · = c` = 0
and

u(x) = −
∑
j 6=i

ζε(x− aεj) log(|x− aεi |)

in (3.10), we obtain∫
Ωε(aε1,...,a

ε
`)

|∇pεi |2 dx ≤ C
(∫

B√ε(0)

|∇ζε|2 dx+ | spt ζε|
)
, (3.18)

for some positive constant C independent of ε. By infimizing with respect to ζε ∈ {ζ ∈
C∞c (B√ε(0)) , ζ ≡ 1 in Bε(0)}, the integral in the right-hand side of (3.18) is the capacity

of a disk of radius ε inside a disk of radius
√
ε, which is equal to 4π/| log ε|, therefore we obtain∫

Ωε(aε1,...,a
ε
`)

|∇pεi |2 dx ≤ Cπ
(

4

| log ε|
+ ε

)
,

which implies (3.17). The lemma is proved. �

Lemma 3.6. Let a1, . . . , an be distinct points in Ω and let (aε1, . . . , a
ε
n) be a sequence of points

in Ωn converging to (a1, . . . , an) as ε→ 0. Then, for every i = 1, . . . , n, as ε→ 0 we have

‖∇v̄εaεi −∇vai‖L2(Ωε(a);R2) → 0, (3.19)
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where v̄εaεi is defined in Remark 2.3 and vai satisfies{
∆vai = 0 in Ω,

vai = gbi − θai on ∂Ω.
(3.20)

Proof. Since the limit points a1, . . . , an are all distinct and far from the boundary, we may assume,
without loss of generality, that ε < d := mini∈{1,...,n} di (see (1.4)), so that, for ε small enough,
the disks Bε(a

ε
i) are pairwise disjoint and do not intersect ∂Ω. Let now i ∈ {1, . . . , n} be fixed.

By Remark 2.3, the solution v̄εaεi can be written as v̄εaεi = ûεi + qεi . Then to prove (3.19), we will

show that, for every fixed i ∈ {1, . . . , n},

‖∇ûεi −∇vaεi‖L2(Ωε(aε);R2) → 0, (3.21a)

‖∇qεi‖L2(Ωε(aε);R2) → 0. (3.21b)

Note that in (3.19) we can replace vai with vaεi thanks to the continuity of the map C0(∂Ω) 3
h 7→ wh ∈ H1(Ω), where wh is harmonic in Ω with boundary datum h.

By Lemma 3.2, ûεi minimizes the Dirichlet energy in H1(Ωε(a
ε)) with boundary datum gbεi−θaεi

on ∂Ω, and by (3.5) we have

‖∇ûεi‖2L2(Ωε(aε);R2) ≤ C‖gbεi − θaεi‖
2
H1/2(∂Ω).

Let us consider the extension of ûεi (not relabeled), which is harmonic in every Bε(a
ε
j). By (3.4)

and (3.6), an estimate similar to (3.7) holds: there exists C > 0 independent of ε such that

‖∇ûεi‖2L2(Bε(aεj);R2) ≤ Cε
2‖gbεi − θaεi‖

2
L∞(∂Ω).

Since all the points aεi are in Ω(d/2), by the two estimates above, we obtain a uniform bound
in H1(Ω) for ûεi , and therefore ûεi has a subsequence that converges weakly to a function wi in
H1(Ω) as ε→ 0. By the lower semicontinuity of the H1 norm and the minimality of ûεi and vai ,
it turns out that wi = vai and

lim
ε→0
‖∇ûεi‖L2(Ω;R2) = ‖∇vai‖L2(Ω;R2);

moreover, by the triangle inequality we have that

‖∇ûεi −∇vaεi‖L2(Ω;R2) ≤ ‖∇ûεi −∇vai‖L2(Ω;R2) + ‖∇vai −∇vaεi‖L2(Ω;R2),

with vai solution to (3.20). The first term in the right-hand side above vanishes as ε → 0. The
second term converges to zero thanks to the continuity of the map that associates va with the
boundary datum g − θa (observe that g − θεa → g − θa in H1/2(∂Ω)), so that

‖∇ûεi −∇vaεi‖L2(Ω;R2) → 0, (3.22)

hence (3.21a) follows.
To obtain an estimate for the gradient of qεi , we define P εi := (∇qεi )⊥ = (−∂2q

ε
i , ∂1q

ε
i ) and

notice that P εi is a conservative vector field in Ωε(a), namely its circulation vanishes along any
closed loop contained in Ωε(a

ε). Therefore, there exists pεi ∈ H1(Ωε(a
ε)) such that P εi = ∇pεi

and, in view of Remark 2.3 with the fact that −Kaεi
· ν = ∂ log(|x − aεi |)/∂τ , pεi is a solution to

(3.15). Then by (3.17) we deduce that the gradient of pεi → 0 as ε → 0 and since the gradients
of pεi and qεi have the same modulus, we obtain (3.21b). �

Remark 3.7. From the proof of Lemma 3.6 we derive some important properties of the functions
ûεi and pεi introduced in Remark 2.3 and (3.15), respectively. Let a1, . . . , an be distinct points in
Ω and let (aε1, . . . , a

ε
n) be a sequence of points in Ωn converging to (a1, . . . , an) as ε → 0. Then,

for every i = 1, . . . , n, as ε→ 0, we have

(i) the function ûεi admits an extension which converges to vai strongly in H1(Ω). This
follows by combining the fact that vaεi → vai strongly in H1(Ω), ûεi and vaεi agree on the
boundary, the Poincaré inequality, and property (3.22);

(ii) the function pεi admits a (not relabeled) extension pεi ∈ H1(Ω). In fact, recalling that
φaεi (·) = log(| · −aεi |), since pεi = φaεi + cj on ∂Bε(a

ε
j) for j 6= i and pεi = ci on ∂Bε(a

ε
i)

for some constants c1, . . . , cn, we define pεi = φaεi + cj on Bε(a
ε
j) and pεi ≡ ci on Bε(a

ε
i).

Thus, up to subtracting a constant, thanks to (3.16), pεi is observed to tend to 0 strongly
in H1(Ω).
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Lemma 3.8. Let a1, . . . , a` be distinct points in Ω and let v̄εai ∈ H1(Ωε(a1, . . . , a`)) solve the
system in Remark 2.3 for some i ∈ {1, . . . , `}. Then the function v̄εai admits an extension (not

relabeled) in H1(Ω). In particular, there exist ε̄ > 0 and a constant C > 0 such that∫
Bε(aj)

|∇v̄εai |
2 dx ≤ C,

for all ε < ε̄ and for every j ∈ {1, . . . , `}.

Proof. We consider the domain E := R2 \ (∪`i=1Bε(ai) ∪ Ω) and we extend v̄εai on E by defining
it as the solution to the Dirichlet problem with datum gbi − ω(ai)θai on ∂E ∩ ∂Ω. It is easy to
check (one can use, for instance, (3.5)) that there exists a constant C > 0 such that∫

E

|∇v̄εai |
2 dx ≤ C.

Let ε̄ := 1
4 min{|ai − aj | : i, j ∈ {1, . . . , `}, i 6= j}. For ε < ε̄, consider a family of functions

ζε ∈ C∞(Bε(0)) which are zero in a neighborhood of Bε/2(0), equal to 1 in a neighborhood of
∂Bε(0), and such that ||∇ζε||L2(Bε(0)) is uniformly bounded. We shall exploit the fact that v̄εai is

defined in the annulus A2ε
ε (aj) for every j ∈ {1, . . . , `} to define its extension in Bε(aj). To this

aim, consider the inversion function Iεaj : C\{aj} → C\{aj} given by Iεaj (x) := ε2(x−aj)/|x−aj |2,
and define

v̄εai(x) :=

{
ζε(x)v̄εai(I

ε
aj (x)) if x ∈ Iεaj (A

2ε
ε (aj)),

0 elsewhere in Bε(aj).

Also in this case, an easy check shows that∫
Bε(aj)

|∇v̄εai |
2 dx ≤ C

∫
A2ε
ε (aj)

|∇v̄εai |
2 dx ≤ C,

for some constant C > 0 independent of ε̄, and for all ε < ε̄. The lemma is proved. �

4. The limit as ε→ 0

This section is devoted to the proof of the main results, Theorem 1.1 and Corollary 1.2, which
is presented in Subsection 4.4. Our proof strategy will rely on the results in the case of one
dislocation a ∈ Ω, which we treat next in Subsection 4.1. To study the asymptotic behavior of
the rescaled energies (1.3), we distinguish two different scenarios (recall the function di defined
in (1.4)):

- all the limit points are in the interior of Ω and are all distinct, namely mini di > 0 (treated
in Subsection 4.2);

- either at least two limit points coincide or one limit point is on the boundary ∂Ω, namely
mini di = 0 (treated in Subsection 4.3).

4.1. The case n = 1. Given a ∈ Ω, the energy Eε(a) := E(1)
ε (a) in (1.1) reads

Eε(a) = min

{
1

2

∫
Ωε(a)

|F |2 dx : F ∈ L2(Ωε(a);R2), curlF = 0, F · τ = f on ∂Ω \Bε(a)

}
,

and its rescaling Fε(a) := F (1)
ε (a) in (1.3) reads

Fε(a) =
1

2

∫
Ωε(a)

|∇uεa|2 dx− π| log ε| , (4.1)

where uεa solution to (2.5) with n = 1, namely

∆uεa = 0 in Ωε(a) \ Σ,

[uεa] = 2π on Σ ∩ Ωε(a),

uεa = g on ∂Ω \Bε(a),

∂uεa/∂ν = 0 on ∂Bε(a) ∩ Ω,

∂(uεa)+/∂ν = ∂(uεa)−/∂ν on Σ ∩ Ωε(a).

(4.2)

In the last equation above, ν is a choice of the unit normal vector to Σ. Notice that, when
dist(a, ∂Ω) ≤ ε, the choice of b ∈ ∂Ω ∩ Bε(a) implies that Ωε(a) \ Σ = Ωε(a) and the jump
condition of uεa across Σ is empty.
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In this case, the decomposition (2.8) reads

∇uεa = ω(a)Ka +∇ūεa, (4.3)

where ūεa ∈ H1(Ωε(a)) is the solution to
∆ūεa = 0 in Ωε(a),

ūεa = g − ω(a)θa on ∂Ω \Bε(a),

∂ūεa/∂ν = 0 on ∂Bε(a).

(4.4)

Notice that this function is the same as the v̄εa in Remark 2.3 when n = 1, thanks to (2.1).
Given aε → a as ε→ 0, the asymptotics of Fε(aε) when a ∈ Ω is dealt with in Proposition 4.1,

whereas the case in which a ∈ ∂Ω is dealt with in Proposition 4.2. These two results readily
imply Theorem 1.1 in the case n = 1 (the continuity of the limit functional F follows from the
relationship between continuous convergence and Γ-convergence, see [8, Remark 4.9]).

Proposition 4.1. Let a ∈ Ω and va satisfy (3.20). For every sequence aε → a as ε→ 0 we have

Fε(aε)→ π log d(a) +
1

2

∫
Ωd(a)(a)

|Ka +∇va|2 dx+
1

2

∫
Bd(a)(a)

|∇va|2 dx. (4.5)

Proof. Since a ∈ Ω, ω(a) = 1. Since d(aε) → d(a) and d(a) > 0, we can take ε so small so that
ε < min{d(aε), 1}. By plugging (4.3) into (4.1), Fε(aε) reads

Fε(aε) =
1

2

∫
Ωε(aε)

|∇ūεaε |2 dx+

∫
Ωε(aε)

Kaε · ∇ūεaε dx+
1

2

∫
Ωε(aε)

|Kaε |2 dx+ π log ε.

Set, for brevity, d := d(a), dε := d(aε), K := Ka, and Kε := Kaε . Writing

1

2

∫
Ωε(aε)

|Kε|2 dx =
1

2

∫
Ωdε (aε)

|Kε|2 dx+
1

2

∫
Adεε (aε)

|Kε|2 dx =
1

2

∫
Ωdε (aε)

|Kε|2 dx+ π log
dε

ε
,

we obtain

Fε(aε) = π log dε +
1

2

∫
Ωdε (aε)

|Kε|2 dx+

∫
Ωε(aε)

Kε · ∇ūεaε dx+
1

2

∫
Ωε(aε)

|∇ūεaε |2 dx. (4.6)

If we prove that, as ε→ 0,

π log dε +
1

2

∫
Ωdε (aε)

|Kε|2 dx→ π log d+
1

2

∫
Ωd(a)

|K|2 dx, (4.7a)∫
Ωε(aε)

Kε · ∇ūεaε dx→
∫

Ωd(a)

K · ∇va dx, (4.7b)

1

2

∫
Ωε(aε)

|∇ūεaε |2 dx→ 1

2

∫
Ω

|∇va|2 dx, (4.7c)

where va satisfies (3.20), then (4.5) follows.
Since dε → d, KεχBdε (aε) converges pointwise to KχBd(a), and KεχBdε (aε) are uniformly

bounded for ε small enough, (4.7a) follows by the Dominated Convergence Theorem.
To prove (4.7b), we integrate by parts to obtain∫

Ωε(aε)

Kε · ∇ūεaε dx =

∫
∂Ω

(Kε · ν)(g − θaε) dx,

where we have used (2.1) and the fact that ūεaε = g− θaε on ∂Ω (see (4.4)). Since Kε and θaε are
uniformly bounded in ε on the set ∂Ω, and converge pointwise to K and θa, respectively, by the
Dominated Convergence Theorem, we have∫

Ωε(aε)

Kε · ∇ūεaε dx→
∫

Ω

K · ∇va dx =

∫
Ωd(a)

K · ∇va dx ,

which gives (4.7b). The last equality follows by the Divergence Theorem, combined with (2.1).
It remains to prove (4.7c). To do this, consider the harmonic extension wε of ūεaε inside Bε(a

ε).
By applying Lemma 3.3 to wε with a replaced by aε, estimate (3.7) reads∫

Bε(aε)

|∇wε(x)|2 dx ≤ Cε2‖g − θaε‖2L∞(∂Ω), (4.8)
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which implies that

‖wε‖H1(Bε(aε)) → 0, as ε→ 0. (4.9)

By combining (4.8) with (3.5), we have∫
Ω

|∇wε|2 dx =

∫
Ωε(aε)

|∇ūεaε |2 dx+

∫
Bε(aε)

|∇wε|2 dx ≤ C‖g−θaε‖2H1/2(∂Ω) +Cε2‖g−θaε‖2L∞(∂Ω).

Therefore, letting ε→ 0, we obtain

lim sup
ε→0

∫
Ω

|∇wε|2 dx ≤ C‖g − θa‖2H1/2(∂Ω),

which, together with Poincaré inequality, implies that wε is uniformly bounded in H1(Ω). As a
consequence there exists w ∈ H1(Ω) such that (up to subsequences) wε ⇀ w weakly in H1(Ω).
Since wε = g − θaε on ∂Ω for every ε, then w = g − θa on ∂Ω. Since the ūεaε in (4.4) is the
minimizer of the Dirichlet energy, we have that

1

2

∫
Ωε(aε)

|∇ūεaε |2 dx ≤ 1

2

∫
Ωε(aε)

|∇vaε |2 dx ≤ 1

2

∫
Ω

|∇vaε |2 dx,

the lower semicontinuity of the H1 norm, together with (4.9), gives

1

2

∫
Ω

|∇w|2 dx ≤ lim inf
ε→0

1

2

∫
Ω

|∇wε|2 dx ≤ lim
ε→0

1

2

∫
Ω

|∇vaε |2 dx =
1

2

∫
Ω

|∇va|2 dx, (4.10)

which implies that w = va, by the uniqueness of the minimizer va. Thus, all the inequalities in
(4.10) are in fact equalities. This, together with (4.9), gives (4.7c) and completes the proof. �

Proposition 4.2. Let a ∈ ∂Ω and aε be a sequence of points in Ω converging to a as ε → 0.
Then there exist two constants C1, C2 > 0 independent of ε, aε, and a, such that

Fε(aε) ≥ C1| log(max{ε, d(aε)})|+ C2, (4.11)

for every ε small enough. In particular, Fε(aε)→ +∞ as ε→ 0.

Proof. Since a ∈ ∂Ω, ω(a) = 2. Let α and εα be as in (1.7), let ε < min{εα, 1}, and dε < εα/2,
where we set, for brevity, d := d(a) and dε := d(aε). We distinguish two possible scenarios: the
slow collision ε < dε and the fast collision ε ≥ dε. In the former case ε < dε, exploiting (4.6) we
get

Fε(aε) ≥ π log dε +
1

2

∫
Ωdε (aε)

|Kaε |2 dx+

∫
Ωdε (aε)

Kaε · ∇ūεaε dx+
1

2

∫
Ωdε (aε)

|∇ūεaε |2 dx

= π log dε +
1

2

∫
Ωdε (aε)

|Kaε +∇ūεaε |2 dx.

(4.12)

where we have used that
∫

Ωε(aε)
Kaε · ∇ūεaε dx =

∫
Ωdε (aε)

Kaε · ∇ūεaε dx. By Lemma 2.2, we may

assume that the discontinuity point bε of the boundary datum g is one of the projections of aε

on ∂Ω, so that bε ∈ ∂Bdε(aε) ∩ ∂Ω. In particular, Ω2dε(b
ε) ⊂ Ωdε(a

ε), so that∫
Ωdε (aε)

|Kaε +∇ūεaε |2 dx ≥
∫

Ω2dε (bε)

|Kaε +∇ūεaε |2 dx

≥ inf

{∫
Ω2dε (bε)

|∇u|2 dx : u ∈ H1(Ω2dε(b
ε)), u = g on ∂Ω \B2dε(b

ε)

}
= inf

{∫
Ω2dε (bε)

|2Kbε +∇u|2 dx : u ∈ H1(Ω2dε(b
ε)), u = g − 2θbε on ∂Ω \B2dε(b

ε)

}
=

∫
Ω2dε (bε)

|2Kbε +∇ū|2 dx,

(4.13)

where ū solves 
∆ū = 0 in Ω2dε(b

ε),

ū = g − 2θbε on ∂Ω \B2dε(b
ε),

∂ū/∂ν = −2Kbε · ν on ∂B2dε(b
ε) ∩ Ω.
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Since Kbε · ν = 0 on ∂B2dε(b
ε) by (2.1), it follows by uniqueness that ū = ūεbε , where ūεb ∈

H1(Ωε(b)) is the solution to (4.4). Therefore, using Young’s inequality and (3.5) (with h =
g − 2θb), recalling that ε < dε, we may bound (4.13) as follows:

1

2

∫
Ω2dε (bε)

|2Kbε+∇ū|2 dx ≥ 2

∫
Ω2dε (bε)

|Kbε |2 dx+ 2

∫
Ω2dε (bε)

Kbε · ∇ūdx

≥2

∫
Ω2dε (bε)

|Kbε |2 dx− λ
∫

Ω2dε (bε)

|Kbε |2 dx− 1

λ

∫
Ω2dε (bε)

|∇ū|2 dx

≥(2− λ)

∫
Ω2dε (bε)

|Kbε |2 dx− C

λ
max
b∈∂Ω

‖g − 2θb‖2H1/2(∂Ω),

(4.14)

where λ > 0 is a constant that will be chosen later. Now, in view of the assumption on dε at the
beginning of the proof, the set Ω2dε(b

ε) contains a sector, which, in polar coordinates centered at
bε, is the rectangle R := (2dε, εα)× (φ0, φ1) with φ1 − φ0 = α. Therefore, in the case ε < dε, by
combining (4.12) and (4.13) with (4.14), and using the estimate from below in (3.2), it follows
that

Fε(aε) ≥
(
π − (2− λ)α

)
log dε + (2− λ)α log

εα
2
− C

λ
max
b∈∂Ω

‖g − 2θb‖2H1/2(∂Ω).

Recalling that α > π/2 by (1.7), we can choose λ = (α − π/2)/α, so that the inequality above
can be written as

Fε(aε) ≥ C1| log dε|+ C2, (4.15)

with

C1 :=
(
α− π

2

)
and C2 :=

(
α+

π

2

)
log

εα
2
− Cα

α− π/2
max
b∈∂Ω

‖g − 2θb‖2H1/2(∂Ω). (4.16)

Moreover, in the case ε ≥ dε, we consider the projection bε of aε on ∂Ω, so that bε ∈ ∂Bε(aε)∩
∂Ω, and the disk B2ε(bε) contains Bε(a

ε). Arguing as in (4.13), (4.14), and using (3.2) with dε

replaced by ε, we can estimate (4.1) as follows

Fε(aε) ≥
1

2

∫
Ω2ε(bε)

|2Kbε +∇ū|2 dx− π| log ε| ≥ C1| log ε|+ C2, (4.17)

with the same constants C1 and C2 provided in (4.16).
Therefore, by (4.15) and (4.17) for every ε < min{εα, 1}, the thesis (4.11) follows. �

4.2. The case n > 1 with mini di > 0. In this case, it is convenient to write the rescaled energy
(1.3) as the sum of the rescaled energy of each dislocation plus a remainder term accounting
for interactions: recalling the expression (4.1) for the rescaled energy of one dislocation and the
decomposition (4.3), we write the energy (1.3) as

F (n)
ε (a) =

n∑
i=1

Fε(ai) +

n∑
i=1

Rε(ai) +
∑
i 6=j

Gε(ai, aj), (4.18)

where, for every i = 1, . . . , n, Fε(ai) is given by (4.1),

Rε(ai) :=
1

2

∫
Ωε(a)

|Kai +∇v̄εai |
2 dx− 1

2

∫
Ωε(ai)

|Kai +∇ūεai |
2 dx, (4.19)

and, for every i, j = 1, . . . , n, with i 6= j,

Gε(ai, aj) :=

∫
Ωε(a)

(Kai +∇v̄εai) · (Kaj +∇v̄εaj ) dx,

ūεai being the solution to (4.4) associated with ai, and v̄εai being as in Remark 2.3.

Proposition 4.3. Let a = (a1, . . . , an) ∈ Ωn be an n-tuple of distinct points and let aε be a
sequence converging in Ωn to a as ε → 0. Then, for every i = 1, . . . , n, we have Rε(aεi) → 0 as
ε→ 0.

Proof. For brevity, we define the dεi ’s as in (1.4), associated with the family {aε1, . . . , aεn}, and the
di’s associated with the family {a1, . . . , an}. By assumption dεi → di > 0 for every i = 1, . . . , n;
therefore, without loss of generality, we may take ε < mini di. In particular, the disks Bε(a

ε
i) are

all contained in Ω and are pairwise disjoint for every ε ∈ (0,mini di).
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Fix now i ∈ {1, . . . , n}. The remainder (4.19) evaluated at aεi can be written as Rε(aεi) =
R′ε(aεi)−R′′ε (aεi), with

R′ε(aεi) :=
1

2

∫
Ωε(aε)

(
2Kε

i +∇v̄εi +∇ūεi
)
·
(
∇v̄εi −∇ūεi

)
dx,

and

R′′ε (aεi) :=
1

2

∑
j 6=i

∫
Bε(aεj)

|Kε
i +∇ūεi |2 dx,

where, for brevity, we have replaced the subscript aεj with the subscript j coupled with the
superscript ε. By the Divergence Theorem, (4.4), and Remark 2.3, we have

R′ε(aεi) =
1

2

∫
∂Ωε(aε)

(
− ∂v̄εi/∂ν + ∂ūεi/∂ν

)
(v̄εi − ūεi) dx

=
1

2

∫
Ωε(aε)

(
−∇v̄εi +∇ūεi

)
·
(
∇v̄εi −∇ūεi

)
dx = −1

2

∫
Ωε(aε)

∣∣∇v̄εi −∇ūεi ∣∣2 dx.

Then, R′ε(aεi) ≤ ‖∇v̄εi −∇vεi
∥∥
L2(Ωε(aε);R2)

+ ‖∇vεi −∇ūεi
∥∥
L2(Ωε(aε);R2)

, which, in view of Lemma

3.6, converges to 0, as ε→ 0. Moreover, in view of Lemma 3.2 (with n = 1 and h = gbεi − θ
ε
i ) and

the fact that ‖Kε
i ‖L∞(Bε(aεj);R2) ≤ 1/(2dεi − ε) for every j 6= i, we may bound R′′ε (aεi) as follows:

R′′ε (aεi) ≤
∑
j 6=i

∫
Bε(aεj)

(
|Kε

i |2 + |∇ūεi |2
)

dx ≤ π(n− 1)ε2
(

1

(2dεi − ε)2
+ C‖gbεi − θ

ε
i‖2L∞(∂Ω)

)
,

for some constant C > 0 independent of ε. In particular R′′ε (aεi) tends to zero as ε → 0. This
concludes the proof of the proposition. �

Proposition 4.4. Let a = (a1, . . . , an) ∈ Ωn be an n-tuple of distinct points and let aε be a
sequence converging in Ωn to a as ε→ 0. Then, for every i, j = 1, . . . , n, with i 6= j, we have

Gε(aεi , aεj)→
∫

Ω

(Kai +∇vai) · (Kaj +∇vaj ) dx, as ε→ 0, (4.20)

vai being the solution to (3.20) associated with ai.

Proof. For brevity, we define the dεi ’s as in (1.4), associated with the family {aε1, . . . , aεn}, and
the di’s associated with the family {a1, . . . , an}. Fix i, j ∈ {a, . . . , n}, i 6= j. By assumption
dεi → di > 0 and dεj → dj > 0; therefore, without loss of generality, we may take ε < min{di, dj}.
Since the limit points are distinct, in view of Lemma 3.6, we have

χΩε(aε)∇v̄
ε
aεi
→ ∇vai and χΩε(aε)∇v̄

ε
aεj
→ ∇vaj strongly in L2(Ω;R2),

so that ∫
Ωε(aε)

∇v̄εaεi · ∇v̄
ε
aεj

dx→
∫

Ω

∇vai · ∇vaj dx. (4.21)

Setting for brevity d := min{di, dj}, we decompose the domain of integration as

Ωε(a
ε) =

(
Ωd(a

ε
i , a

ε
j) ∪Bd(aεi) ∪Bd(aεj)

)
\

n⋃
k=1

Bε(a
ε
k).

Since Kaεi
→ Kai and Kaεj

→ Kaj a.e. in Ω, by the Dominated Convergence Theorem it is easy

to see that, as ε→ 0, ∫
Ωd(aεi ,a

ε
j)

Kaεi
·Kaεj

dx→
∫

Ωd(ai,aj)

Kai ·Kaj dx (4.22)

and∫
Bd(aεi)

Kaεi
·Kaεj

dx =

∫
Bd(ai)

θ̂ai · θ̂aεj−(aεi−ai)

|x− ai| |x− aεj + (aεi − ai)|
dx→

∫
Bd(ai)

Kai ·Kaj dx. (4.23)

An analogous result holds exchanging the roles of i and j. Eventually, since the limit points
a1, . . . , an are distinct, we have, for k 6= i, j,∫

Bε(aεk)

|Kaεi
·Kaεj

|dx ≤ πε2

(2dεi − ε)(2dεj − ε)
→ 0, as ε→ 0, (4.24)
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and ∫
Bε(aεi)

|Kaεi
·Kaεj

|dx ≤ 2πε

2dεj − ε
→ 0, as ε→ 0 (4.25)

(and again, the same holds swapping the roles of i and j.) Notice that (4.24) and (4.25) are
refined versions of Lemma 3.1(ii). By combining (4.22), (4.23), (4.24), and (4.25) we get∫

Ωε(aε)

Kaεi
·Kaεj

dx→
∫

Ω

Kai ·Kaj dx, as ε→ 0. (4.26)

In order to study the asymptotic behavior as ε → 0 of the L2 product of Kaεi
and ∇v̄εaεj we use

the decomposition v̄εaεj = ûεj+qεj introduced in Remark 2.3. We recall in particular Remark 3.7(i):

ûε admits an H1 extension (not relabeled) that strongly converges to vaj ; thus, integrating by
parts and exploiting again the Dominated Convergence Theorem, in the limit as ε→ 0 we get∫

Ωε(aε)

Kaεi
· ∇ûεj dx =

∫
Ωε(aεi)

Kaεi
· ∇ûεj dx−

∫
⋃
j 6=i Bε(a

ε
j)

Kaεi
· ∇ûεj dx

=

∫
∂Ω

Kaεi
· ν(gbεj − θaεj ) dx+ o(1)

→
∫
∂Ω

Kai · ν(gbj − θaj ) dx =

∫
Ω

Kai · ∇vaj dx,

(4.27)

where we have used the fact that ûεj has vanishing L2 norm in the disks Bε(a
ε
k) as ε → 0; while

Kaεi
is uniformly bounded in every disk Bε(a

ε
k) with k 6= i, and satisfies Kaεi

· ν = 0 on ∂Bε(a
ε
i).

On the other hand, we recall that (∇qεj)⊥ = ∇pεj in the perforated domain, pεj being a solution to
(3.15). Since the solution to (3.15) is unique up to a constant, we choose pεj such that pεj = 0 on

∂Bε(a
ε
i). Therefore, in view of Remark 3.7(ii), we infer that pεj admits a an extension in H1(Ω)

(not relabeled) which is harmonic in every disk Bε(a
ε
k) and such that ‖pεj‖H1(Ω) → 0 as ε → 0.

Therefore, by letting φεi(x) := log(|x− aεi |), we have∫
Ωε(aε)

Kaεi
· ∇qεj dx =

∫
Ωε(aε)

∇φεi · ∇pεj dx =

∫
⋃n
k=1 ∂Bε(a

ε
k)

φεi∇pεj · ν dx

=

∫
⋃n
k=1 ∂Bε(a

ε
k)

φεi∇(pεj − pεj(aεi)) · ν dx =

∫
⋃
k 6=i Bε(a

ε
k)

∇φεi · ∇pεj dx,

(4.28)

and its absolute value can be estimated from above by

(n− 1)
√
πε

di − ε
‖∇pεj‖L2(Ω) → 0.

Similarly, the same limits in (4.27) and (4.28) hold exchanging the roles of i and j. The thesis
(4.20) follows then by putting together (4.21), (4.26), (4.27), and (4.28). �

4.3. The case n > 1 with mini di = 0.

Lemma 4.5. Let a = (a1, . . . , an) ∈ Ωn and let 0 < ε < η be such that for every aj ∈ Ω we have
Bη(aj) ⊂ Ω (i.e. dj ≥ η). Then there exists a positive constant C, independent of ε and η, such
that

F (n)
ε (a) ≥ F (n)

η (a)− C. (4.29)

Proof. We start by comparing the energies Eε and Eη. Recalling (1.2), it is easy to see that

E(n)
ε (a) ≥ E(n)

η (a) +
1

2

∫
∪`i=1A

η
ε (ai)

∣∣∣ n∑
j=1

ω(aj)Kaj +∇v̄εa
∣∣∣2dx = E(n)

η (a) +J1 +J2 +J3 +J4, (4.30)

where we have defined

J1 :=
1

2

∑̀
i=1

∫
Aηε (ai)

|∇v̄εa|2 dx, J3 :=
∑̀
i,j,h=1
h>j

mjmhω(aj)ω(ah)

∫
Aηε (ai)

Kaj ·Kah dx,

J2 :=
1

2

∑̀
i,j=1

m2
jω

2(aj)

∫
Aηε (ai)

|Kaj |2 dx, J4 :=
∑̀
i,j=1

mjω(aj)

∫
Aηε (ai)

Kaj · ∇v̄εadx.
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The term J1 is strictly positive, and we can neglect it. In order to bound J2 from below, we
need to distinguish two cases, according to whether d(ai) is greater or smaller than η, namely
whether or not the annulus Aηε (ai) is contained in Ω. In the former case, ω(ai) = 1 and a simple
computation gives (see (3.1))

1

2

∑̀
j=1

m2
jω

2(aj)

∫
Aηε (ai)

|Kaj |2 dx ≥ 1

2
m2
iω

2(ai)

∫
Aηε (ai)

|Kai |2 dx = πm2
i log(η/ε). (4.31)

In the latter, Aηε (ai) is not completely contained in Ω and therefore, by hypothesis, we know that
ai ∈ ∂Ω and in particular ω(ai) = 2, so that

1

2

∑̀
j=1

m2
jω

2(aj)

∫
Aηε (ai)

|Kaj |2 dx ≥ 2m2
i

∫
Aηε (ai)

|Kai |2 dx > πm2
i log

(min(η, εα)

ε

)
, (4.32)

where εα is given in (1.7) (see (3.2)). Therefore, for η small enough, min(η, εα) = η and (4.32)
provides the same bound as (4.31), hence, summing over i, we obtain

J2 ≥
∑̀
i=1

πm2
i log(η/ε). (4.33)

Recalling the definition (1.3) of F (n)
ε (a), from (4.30) and (4.33) we obtain

F (n)
ε (a) ≥ F (n)

η (a) +
(∑̀
i=1

m2
i − n

)
π log(η/ε) + J3 + J4 ≥ F (n)

η (a) + J3 + J4, (4.34)

since η > ε and
∑`
i=1m

2
i − n ≥ 0. We obtain the thesis (4.29) from (4.34), provided we bound

J3 and J4 from below.
In view of Lemma 3.1(i), we have

J3 =
∑̀
i,j,h=1
h>j

mjmhω(aj)ω(ah)

∫
Aηε (ai)

Kaj ·Kah dx ≥ −8π`n2 ≥ −8πn3. (4.35)

To estimate J4, we start by splitting ∇v̄εa = ∇ûεa + ∇qεa, with ûεa =
∑n
k=1 û

ε
ak

and qεa =∑n
k=1 q

ε
ak

, where ûεak and qεak are introduced in Remark 2.3. Then∑̀
i=1

∫
Aηε (ai)

Kaj · ∇v̄εadx =
∑̀
i=1

∫
Aηε (ai)

Kaj · ∇ûεadx+
∑̀
i=1

∫
Aηε (ai)

Kaj · ∇qεadx

and, by using the Divergence Theorem, (3.4), and the fact that |Kaj (x)| ≤ |x|−1 on ∂Aηε (ai), we
can estimate ∑̀

i=1

∫
Aηε (ai)

Kaj · ∇ûεa dx =
∑̀
i=1

∫
∂Aηε (ai)

Kaj · ν ûεa dx

≥− C̄
∑̀
i=1

∫
∂Aηε (ai)

|Kaj · ν|dx ≥ −2πC̄n,

(4.36)

where C̄ := ‖g −
∑n
k=1 ω(ak)θak‖L∞(∂Ω)

. Moreover

∑̀
i=1

∫
Aηε (ai)

Kaj · ∇qεa dx =
∑̀
i=1

∫
Aηε (ai)

∇φaj · ∇pεa dx,

with pεa =
∑n
i=1 p

ε
ai , where pεai solves (3.15). In particular, by using (3.16), we infer that the L∞

norm of pεa is bounded by Cnε, so that we can estimate∑̀
i=1

∫
Aηε (ai)

Kaj · ∇qεadx ≥ −2πCn2. (4.37)

Combining (4.36) with (4.37) and summing over j, we obtain J4 ≥ −2πn2(C̄ + Cn), which,
together with (4.34) and (4.35), allows us to get estimate (4.29), with constant C = 2πn2

(
C̄ +

(C + 4)n
)
. The lemma is proved. �
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Proposition 4.6. Let a ∈ Ωn and let aε be a sequence of points in Ωn converging to a as ε→ 0.

If min1≤i≤n di = 0 with di defined as in (1.4) then F (n)
ε (aε)→∞, as ε→ 0.

Proof. Our goal is to show that we can bound the energy F (n)
ε (aε) from below by a quantity

that explodes in the limit as ε → 0. This will be achieved by applying the following iterative
procedure, which is performed at ε fixed.

Step 0 (Labeling) We start by relabeling in a more suitable way the limit dislocations and the
approximating ones. According to Definition 2.1, we relabel the limit points so that the first `
(1 ≤ ` ≤ n) are distinct. Moreover, we fix δ > 0 such that the disks Bδ(ai) are pairwise disjoint
for i = 1, . . . , `. For every i = 1, . . . , `, there are mi points in {aε1, . . . , aεn} which converge to
ai. We denote these points by aεi,j , with j = 1, . . . ,mi. For ε small enough we clearly have
aεi,j ∈ Bδ(ai), for every j = 1, . . . ,mi and i = 1, . . . , `.

At each iteration (from Step 1 to Step 3), we will replace the sequence (with respect to ε > 0)
of families (indexed by i ∈ {1, . . . , `}) {aεi,j}

mi
j=1 with a sequence of singletons cεi , still converging

to ai as ε → 0, with multiplicity mi. Additionally, we will define a new core radius η(ε) and in

Step 4 we will compare the energies F (n)
ε (aε) and F (n)

η(ε)(c
ε).

Step 1 (Ordering) Let i ∈ {1, . . . , `} be fixed. According to Definition 2.1, we order the family
{aεi,j}

mi
j=1 so that the first `εi are distinct, and we denote by mε

i,j their multiplicities. Notice that∑`εi
j=1m

ε
i,j = mi. With these positions, we clearly have

F (n)
ε (aε) = F (n)

ε ( aε1,1︸︷︷︸
mε1,1-times

, . . . , aε1,`ε1︸︷︷︸
mε

1,`ε1
-times

, . . . , aεi,1︸︷︷︸
mεi,1-times

, . . . , aε`,1︸︷︷︸
mε`,1-times

, . . . , aε`,`ε`︸︷︷︸
mε
`,`ε
`
-times

). (4.38)

In case `εi > 1, for every j = 1, . . . , `εi , we associate to the distinct points aεi,j the following
quantity: if aεi,j ∈ ∂Ω, we set

s(aεi,j) := min

{ |aεi,j − aεi,k|
2

: k ∈ {1, . . . , `εi} \ {j}
}
,

whereas, if aεi,j ∈ Ω, we set

s(aεi,j) := min

{
d(aεi,j),min

{ |aεi,j − aεi,k|
2

: k ∈ {1, . . . , `εi} \ {j}
}}

.

Observe that, if the limit point ai ∈ Ω, for ε small enough d(aεi,j) is always greater than any
mutual semidistance |aεi,j − aεi,k|/2, for all j, k ∈ {1, . . . , `εi}. Up to reordering the different `εi
points {aεi,1, . . . , aεi,`εi} we can always suppose that

0 < s(aεi,1) ≤ . . . ≤ s(aεi,`i).
In case `εi = 1, namely when all the aεi,j coincide with aεi,1, we set

s(aεi,1) :=

{
0 if ai ∈ Ω,

d(aεi,1) if ai ∈ ∂Ω.
(4.39)

Step 2 (Stop test) If s(aεi,1) = 0 for every i = 1, . . . , `, then we define cεi := aεi,1, η(ε) := ε, and
we go to Step 4. Observe that by (4.39) cεi ∈ ∂Ω if ai ∈ ∂Ω. Otherwise, we define the following
quantity

ŝ = ŝ(ε) := min
{
s(aεi,1) > 0 : i ∈ {1, . . . , `}

}
(4.40)

and we go to Step 3. Observe that the set where the minimum is taken is not empty, hence ŝ is
finite and strictly positive.

Step 3 (Iterative step) We compare ŝ with ε.
If ŝ > ε, we relabel aεk,j by âεk,j and their multiplicities accordingly, set ε̂ := ŝ, and estimate

F (n)
ε (aε) by means of (4.29) proved in Lemma 4.5, with η = ε̂, to obtain

F (n)
ε (aε) ≥ F (n)

ε̂ (. . . , âεk,j︸︷︷︸
m̂εk,j-times

, . . .)− C. (4.41)

If ŝ ≤ ε we distinguish two cases:
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(1) ŝ is equal to |aεi,1 − aεi,2|/2, for some i: we replace the points aεi,1 and aεi,2 (and all those
coinciding with either one of them) by âεi,1, the midpoint between aεi,1 and aεi,2, with
multiplicity m̂ε

i,1 := mε
i,1 +mε

i,2. The replacement is performed simultaneously for all the
indices i that realize the minimum in (4.40). For all the other indices, we simply relabel
aεk,j by âεk,j and their multiplicities accordingly.

(2) ŝ is realized by d(aεi,1), for some i: we replace the point aεi,1 (and all those coinciding
with it) by âεi,1, its projection to the boundary ∂Ω, with multiplicity m̂ε

i,1 := mε
i,1.

Setting ε̂ := ε+ ŝ and recalling (1.2), (1.3), and (4.38), we have

F (n)
ε (aε) ≥ F (n)

ε̂ (. . . , âεk,j︸︷︷︸
m̂εk,j-times

, . . .)− nπ log 2. (4.42)

Notice that ε̂ satisfies the following bound:

ε̂ ≤ max{2ε, ŝ} ≤ max{2ε, s̄}, (4.43)

where s̄ is defined as the maximum value of the s(aεi,j), namely

s̄ = s̄(ε) := max
{
s(aεi,`εi ) > 0 : i ∈ {1, . . . , `}

}
.

We have obtained a new family {âεi,j} and a new radius ε̂ and we restart the procedure by applying
Step 1 to these new objects.

Notice that the procedure ends after at most n2 iterations. Indeed, when applying Step 3, we
will always fall into case (1) after at most n iterations, and then the number of distinct points
will decrease when we apply (1). In conclusion, since the number of distinct points is at most n,
we will reach the target situation after at most n2 iterations of Step 3.

Step 4 (Estimates and conclusion) By combining the chain of inequalities obtained by ap-
plying Step 3 k(≤ n2) times, estimates (4.42) and (4.41) give

F (n)
ε (aε) ≥ F (n)

η(ε)( cε1︸︷︷︸
m1-times

, . . . , cε`︸︷︷︸
m`-times

)− k(C + nπ log 2), (4.44)

where η(ε) is a number depending on ε obtained after k iterations of the procedure that defines
ε̂ in Step 3. Let us estimate η(ε). At every iteration, the value s̄ can increase, but it is easy to
see that it cannot grow lager than its double. Therefore, after k iterations of Step 3, by (4.43),
we have

η(ε) ≤ 2k max{ε, s̄} ≤ 2n
2

max{ε, s̄}.
Since s̄ tends to 0 as ε→ 0, we have η(ε)→ 0 as ε→ 0.

We now claim that the right-hand side of (4.44) tends to +∞ as ε → 0. Similarly to (4.18),
we write the energy as the sum of three contributions:

F (n)
η(ε)( cε1︸︷︷︸

m1-times

, . . . , cε`︸︷︷︸
m`-times

) =
∑̀
i=1

F (mi)
η(ε) ( cεi︸︷︷︸

mi-times

) +
∑̀
i=1

m2
iRε(cεi) +

∑
i 6=j

mimjGε(cεi , cεj) (4.45)

where, setting ωi := ω(ai) = ω(cεi) (see Step 3), and Kε
i := Kcεi

for brevity,

Rε(cεi) :=
1

2

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

|ωiKε
i +∇v̄εi |2 dx− 1

2

∫
Ωη(ε)(c

ε
i)

|ωiKε
i +∇ūεi |2 dx, (4.46)

and

Gε(cεi , cεj) :=

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

(ωiK
ε
i +∇v̄εi ) · (ωjKε

j +∇v̄εj) dx, (4.47)

ūεi being the solution to (4.4) associated with cεi and v̄εi being as in Remark 2.3 for i = 1, . . . , `
and core radius η(ε).

Fix i ∈ {1, . . . , `}. If ai ∈ Ω, we have

F (mi)
η(ε) ( cεi︸︷︷︸

mi-times

) = m2
iFη(ε)(c

ε
i) +mi(mi − 1)π| log η(ε)| ≥ mi(mi − 1)π| log η(ε)| − C, (4.48)
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where the equality follows from (2.6) and the inequality is a consequence of Proposition 4.1. If
instead ai ∈ ∂Ω, by using (2.6) again and (4.11), we have

F (mi)
η(ε) ( cεi︸︷︷︸

mi-times

) ≥ C1m
2
i | log(max{η(ε), d(cεi)})|+mi(mi − 1)π| log η(ε)|+ C2m

2
i

(the constants C1 and C2 are those in (4.16)), and, since d(cεi) = 0 as noticed in Step 2, we obtain

F (mi)
η(ε) ( cεi︸︷︷︸

mi-times

) ≥ (C1m
2
i +mi(mi − 1)π)| log η(ε)|+ C2m

2
i . (4.49)

By Lemma 3.8 the function v̄εi can be extended inside any disk Bη(ε)(c
ε
j) with j 6= i; therefore

the remainder (4.46) can be rewritten as Rε(cεi) = R′ε(cεi)−R′′ε (cεi) with

R′ε(cεi) :=
1

2

∫
Ωη(ε)(c

ε
i)

|ωiKε
i +∇v̄εi |2dx− 1

2

∫
Ωη(ε)(c

ε
i)

|ωiKε
i +∇ūεi |2dx

and

R′′ε (cεi) :=
1

2

∑
j 6=i

∫
Bη(ε)(c

ε
j)

|ωiKε
i +∇v̄εi |2dx.

Using the minimality of ūεi in Ωη(ε)(c
ε
i) it turns out that R′ε(cεi) ≥ 0. Using that |Kε

i | ≤ 1/η(ε) in
Bη(ε)(c

ε
j) for every j 6= i and Lemma 3.8 we obtain

Rε(cεi) ≥ −R′′ε (cεi) ≥ −
1

2

∑
j 6=i

∫
Bη(ε)(c

ε
j)

|ωiKε
i |2dx− 1

2

∑
j 6=i

∫
Bη(ε)(c

ε
j)

|∇v̄εi |2dx ≥ −C. (4.50)

To estimate the interaction term (4.47), fix also j ∈ {1, . . . , `} \ {i}. Then, we can write
Gε(cεi , cεj) = G′ε(cεi , cεj) + G′′ε (cεi , c

ε
j) + G′′′ε (cεi , c

ε
j) with

G′ε(cεi , cεj) := ωiωj

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

Kε
i ·Kε

j dx, (4.51a)

G′′ε (cεi , c
ε
j) := ωj

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

∇v̄εi ·Kε
j dx+ ωi

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

∇v̄εj ·Kε
i dx, (4.51b)

G′′′ε (cεi , c
ε
j) :=

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

∇v̄εi · ∇v̄εj dx. (4.51c)

Thanks to Lemma 3.1(i), the functional G′ε in (4.51a) is uniformly bounded from below by a
constant. To estimate G′′ε and G′′′ε we recall the decomposition v̄εk = ûεk + qεk and the function pεk,
solution to (3.15), that we introduced in Remark 2.3, where k = i or k = j. Here the functions ûεk
and qεk are introduced in Remark 2.3 with (aε1, . . . , a

ε
n) replaced by (cε1, . . . , c

ε
`), and the Dirichlet

boundary condition for ûεk given by gbεk − ωkθ
ε
k on ∂Ω. Therefore, we can estimate (4.51c) as

follows

G′′′ε (cεi , c
ε
j) ≤

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

(
|∇ûεi |2 + |∇ûεj |2 + |∇qεi |2 + |∇qεj |2

)
dx

and since, the gradient of qεk coincides in modulus with the gradient of pεk, by (3.5) and (3.17) we
can bound G′′′ε (cεi , c

ε
j) from below. The functional in (4.51b) is the most delicate to treat: if both

ai and aj are in Ω, G′′ε (cεi , c
ε
j) is bounded below by a constant (notice that in this case we could

have applied Proposition 4.4 to Gε(cεi , cεj) itself and we would have concluded). In the general
case, by means of the above-mentioned decomposition, (4.51b) reads

G′′ε (cεi , c
ε
j) = ωj

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

∇ûεi ·Kε
j dx+ ωi

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

∇ûεj ·Kε
i dx

+ ωj

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

∇qεi ·Kε
j dx+ ωi

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

∇qεj ·Kε
i dx.

(4.52)

We first deal with the last two terms, involving the gradients of qεi and qεj : from Hölder’s inequality,
recalling that the gradient of qεk coincides in modulus with the gradient of pεk, by (3.17) and (3.1)
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we conclude that these terms are bounded. To estimate the first two terms in (4.52), we use
Young’s inequality, (3.5) and (3.1) to obtain

ωj

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

∇ûεi ·Kε
j dx+ ωi

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

∇ûεj ·Kε
i dx

≤ 1

2λ

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

(ωj |∇ûεi |2 + ωi|∇ûεj |2) dx+
λ

2

∫
Ωη(ε)(c

ε
1,...,c

ε
`)

(ωi|Kε
i |2 + ωj |Kε

j |2) dx

≤ C

λ

(
‖gbεi − ωiθ

ε
i‖2H1/2(∂Ω) + ‖gbεj − ωjθ

ε
j‖2H1/2(∂Ω)

)
+ 2πλ| log(η(ε))|+ 2πλ log(diam Ω),

where C is a positive constant independent of ε and λ > 0 is an arbitrary constant that will be
chosen later. Finally, we can control the term Gε(cεi , cεj) as

Gε(cεi , cεj) ≥ −2πλ| log(η(ε))| − Cij (4.53)

where all the terms independent of ε have been included in the constant Cij .
We can classify each point ai according to whether it belongs to

1. the interior of Ω, with multiplicity mi = 1;
2. the interior of Ω, with multiplicity mi > 1;
3. the boundary ∂Ω.

For k = 1, 2, 3 we denote by Ik the set of indices corresponding to those points cεi → ai belonging
to the k-th category. Therefore, combining (4.48), (4.49), (4.50), and (4.53), summing over i and
j, we obtain the following lower bound for the energy (4.45):

F (n)
η(ε)( cε1︸︷︷︸

m1-times

, . . . , cε`︸︷︷︸
m`-times

) ≥ π(CF − λCG)| log η(ε)|+ C,

where
CF :=

∑
i∈I2∪I3

mi(mi − 1) +
∑
i∈I3

C1m
2
i , CG := 2n2,

and C is a constant independent of ε. The assumption min1≤i≤n di = 0 guarantees that CF > 0,
since in this case either I2 6= ∅ or I3 6= ∅. Therefore, choosing λ in (4.53) so that 0 < λ < CF/CG ,
we obtain that the right-hand side of (4.44) tends to +∞ as ε→ 0. The proposition is proved. �

4.4. Proofs of Theorem 1.1 and of Corollary 1.2. We combine the previous results to prove
the main results in the case of n dislocations.

Proof of Theorem 1.1. By (4.18), combining Propositions 4.1 and 4.2 with Propositions 4.3, 4.4,

and 4.6 yields the continuous convergence of F (n)
ε to F (n). The continuity of F follows from

the relationship between continuous convergence and Γ-convergence (see [8, Remark 4.9]), which
implies that F (n)(a) tends to +∞ as either one of the ai’s approaches the boundary or any
two ai and aj (with i 6= j) become arbitrarily close. Therefore F (n) is minimized by n-tuples
a = (a1, . . . , an) of distinct points in Ωn. �

Proof of Corollary 1.2. Recalling definition (1.4), let δ > 0 and let

Ωδ,n := {(x1, . . . , xn) ∈ Ωn : di > δ ∀i = 1, . . . , n}.

The energy functional E(n)
ε is continuous over Ωδ,n, for every ε ∈ (0, δ). Indeed, given two

different configurations of dislocations a′ and a′′, it is possible to construct a diffeomorphism Φ
that maps Ωε(a

′) into Ωε(a
′′), keeps the boundary ∂Ω fixed, and satisfies ‖DΦ − I‖L∞(Ω;R2×2),

‖ detDΦ− 1‖L∞(Ω) = o(|a′ − a′′|). This implies that E(n)
ε (a′) = E(n)

ε (a′′) + o(|a′ − a′′|).
Fix now ε > 0 and k ∈ N and let aε,k be such that

inf
Ωn
F (n)
ε ≤ F (n)

ε (aε,k) ≤ inf
Ωn
F (n)
ε + 1/k. (4.54)

Without loss of generality, we can assume that the whole sequence aε,k converges to some aε ∈ Ωn,
as k → ∞, and satisfies |aε,k − aε| < 1/k. We claim that there exist ε > 0 and δ > 0 such that
(defining dεi ’s as in (1.4), associated with the point aε)

dε := min
i
dεi > δ ∀ ε ∈ (0, ε). (4.55)

Assume by contradiction that there exists a subsequence of ε (not relabeled) such that dε → 0
as ε → 0. Let kε be a sequence of natural numbers, increasing as ε goes to zero, and let a be
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a cluster point of the family {aε,kε}ε. In view of Theorem 1.1, thanks to [8, Corollary 7.20], we

infer that a is a minimizer of the functional F (n). By the triangle inequality, we get

min
i
di ≤ dε + |aε − aε,kε |+ |aε,kε − a| < dε +

1

kε
+ o(ε)→ 0,

which implies that there exists an index i such that either ai ∈ ∂Ω or ai = aj for some i 6= j, in
contradiction with Theorem 1.1.

Let ε0 := min{ε, δ} and ε ∈ (0, ε0). In view of (4.55), the minimizing sequence {aε,k}k lies in
the set {(x1, . . . , xn) ∈ Ωn : di > δ ∀i = 1, . . . , n}. Therefore, by (4.54), we conclude that

inf
Ωn
F (n)
ε = lim

k→∞
F (n)
ε (aε,k) = F (n)

ε (aε),

namely aε is a minimizer of F (n)
ε made of n distinct points each of which is at distance at least δ

from the boundary. Eventually, again by [8, Corollary 7.20], we infer that, up to a subsequence
(not relabeled), aε converges to a minimizer of F (n) so that Fε(aε)(n) → F (n)(a) as ε→ 0. �

5. Plots of the limiting energy

We plot here the limiting energy F (n)
ε of (1.3) in the special case n = 1 and Ω the unit disk

centered at the origin O for two different boundary conditions. In view of Corollary 1.2, for a

fixed ε > 0 small enough, the minima of F (1)
ε are close to those of F (1), therefore, by (1.3), the

energy landscape provided by F (1) is a good approximation of that of E(1)
ε .

The two different boundary conditions that we consider are f1 = 1 on ∂Ω, and f2 = 2 on
∂Ω ∩ {x > 0} and f2 = 0 on ∂Ω ∩ {x < 0}; the choices that we make for the numerics are

g1 = θO and g2 =


2θO in the first quadrant,

π in the second and third quadrants,

2θO − 2π in the fourth quadrant.

Figure 2. To the left, the functional F (1) associated with g1; to the right, the
functional F (1) associated with g2. Both are top views.

From Figure 2 one can deduce that the energy profile associated with f1 is radially symmetric
and has a minimum in the center. The one for f2 is no longer radially symmetric, but symmetric
with respect to the y axis and has a minimum in the interior of Ω which is located where f2 is
the largest (by symmetry, it is located along the x-axis, at about x = 0.65).

For n ≥ 2, we consider Ω the unit disk centered at the origin, f (n) = n on ∂Ω, and, for
simplicity, we minimize F (n) in a subclass of configurations: the vertices of regular n-gons centered
at the origin (this particular choice is supported by the conjecture in [24]). The optimization
problem becomes (numerically) easy, as it is enough to minimize the energy with respect to the
circumradius of the n-gon, which may vary from 0 to 1.

Let us denote by pn an optimal n-gone of F (n) (unique up to rotations). As it is suggested
by Figure 3, as n increases we observe a decrease of the distance dist (pn, ∂Ω) and of the energy
F (n)(pn) (which is negative). More precisely, we observe the following behaviors (see Figure 4):

dist (pn, ∂Ω) ∼ 1

n
, |F (n)(pn)| ∼ n2 , as n→ +∞ .
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Figure 3. The optimizers of F (n) among the vertices of regular n−gons centered
at the origin for n = 2, 5, 20, from left to right.

Let us mention that the investigation of minima and minimizers of F (n) in the limit as n→ +∞
is the object of our paper [17].

Figure 4. Plot of dist (pn, ∂Ω) (left) and plot of |F (n)(pn)| (right) as functions
of n. Test done for n dislocations, n between 1 and 60.
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