
Priority Programme 1962

Recent Trends and Views on Elliptic Quasi-variational Inequalities

Amal Alphonse, Michael Hintermüller, Carlos N. Rautenberg

Non-smooth and Complementarity-based
Distributed Parameter Systems:
Simulation and Hierarchical Optimization

Preprint Number SPP1962-071

received on September 13, 2018



Edited by
SPP1962 at Weierstrass Institute for Applied Analysis and Stochastics (WIAS)

Leibniz Institute in the Forschungsverbund Berlin e.V.
Mohrenstraße 39, 10117 Berlin, Germany

E-Mail: spp1962@wias-berlin.de

World Wide Web: http://spp1962.wias-berlin.de/

http://spp1962.wias-berlin.de/


Recent trends and views on elliptic
quasi-variational inequalities

Amal Alphonse, Michael Hintermüller, and Carlos N. Rautenberg

Abstract We consider state-of-the-art methods, theoretical limitations, and open
problems in elliptic Quasi-Variational Inequalities (QVIs). This involves the devel-
opment of solution algorithms in function space, existence theory, and the study of
optimization problems with QVI constraints. We address the range of applicability
and theoretical limitations of fixed point and other popular solution algorithms, also
based on the nature of the constraint, e.g., obstacle and gradient-type. For optimiza-
tion problems with QVI constraints, we study novel formulations that capture the
multivalued nature of the solution mapping to the QVI, and generalized differentia-
bility concepts appropriate for such problems.

1 Introduction

Quasi-Variational Inequalities represent a specific subclass of quasi-equilibrium
problems in which non-convexity and non-smoothness are present. They play an
important role in the modelling of complex phenomena in applied sciences, engi-
neering, and economy, where compliancy or other state dependent bound constraints
have to be taken care of. The nonlinear nature of the constraint set challenges the
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derivation of existence results and the design and analysis of associated solution
algorithms.

In the majority of available models, the state dependent constraint is of the form

ψ(Gy)≤Φ(y),

where ψ is a real-valued nonlinear function, G a linear operator, and Φ a nonlinear
operator that is of superposition type or it is defined by the solution mapping of
a nonlinear partial differential equation (PDE). For example, in the case of unilat-
eral constraints, ψ(x) = x and G = id, and for gradient constraints, ψ(x) = |x| and
G = ∇ is the weak gradient. Applications involving these restrictions include, but
are not limited to, the magnetization of superconductors, Maxwell systems, thermo-
hydraulics, image processing, game theory, surface growth of granular (cohension-
less) materials, hydrology, and solid and continuum mechanics. For more details,
we refer the reader to [25, 52, 21, 34, 54, 56, 64, 65] and the monographs [14, 53].

The goal of this paper is to present state-of-the-art results including mathematical
limitations and open questions that arise in the treatment of QVIs. Specific focus
topics involve existence of solutions, development of appropriate solvers together
with some problematic issues found in the literature, optimal control, and directional
differentiability of the QVI solution map.

Due to our aim of keeping the paper compact, we have not been able to include
certain important approaches. In particular, in the case of gradient constraints, the
QVI can be rewritten as a generalized equation. It then follows that these QVIs be-
come a particular instance of a more general problem class; see, e.g., [48, 51]. The
latter approach was pioneered by Kenmochi and collaborators, and further work can
be found in [47, 24, 46, 26]. Also, we have not included the L∞ contraction results
from Hanouzet and Joly which are well documented in [32, 31] and [15]. As we fo-
cus on the infinite dimensional setting in this paper, we have not included recent
finite dimensional solvers associated with KKT-type and augmented Lagrangian
methods; see [50, 49, 22, 35, 23]. In a similar vein, we have avoided discretiza-
tion issues of closed convex sets which are required for consistency of numerical
schemes and are deeply related to the density of smooth functions on the aforemen-
tioned sets; see [43, 41].

The paper is organized as follows. The class of problems under consideration
is described in section 1.1, where the basic functional analytic framework is es-
tablished, and solutions to the QVIs of interest are equivalently described as fixed
points of a specific nonlinear map T . In section 2, we consider some existence re-
sults involving compactness or increasing properties of the map T . Furthermore, we
provide sufficient conditions for both properties and mention open questions con-
cerning both approaches. Section 3 concerns iterative methods for solving QVIs.
We state some results for obstacle, gradient, and more general constraints. Also,
we focus on an unfortunate trend of the QVI literature that intends to extend the
technique of the Lions–Stampacchia existence result to the QVI setting. We show
that in general the approach is rather restrictive and that the assumption of the Lip-
schitz continuity of the projection map K 7→ PK, frequently made, does not hold
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in general. Subsequently, we consider iterations that converge in case of multiple
solutions and regularization approaches of Moreau–Yosida and Gerhardt type. We
finalize the section by addressing drawbacks associated with the simple fixed point
iteration yn = T (yn−1). In section 4, we state optimal control problems with QVI
constraints that take into account the multivalued nature of the solution set. In par-
ticular, utilizing a control reduced form of the problem leads to a formulation in
terms of minimum and maximum solutions to the QVI. A newly established direc-
tional differentiability result for the QVI map is provided in section 5, where the
classical result of Mignot is extended accordingly to the QVI framework.

1.1 The basic setting and problem formulation

We consider V to be a reflexive real Banach space of (equivalence) classes of maps
of the type v : Ω → R for some Lipschitz domain Ω ⊂ RN with N ∈ N and norm
denoted by ‖ · ‖V . Its topological dual is denoted by V ′ and the pairing between V ′

and V is given by 〈·, ·〉. If V is a Hilbert space, then (·, ·) denotes its inner product.
For a sequence {vn} in V , strong and weak convergence to v ∈ V are written as
“vn→ v” and “vn ⇀ v”, respectively.

For a map K : V →W , where W is a Banach space, we say that K is completely
continuous if vn ⇀ v in V implies K(vn)→ K(v) in W . Since V is reflexive, a com-
pletely continuous map is compact; see [71, Chapter II, Lemma 1.1].

Throughout the paper we consider a (possibly nonlinear) operator A : V →V ′ that
is Lipschitz continuous and uniformly monotone, i.e., there exist constants c> 0 and
C > 0 such that for all u,v ∈V ,

‖A(u)−A(v)‖V ′ ≤C‖u− v‖V , (A1)

and
〈A(u)−A(v),u− v〉 ≥ c‖u− v‖r

V , (A2)

for some constant r > 1. If V is a Hilbert space, then r = 2. In addition, we assume
that A(0) = 0.

The typical setting that we consider here is with V :=W 1,p
0 (Ω), with Ω ⊂ RN a

bounded Lipschitz domain, 2≤ p <+∞, and A :=−∆p, the p−Laplacian, given by

〈−∆p(u),v〉 :=
∫

Ω

|∇u|p−2
∇u ·∇v dx, for u,v ∈W 1,p

0 (Ω).

In this case, c = 1 and r = p.
The general problem class under consideration is given as follows.

Problem (PQVI) : Given f ∈V ′,

find y ∈K(y) : 〈A(y)− f ,v− y〉 ≥ 0, ∀v ∈K(y). (PQVI)
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The general structure of v 7→K(v) is given by

K(v) := {w ∈V : ψ(Gw)≤Φ(v)}, (1)

where Φ(v) : Ω → R is a measurable function for each v and “v ≤ w” means that
v(x)≤w(x) for almost all (f.a.a.) x∈Ω , unless stated otherwise. We assume that G∈
L (V,Lp(Ω)d) for some 1 < p < +∞ and d ∈ N, that is, G : V → Lp(Ω)d is linear
and bounded. Additionally, we suppose that ψ : Rd → R is convex. For the sake of
simplicity, we assume that K(v) is always non-empty for each v. The closedness
and convexity of K(v) follow from the assumptions invoked here. Additionally, we
assume that v 7→ max(0,v), and v 7→ min(0,v) are continuous with respect to the
weak and strong topologies of V .

We distinguish at least two notable cases both for V =W 1,p
0 (Ω). If ψ(Gw) = w,

we refer to the problem as the obstacle case. If ψ(x) = |x| and G = ∇ is the weak
gradient so that G : W 1,p

0 (Ω)→ Lp(Ω), we refer to the problem as the gradient case.
We denote the solution set to (PQVI) for a given f ∈V ′ by Q( f ), and note that in

general Q( f ) contains more than one element. It is convenient to characterize Q( f )
as the set of fixed points of a certain map. In this light, consider K⊂V non-empty,
closed and convex. Then for any f ∈ V ′, we define S( f ,K) as the unique solution
to:

Find y ∈K : 〈A(y)− f ,v− y〉 ≥ 0, ∀v ∈K. (2)

Also, for the map v 7→K(v) given as above, we consider

T (v) := S( f ,K(v)). (3)

It then follows that solutions to (PQVI) are equivalently defined as solutions to

T (v) = v.

In general for an operator R, we denote the set of fixed points by Fix(R).

2 Some existence theory

In this section we provide an overview of techniques available to prove existence
of solutions to QVIs and the limitations and caveats associated with the utilized
techniques. We focus on compactness results and ordering approaches. Contraction
methods, however, are left for the section on solution algorithms.
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2.1 Compactness and Mosco convergence

One approach to prove existence of a fixed point of T is based on compactness of
the map T . In particular, since V is reflexive, it is enough to consider the complete
continuity of T , i.e., given vn ⇀ v, then T (vn)→ T (v) in V ; see [71, Chapter II,
Lemma 1.1.]. Then, a suitable fixed point theorem yields existence. Note, however,
that this is directly associated with a notion of set convergence for {K(vn)}, as
introduced by Mosco; see [62].

Definition 1 (MOSCO CONVERGENCE). Let K and Kn, for each n ∈ N, be non-
empty, closed and convex subsets of V . Then the sequence {Kn} is said to converge

to K in the sense of Mosco as n→ ∞, denoted by Kn
M−→ K, if the following two

conditions are fulfilled:

(i) For each w ∈ K, there exists {wn′} such that wn′ ∈ Kn′ for n′ ∈ N′ ⊂ N and
wn′ → w in V .

(ii) If wn ∈Kn and wn ⇀ w in V along a subsequence, then w ∈K.

The importance of Mosco convergence lies in the following continuity result: Let
fn→ f in V ′, then

Kn
M−−→K implies S( fn,Kn)→ S( f ,K) in V.

The proof can be found in [66]. The above fact implies that if vn ⇀ v in V yields
K(vn)

M−−→ K(v), then T : V → V is compact. Using v = 0 in (2), we observe that
T (V ) ⊂ Bc−1‖ f‖V ′

(0;V ), the closed ball in V of radius c−1‖ f‖V ′ and center at 0.
Hence by Schauder’s fixed point theorem, the equation T (y) = y has solutions in V .

The full characterization of Mosco convergence of {K(vn)} based on properties
of Φ ,ψ , and G, is a complex task and to this day, only partial answers are available.
Specifically, condition (i) in Definition 1, commonly referred to as the recovery se-
quence condition, is delicate to check in applications, while (ii) admits the following
simple and general characterization.

Proposition 1. Suppose that Φ : V → Lq(Ω), for some 1 ≤ q ≤ +∞, is completely
continuous, and vn ⇀ v in V . Then (ii) in Definition 1 holds true for Kn = K(vn)
and K = K(v).

Proof. For wn ∈ K(vn), we have ψ(Gwn) ≤ Φ(vn), and if wn ⇀ w in V , it follows
that Gwn ⇀ Gw in Lp(Ω)d . By Mazur’s lemma, there exists zn = ∑

N(n)
k=n α(n)kGwk

where ∑
N(n)
k=n α(n)k = 1 and α(n)k≥ 0 such that zn→Gw in Lp(Ω)d . Since ψ : Rd→

R is convex,

ψ(zn)≤
N(n)

∑
k=n

α(n)kψ(Gwk)≤Φ(vn).

As vn ⇀ v in V , we have Φ(vn)→ Φ(v) in Lq(Ω). Hence, we obtain w ∈ K(v) by
taking the limit above (over some subsequence converging in the pointwise almost
everywhere sense).
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Perhaps the simplest situation in which (i) holds is the obstacle case with Φ : V→
V completely continuous. Let w ≤ Φ(v) be arbitrary and vn ⇀ v in V , and define
wn := min(w,Φ(vn)) so that wn ≤ Φ(wn). Since Φ(vn)→ Φ(v) in V , it follows
that wn→ w in V . Consequently (i) holds true. Note that we assume that V 3 z 7→
min(0,z) ∈ V is continuous. The relaxation of the complete continuity assumption
for Φ is an arduous task that we consider in what follows.

2.1.1 The result of Boccardo and Murat

A typical function space setting for our focus problem (PQVI) is given by V =

W 1,p
0 (Ω) , for 1 < p < +∞, and obstacle-type constraints. As seen above, if

Φ : W 1,p(Ω)→W 1,p(Ω) is completely continuous, then the map T is compact.
This can be relaxed substantially by means of the compactness result of Murat in
[63]. It states that if Fn ⇀ F in H−1(Ω) with Fn ≥ 0 for all n ∈ N, then Fn→ F in
W−1,q(Ω) with q < 2. Here, Fn ≥ 0 refers to 〈Fn,σ〉 ≥ 0 for all σ ∈V with σ ≥ 0.
Moreover, the regularity of ∂Ω can be dropped and the result still remains intact
[19]. In our setting, this result leads to the following useful assertion; see [18, 17].

Theorem 1 (Boccardo-Murat). Suppose that vn ⇀ v in W 1,p
0 (Ω) implies Φ(vn)⇀

Φ(v) in W 1,q(Ω) or W 1,q
0 (Ω) for some q > p. Then K(vn)

M−−→K(v).

We note that counterexamples can be constructed for q = p. In words, the above
result relies on the fact that Φ realizes an increase in regularity and preserves weak
continuity.

Open problems. For QVIs with similar constraint types as considered here but with
fractional order operators A, a result analogous to the one in Theorem 1 appears
unavailable. For this kind of operators, the QVI can be equivalently formulated in
weighted Sobolev spaces, see [4]. In this context, it is an open question whether it
is possible to extend the above result of Boccardo and Murat to weighted Sobolev
spaces W 1,p

0 (Ω ;w) for some w in a Muckenhoupt class.

2.1.2 Gradient and further cases

The cases other than the obstacle one are significantly more difficult, mainly due
to the possible nonlinearity ψ : Rd → R. Here, we consider the setting where V =

W 1,p
0 (Ω) with 1 < p <+∞. The following result is based on [12, 40, 54]

Proposition 2. Let G ∈L (W 1,p
0 (Ω),Lp(Ω)d) for some d ∈ N, and let ψ : Rd → R

be (positive) homogeneous of degree one, i.e., ψ(tx) = tψ(x) for any x∈Rd and t >
0. Suppose that Φ : W 1,p

0 (Ω)→ L∞
η (Ω) ⊂ L∞(Ω) is completely continuous, where

L∞
η (Ω) := {v ∈ L∞(Ω) : v≥ η> 0 a.e.}. Then, we have that

vn ⇀ v in W 1,p
0 (Ω) implies K(vn)

M−−→K(v).
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Proof. First note that by assumption, Φ : W 1,p
0 (Ω) → Lp(Ω) is also completely

continuous. Thus, by Proposition 1 we only need to prove the recovery sequence
part for Mosco convergence. For this purpose and for vn ⇀ v in W 1,p

0 (Ω), define

βn :=
(

1+
‖Φ(vn)−Φ(v)‖L∞

η

)−1

.

If ψ(Gw) ≤ Φ(v), then it follows for wn := βnw that wn → w in W 1,p
0 (Ω) and

ψ(Gwn)≤Φ(vn) (see [40]) which finishes the proof.

We note that the previous result only provides sufficient conditions for Mosco
convergence; this leads to another open problem.

Open problems. Find sufficient and necessary conditions on φn,φ such that

{w ∈W 1,p
0 (Ω) : ψ(Gw)≤ φn} M−−→ {w ∈W 1,p

0 (Ω) : ψ(Gw)≤ φ}.

Similarly, it is an open question whether φn ⇀ φ in W 1,q(Ω) for some q suffices to
guarantee the above Mosco convergence in the gradient case by other means than
embeddings.

2.2 Order approaches

We consider now an approach based on order that was pioneered by Tartar; see
[72] and also [8, Chapter 15, §15.2]. Let (V,H,V ′) be a Gelfand triple of Hilbert
spaces, that is, we have V ↪→ H ↪→ V ′, where the embedding V ↪→ H is dense and
continuous, and H is identified with its topological dual H ′ so that the embedding
H ↪→ V ′ is also dense and continuous. Within this section, (·, ·) denotes the inner
product in H.

We assume that H+ ⊂ H is a convex cone with

H+ = {v ∈ H : (v,y)≥ 0 for all y ∈ H+}.

Based on this, we use the following ordering denoted by “≤”:

x≤ y if and only if y− x ∈ H+.

For x ∈ H, we have the decomposition x = x+− x− ∈ H+−H+ with (x+,x−) = 0
such that x+ denotes the orthogonal projection onto H+ and x− = x− x+ the one
onto H− =−H+. The infimum and supremum of two elements x,y ∈ H are defined
as sup(x,y) := x+(y− x)+ and inf(x,y) := x− (x− y)+ respectively.

The supremum of an arbitrary subset of H that is bounded (in the order) above is
also correctly defined since H is Dedekind complete: A set {xi}i∈J where J is com-
pletely ordered and bounded from above implies that {xi}i∈J is a generalized Cauchy
sequence in H (see [9, Chapter 15, §15.2, Proposition 1]). From this Dedekind com-
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pleteness follows (see [2, Chapter 4, Theorem 4.9 and Corollary 4.10]). This addi-
tionally implies that norm convergence preserves order. Indeed, if zn ≤ yn for each
n ∈ N and zn→ z and yn→ y both in H, then z≤ y.

Finally, we assume that

y ∈V ⇒ y+ ∈V and ∃µ > 0 : ‖y+‖V ≤ µ‖y‖V ,∀y ∈V.

Then the order in H induces one in V ′, as well. In fact, for f ,g ∈V ′, we write f ≤ g
if 〈 f ,φ〉 ≤ 〈g,φ〉 for all φ ∈V+ :=V ∩H+ and define V ′+ := { f ∈V ′ : f ≥ 0}.

The typical example in this framework is given by the Gelfand triple (V,H,V ′) =
(H1

0 (Ω),L2(Ω),H−1(Ω)). Here, H+ = L2(Ω)+, the set of almost everywhere (a.e.)
non-negative functions, and v ≤ w denotes that v(x) ≤ w(x) for almost all (f.a.a.)
x ∈Ω .

In this section, we assume that the operator A : V → V ′ is strictly T-monotone,
i.e.,

〈A(y)−A(z),(y− z)+〉> 0, ∀y,z ∈V : (y− z)+ 6= 0. (A3)

In particular, if A is linear, then the above is equivalent to 〈Ay−,y+〉 ≤ 0 for all
y ∈ V , and we have maximum principles available for A. In addition, consider the
following definition.

Definition 2. A map R : V →V is said to be increasing if for y,z ∈V we have that

y≤ z implies R(y)≤ R(z).

The following general result concerning existence of fixed points for increasing
maps is the fundamental tool to prove existence of solutions to problem (PQVI).

Theorem 2 (Tartar–Birkhoff). Let R : V→V be increasing, and suppose that there
exist y,y ∈V such that

y≤ y, y≤ R(y), and R(y)≤ y.

Then the set Fix(R)∩ [y,y] is non-empty. Furthermore, there exist y1,y2 ∈ Fix(R)∩
[y,y] such that

y ∈ Fix(R)∩ [y,y] ⇒ y ∈ Fix(R)∩ [y1,y2].

The above theorem mainly states that if a map is increasing, has a subsolution y1
and a supersolution y2, then it has a fixed point between (with respect to the order
induced in H) y1 and y2. Moreover, there are minimal and maximal fixed points in
[y1,y2].

For the map T : V → V to be increasing, some assumptions are required on the
structure of K. For this purpose consider the obstacle case and assume that Φ : V →
H is increasing. Also, suppose that fmin ≤ f ≤ fmax for some fmin, fmax ∈ V ′, and
that Φ(A−1 fmin)≥ A−1 fmin. Then, it follows that

y = A−1 fmin and y = A−1 fmax
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are sub- and supersolutions, respectively, of T , and all assumptions of the previous
theorem are satisfied. Hence, defining Aad = {g ∈ V ′ : fmin ≤ g ≤ fmax}, we have
the operators

m : Aad→V and M : Aad→V

that take elements of Aad to minimal and maximal solutions to (PQVI) in the interval
[y,y] = [A−1 fmin,A−1 fmax].

Open problems. Characterize the stability of the maps f 7→m( f ) and f 7→M( f ).
Specifically, if { fn} is in Aad, identify conditions on the sequence { fn} so that

m( fn)→m( f ) and M( fn)→M( f )

in H and in V .

3 Solution methods and algorithms

Next we concentrate on solution methods for problem (PQVI) which are constructive
in the sense that they can also be used to show existence of solutions. We focus
first on contraction results without the aid of T-monotonicity properties of A, i.e.,
assumption (A3). In section 3.2, we focus on some problematic tendencies in the
literature that attempt to generalize the Lions–Stampacchia existence result on VIs
[57] to QVIs. We show that in general, such approaches provide worse results than
a simple change of variables and the direct use of (A1). In section 3.3, we exploit
ordering properties and consider iterations that converge to m( f ) and M( f ) under
appropriate assumptions. Additionally, we consider regularization methods for the
constraint y ∈ K(y) of the Moreau–Yosida and Gerhardt-type in section 3.4. In
the former case, we show how the approach is suitable for Newton-type solvers.
We end this section with considerations of the iteration yn+1 = T (yn) when only
compactness of T is available.

3.1 Contraction results for T

Uniqueness of solutions to (PQVI) is rarely available. However, in some cases it is
possible to obtain that v 7→ S( f ,K(v)) is contractive for a sufficiently small f and
with Φ Lipschitz with sufficiently small Lipschitz constant. The interpretation of
these prerequisites is as follows: If the Lipschitz constant of Φ satisfies LΦ � 1,
then Φ(·) ' constant, and hence it is expected that (PQVI) is close to a variational
inequality and admits a unique solution under such assumptions.
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3.1.1 Obstacle case

We provide first a simple example associated to the obstacle case that arises when
Φ preserves the regularity of the state space (the reason to describe such a simple
case is related to the digression in section 3.2).

In the obstacle case, provided that Φ : V → V is Lipschitz, we can consider the
change of variable z = y−Φ(v). Hence, it is straightforward to prove, via the mono-
tonicity of A, that T satisfies

‖T (v1)−T (v2)‖V ≤
1
c
‖AΦ(v1)−AΦ(v2)‖V ′ ≤

C
c

LΦ‖v1− v2‖V .

Consequently, for
C
c

LΦ < 1,

the map T has a unique fixed point and the iteration yn+1 = T (yn) converges to this
fixed point for any initial y0 ∈V . The extent of the usage of this technique is limited
to the very case described here. Note also that if V = H1

0 (Ω), then the assumptions
here also imply that Φ(v) = 0 on ∂Ω in the sense of the trace.

The case LΦ = 1 may lead to a degenerate situation: Consider Φ(y) = y. Then y∈
K(y) is always satisfied and v≤K(y) implies v−y≤ 0, so that (PQVI) is equivalent
to the problem: Find y ∈ V such that Ay ≤ f in V ′. This implies that A−1g is a
solution to this problem for every g≤ f in V ′.

3.1.2 Gradient and further cases

In other than the obstacle case, contraction results are far more elusive and when
available, the contraction rates depend heavily on the regularity and magnitude of
the data as we see next. The result is a slight generalization of [40, 42].

We consider the case V = W 1,p
0 (Ω) with A : W 1,p

0 (Ω)→W−1,p′(Ω) not neces-
sarily linear, but homogeneous with degree β ≥ 1 , i.e., A(ty) = tβ A(y) for t > 0 and
y ∈W 1,p

0 (Ω), and with monotonicity exponent r ≤ min(2, p) in (A2). We consider
f ∈ Lr′(Ω)⊂W−1,p′(Ω) where 1/r+1/r′ = 1 and 1/p+1/p′ = 1.

Let G ∈ L (W 1,p
0 (Ω),Lp(Ω)d) for some d ∈ N, and ψ : Rd → R such that

ψ(tx) = tψ(x) for t > 0. Many examples fit this setting. For instance G := ∇, the
weak gradient, or G := div, the weak divergence, together with ψ(x) = |x| corre-
sponding to the Euclidian norm in RN or the absolute value respectively. Consider
the map Φ : W 1,p

0 (Ω)→ L∞
ν (Ω) defined as Φ(u) = λ (u)φ where λ is a nonlinear

Lipschitz continuous functional and φ ∈ L∞(Ω).

Theorem 3 ([40]). In the above described setting, we have

‖T (v1)−T (v2)‖W 1,p
0
≤ L( f )‖v1− v2‖W 1,p

0
,

where L( f )→ 0 as ‖ f‖Lr′ → 0.
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Hence, for small data we observe existence of a unique fixed point of T , and thus a
unique solution to (PQVI). A proof is given in [40, Theorem B.1].

Relaxing the hypothesis on the structure of Φ typically rules out contraction
or even Lipschitz continuity. In order to see this, note that if φ1,φ2 ∈ L∞(Ω) and
Ki := {v ∈W 1,p

0 (Ω) : ‖∇v‖RN ≤ φi a.e.} then

‖S( f ,K1)−S( f ,K2)‖W 1,p
0
≤M( f )‖φ1−φ2‖1/r

L∞ (4)

where r is the constant in (A2). That is, the map is only Hölder continuous in gen-
eral; see [70, 40]

Open problems. The extension of the result of Theorem 3 from the rank one case,
Φ(y) = λ (y)φ , to the finite rank case, Φ(y) = λ1(y)φ1 +λ2(y)φ2 + · · ·+λm(y)φm,
is still an open task.

Additionally, improvements (if possible) on the exponent 1/r in (4) have yet to be
found, although the Lipschitz continuity result seems unattainable; see also section
3.2.

3.2 The map K 7→ PK and extensions to Lions–Stampacchia

We restrict ourselves in this section to the Hilbert space setting and describe now a
common misleading approach found in the literature. This unfortunate technique is
based on aiming to extend the theorem of Lions and Stampacchia in [57] to the QVI
framework.

Let i : V → V ′ denote the duality operator, that is, the canonical isomorphism
defined as 〈iu,v〉 := (u,v), and its inverse i−1 := j is the Riesz map for V . Here,
problem (PQVI) can be equivalently written as

Find y ∈K(y) : (y− jHρ(y),v− y)≥ 0, ∀v ∈K(y)

for Hρ(w) = iw−ρ(A(w)− f ) with w ∈V , and any ρ > 0. Then, the existence of a
solution to (PQVI) can be transferred to finding y ∈V satisfying y = Bρ(y) with

Bρ(y) := PK(y)(y−ρ j(A(y)− f ))

for some ρ > 0. Here PK(y) : V →V ⊂K(y) is the projection map, i.e., for any v∈V ,
PK(y)(v) is the unique element in K(y) such that

‖PK(y)(v)− v‖V = inf
w∈K(y)

‖w− v‖.

In the case where Φ(y) = φ for all y, it follows that Bρ is a contraction provided
that 0 < ρ < 2c/C2, where c,C are the monotonicity and Lipschitz constant of A,
respectively, given in (A1) and (A2). In fact, we have



12 A. Alphonse, M. Hintermüller, and C. N. Rautenberg.

‖Bρ(v)−Bρ(w)‖V ≤
√

1−2ρc+ρ2C2‖v−w‖V .

A significant amount of literature on QVIs is based on trying to extend this result to
the quasi-variational setting. This approach relies on the hard assumption

‖PK(y)(w)−PK(z)(w)‖V ≤ η‖y− z‖V (5)

for some 0 < η < 1 and all y,z,w in a bounded set in V . This should not be confused
with the non-expansiveness of the map z 7→ PK(y)(z), i.e., we have that ‖PK(y)(z1)−
PK(y)(z2)‖V ≤ ‖z1− z2‖V , for all y,z1,z2 ∈ V . In general, (5) is not valid, and the
only framework (in our setting) where it seems to work is in the obstacle type case
with Φ : V → V . Indeed, in the latter case we see that the projection map can be
rewritten in simpler terms as

PK(y)(w) = Φ(y)+P{z∈V :z≤0}(w−Φ(y)). (6)

Note that it is necessary for this representation that Φ preserves the V regularity.
For example if V = H1

0 (Ω) and Φ maps V into L2(Ω) but not into H1
0 (Ω), this

V -regularity requirement is no longer valid.
In case (6) holds, a solution to the QVI is equivalently a fixed point of the map

Bρ now defined as

Bρ(y) := Φ(y)+P{z∈V :z≤0}((y−ρ j(A(y)− f )−Φ(y)),

which satisfies

‖Bρ(v)−Bρ(w)‖V ≤ (2LΦ +
√

1−2ρc+ρ2C2)‖v−w‖V .

In order for Bρ to be contractive, a first observation is that we need

2LΦ +

√
1−
( c

C

)2
< 1,

which implies that
C
c

LΦ <
1
2
.

This is a much more restrictive and convoluted approach than the one described in
section 3.1.1, where only C

c LΦ < 1 is required! Furthermore, the linear convergence
rate (in case of a contraction) in this case is worse than the one in section 3.1.1,
given by C

c LΦ .
There is a deep and interesting reason why condition (5) fails in a general setting.

The result in question was described by Attouch and Wets in [7, 6, 5], and it involves
continuity properties of K 7→ PK. This is given in the following section.
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3.2.1 The map K 7→ PK

For any closed, non-empty and convex set K in V , we define the distance function
of an element y ∈V to the set K as

d(y,K) := inf
z∈K
‖z− y‖V ,

and for two closed, non-empty, and convex sets K1,K2 we define the excess function
e as

e(K1,K2) := sup
z∈K1

d(z,K2).

For any ρ ≥ 0, the ρ-Hausdorff distance between K1 and K2 is given by

hausρ(K1,K2) := sup(e(Kρ

1 ,K2),(e(K
ρ

2 ,K1)),

where Kρ

i := Ki ∩ρB, i = 1,2, and B is the open unit ball centered at zero. Then,
we have (see [6, Proposition 5.3]) the following.

Theorem 4 (Attouch–Wets). Let V be a Hilbert space and K1,K2 any two closed,
convex, non-empty subsets of V . For y0 ∈V , we have that

‖PK1(y0)−PK2(y0)‖V ≤ ρ
1/2hausρ(K1,K2)

1/2

for ρ := ‖y0‖+d(y0,K1)+d(y0,K2).

The 1/2 exponent in the right hand side expression is optimal, and examples
(even in finite dimensions) can be found where equality holds. Additionally, in Ba-
nach spaces like Lp(Ω) or `p(N), the exponent degrades even further: it is 1/p if
2 < p <+∞ and 1/p′ if 1 < p < 2 where p′ is the Hölder conjugate of p.

In order to understand how this result fully translates into our class of maps
y 7→ K(y), consider the following example. Let Ω = (0,1) and V = {v ∈ H1(Ω) :
v(0) = 0} with norm ‖v‖2

V :=
∫

Ω
|v′|2 dx, where v′ stands for the weak derivative of

v : Ω → R.
Suppose that Ki := {v ∈ V : |∇v| ≤ φi} with φ2 > φ1 > 0 constants. Then, if

vi ∈Ki for i = 1,2, we have∫
Ω

|v′2− v′1|2 dx≥
∫
{v′2≥φ1}

|v′2−φ1|2 dx+
∫
{v′2≤−φ1}

|v′2 +φ1|2 dx. (7)

Define ṽ1(x) =
∫ x

0 F(φ1,v′2(s))ds, where

F(φ1, t) :=
{

min(φ1, t), t ≥ 0,
max(−φ1, t), t < 0.

This implies that ṽ1 is bounded and ṽ′1 = F(φ1,v′2) in the sense of distributions,
so that ṽ1 ∈ H1(Ω), and in particular ṽ1 ∈ V ; note that ṽ1(0) = limx↓0 ṽ1(x) = 0.
Additionally,
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Ω

|v′2− ṽ′1|2 dx =
∫
{v′2≥φ1}

|v′2−φ1|2 dx+
∫
{v′2≤−φ1}

|v′2 +φ1|2 dx,

so by (7), we have that

d(v2,K1)
2 = inf

v1∈K1

∫
Ω

|v′2−v′1|2 dx =
∫
{v′2≥φ1}

|v′2−φ1|2 dx+
∫
{v′2≤−φ1}

|v′2 +φ1|2 dx.

Since −φ2 ≤ v′2 ≤ φ2, for any v2 ∈K2 we have the bound

d(v2,K1)
2 ≤

∫
Ω

|φ2−φ1|2 dx.

Further, if we choose ṽ2(x) := φ2x, we have d(ṽ2,K1)
2 =

∫
Ω
|φ2−φ1|2 dx. Therefore

e(K2,K1) = sup
v2∈K2

d(v2,K1) =

(∫
Ω

|φ2−φ1|2 dx
)1/2

= |φ2−φ1|.

Also, since K1 ⊂K2, d(v1,K2) = 0 for any v1 ∈K1 and hence e(K1,K2) = 0. Thus,
for sufficiently large ρ > 0, we have hausρ(K1,K2) = |φ2− φ1|. This establishes
that if Φ : V → R is Lipschitz, then

‖PK(y)(y0)−PK(w)(y0)‖V ≤ η‖y−w‖1/2
V ,

for some η > 0. Note however, that in this setting it is indeed possible to obtain a
contraction for the map T ; see section 3.1.2.

3.3 Order approaches: solution methods for m( f ) and M( f )

We consider the Gelfand triple (V,H,V ′) and the framework of section 2.2 including
the assumptions on A ∈ L (V,V ′) and Φ . Then the map T is increasing and on
the interval of sub- and supersolutions [y,y] = [A−1 fmin,A−1 fmax], there exists a
minimal and a maximal solution to (PQVI), denoted m( f ) and M( f ), respectively.
We follow a similar approach as in [15].

Consider the iterations

mn+1 := T (mn), m0 := y, and

Mn+1 := T (Mn), M0 := y, for n = 0,1, . . .

Since y ≤ T (y), T (y) ≤ y, and y ≤ y, the fact that T is increasing implies that
mn ≤ mn+1 and Mn+1 ≤Mn, and additionally mn,Mn ∈ [y,y].

It can be proven than {mn} and {Mn} are Cauchy sequences in H, and since they
are also bounded in V , we obtain

mn ↑ m∗, Mn ↓M∗, in H, and mn ⇀ m∗, Mn ⇀ M∗, in V.
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Note that M∗ ≤Φ(Mn−1) for all n ∈ N so that

c‖Mn−M∗‖2
V ≤ 〈AMn−AM∗,Mn−M∗〉 ≤ 〈 f −AM∗,Mn−M∗〉

by the fact that Mn = S( f ,K(Mn−1)), and hence Mn→M∗ in V . Further, provided
that Φ : H→H is continuous, it is not hard to prove that M∗ is a solution to (PQVI):
from M∗ ≤Φ(Mn−1), we have that M∗ ≤Φ(M∗), and for any v≤Φ(M∗), we have
v≤Φ(Mn−1) for any n ∈ N. Hence,

〈AM∗− f ,v−M∗〉= lim
n→∞
〈AMn− f ,v−Mn〉 ≥ 0,

i.e., M∗ = S( f ,K(M∗)). Since M( f ) is the maximum solution to (PQVI) on [y,y],
M∗ ≤ M( f ). Further, since M( f ) ≤ y, by repeated iteration of T on the previous
inequality we have that M( f )≤M∗, i.e., M( f ) = M∗.

In order to prove that m∗ = m( f ), additional assumptions are required. Let
Φ : V →V be completely continuous. Then vn := min(m∗,Φ(mn−1)) satisfies vn→
m∗ in V and vn ≤Φ(mn−1). Hence,

c‖mn− vn‖2
V ≤ 〈Amn−Avn,mn− vn〉 ≤ 〈 f −Avn,mn− vn〉,

where we have used that mn = S( f ,K(mn−1)). Thus, mn → m∗ in V . From mn ≤
Φ(mn−1), and since strong convergence in H preserves order, we have m∗ ≤Φ(m∗).
Choose v≤ Φ(m∗) arbitrary and define vn := min(v,Φ(mn−1)), so that vn→ m∗ in
V and vn ≤Φ(mn−1). Then

〈Am∗− f ,v−m∗〉= lim
n→∞
〈Amn− f ,vn−mn〉 ≥ 0.

That is, m∗ is a solution to (PQVI) within [y,y]. Hence, by definition of m( f ), we have
m( f ) ≤ m∗, and from y ≤ m( f ) and the consecutive iteration of T on the previous
inequality, we have m∗ ≤ m( f ), i.e., m∗ = m( f ). Overall, we have the following
result.

Proposition 3. In addition to the assumptions for Φ in section 2.2, suppose that
Φ : V → V is completely continuous. Then mn ↑ m( f ) and Mn ↓ M( f ) in H and
mn→m( f ) and Mn→M( f ) in V .

Open problems. The speed of convergence of {mn} and {Mn} is, in general, slower
than linear. This hinders their applicability when addressing large scale problems,
or when considering optimization problems involving m( f ) and M( f ), as in section
4. It is an open question whether it is possible to accelerate such iterations by
combining them with intermediate steps. Additionally, it is open wether linearly
convergent methods can be designed in general when the solution is non-unique.
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3.4 Regularization methods

3.4.1 Extended Moreau–Yosida and Semismooth Newton

It is convenient to consider regularizations of QVIs by smoothing. The type of reg-
ularization or smoothing that we consider in this section consists of approximating
the QVI in question by a sequence of parameter-dependent PDEs. Regularization
methods are useful for numerical purposes as well as for theoretical efforts. For ex-
ample, they can be used to prove fundamental results such as existence of solutions
as well as to derive stationarity conditions for optimal control problems with QVI
constraints1, which is a subject of work under preparation by the authors. Moreover,
even for VIs, obtaining mesh independence requires regularization.

Obstacle case
For simplicity, we consider V = H1

0 (Ω) and H = L2(Ω). In this section we
present some results on the Moreau–Yosida regularization of the obstacle type
(PQVI) given by the nonlinear PDE

F(y) := Ay− f +
1
β
(y−Φ(y))+ = 0 (8)

for β > 0. Under suitable assumptions it is expected that as β ↓ 0, the sequence of
solutions y∗

β
converges to the solution of (PQVI). In fact, if Φ : V →V is increasing

and completely continuous with Φ(0)≥ 0 and f ∈V ′+, then {y∗
βn
} has a subsequence

that converges in V to a solution of (PQVI), for any βn ↓ 0.
Focusing on (8), we consider y0 ∈ Ṽ ⊂V , and the Newton iteration

yk+1 = yk−GF(yk)
−1F(yk), k = 0,1,2, . . . (9)

where GF(y) ∈L (V,V ′) is a (presumably invertible) Newton derivative of F [36],
which is defined to satisfy

lim
h→0

‖F(y+h)−F(y)−GF(y+h)h‖V ′
‖h‖V

= 0.

It is know that (·)+ : Lp(Ω)→ L2(Ω) is Newton differentiable for any p > 2 with
Newton derivative Gmax(y) = Heaviside(y). Suppose that Φ : V → Lq(Ω) is Fréchet
differentiable for some q ≥ p, then we have (see [45, Lemma 8.15]) that GF(y) ∈
L (V,V ′) is given by

GF(y)h = Ah+
1
β

Gmax(y−Φ(y))(I−Φ
′(y))h.

1 Naturally optimality conditions obtained through regularization will not be as strong as those
potentially obtained through using the directional differentiability of the QVI solution mapping,
see section 5.
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Suppose that (χΩ0Φ ′(y)h,h)≤ (χΩ0h,h) for any Ω0 ⊂Ω and for all y,h ∈V . Then
〈GF(y)h,h〉 ≥ c̃‖h‖2

V for some c̃ > 0 so that ‖GF(y)−1‖L (V ′,V ) ≤ 1/c̃ and hence
(9) converges superlinearly to the solution y∗

β
of (8), provided that ‖y0− y∗

β
‖V is

sufficiently small; see [45, 38, 37, 36].
Example on thermoforming. The production of plastic parts is in general done

by thermoforming. In this procedure, a plastic sheet is heated to its pliable temper-
ature and then forced via air pressure (positive or negative) towards a mold, com-
monly made of metal, and involving some cooling mechanism. Such a manufac-
turing process involves several scales: it is used for microfluidic structures, plastic
cups, and large parts in the automotive industry.

We consider the following time-asymptotic behaviour of the thermoforming pro-
cess leading to an elliptic problem. We let a plastic membrane y lie over the domain
Ω , and let the temperature of the membrane be constant (this simplification frees us
from considering changing rheological properties of the heated membrane).

The mathematical problem is then given by: Find (y,Φ ,T ) ∈ V ×V ×W such
that

y≤Φ , 〈Ay− f ,y− v〉 ≤ 0, ∀v ∈V : v≤Φ , (10)
〈kT −∆T,w〉= (g(Φ−u),w) ∀w ∈W, (11)

Φ = Φ0 +LT in V, (12)

where f ∈ H+, k > 0 is a constant, Φ0 ∈V is the desired mold, and L : W →V is a
bounded linear operator such that

for every Ω0 ⊂Ω , if u≤ v a.e. on Ω0 then Lu≤ Lv a.e. on Ω0,

and g : R → R is decreasing with g(0) = M > 0 a constant, 0 ≤ g ≤ M and g′

bounded.
The above problem can be equivalently formulated as problem (PQVI) where

Φ : W →V is defined as follows. Let v ∈W and consider the problem: Find φ ∈V
such that

〈kT −∆T,w〉= (g(φ − v),w) ∀w ∈W, (13)
φ = Φ0 +LT in V. (14)

We define Φ(v) = φ .
In Figure 1, we see the membrane y, the obstacle Φ(y), the coincidence set,

and the difference Φ(y)−Φ0, all computed with the semismooth Newton method
described above for β sufficiently large (full details of the analysis and numerical
implementation of the models presented here can be found in section 6 of [3]).
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(a) Final mould Φ(y) (b) Difference Φ(y)−Φ0

(c) Membrane y (d) Coincidence set {y=Φ(y)} (in red)

Fig. 1: Results for the thermoforming example

Gradient case
We consider here V =W 1,p

0 (Ω) and H = L2(Ω). The type of regularization used
in (8) is not amenable for direct application in the gradient case. In fact, provided A
is symmetric, one can consider the minimization problem

min
y∈V

1
2
〈Ay,y〉−〈 f ,y〉+ 1

β

∥∥(|∇y|−Φ(y))+
∥∥2

H (15)

associated to the QVI with the gradient constraint. In connection with (15), it was
proven in [40, Theorem 3.2] that there is a sequence of β such that the associ-
ated solutions to the penalized minimization problems converge to the solution of
the minimization problem miny∈V

1
2 〈Ay,y〉−〈 f ,y〉 subject to |∇y| ≤Φ(y) a.e in Ω ,

which is not in general a solution of (PQVI). This fact is in sharp contrast to the VI
setting: in fact, if Φ(y) is replaced by Φ(w) in (15) for some w ∈V , then the prob-
lem is suitable for a semismooth Newton approach and the sequence of solutions
{yβ (w)}β converges, as β ↓ 0, in V to y∗ = S( f ,K(w)). In this case, we have that
yβ (w) ∈V satisfies
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F(y) := 〈A(y),v〉−〈 f ,v〉+ 1
β
((|∇y|−Φ(w))+,q(·)∇v) = 0

q(x) ∈


∇y
|∇y| (x), if |∇y(x)|> 0

B̄1(0)N , otherwise,
for all v ∈V,


(16)

where B̄1(0)N denotes the closed unit ball in RN .
The application of the semismooth Newton method for the resolution of F(y) = 0

in this case has several subtleties. Specifically, the existence of a Newton derivative
of the map y 7→P(y) :=−divq(·)T((|∇y|−Φ(w))+ requires a delicate interplay of
the domain and image spaces. In contrast to (·)+ : Lp(Ω)→ L2(Ω), which is New-
ton differentiable for any p > 2, the aforementioned map is Newton differentiable
when considered as P : W 1,p

0 (Ω)→W−1,s(Ω), with 3≤ 3s≤ p < ∞; see [40].

3.5 Gerhardt-type regularization for the gradient case

For simplicity we consider the gradient case where A =−∆ is simply the Laplacian.
We briefly discuss here an extension of a technique introduced by Gerhardt [30]
which was developed by Rodrigues, Santos and collaborators in a series of papers;
see [68, 61, 10, 11].

One way to regularize problem (PQVI) in the case described above is through the
PDE

−∇ · (gε(|∇y|2−Φ
2(y))∇y)− f = 0 (17)

where gε : R→R is a bounded non-decreasing function which is twice continuously
differentiable with

gε(t) =


1 : t ≤ 0,
et/ε : ε ≤ t ≤ 1

ε
− ε,

e1/ε2
: t ≥ 1

ε
,

(18)

for ε > 0. Formally, it can be be thought of as an approximation to

g0(t) =

{
1 : t ≤ 0,
∞ : t > 0.

This suggests that in the limiting process (as ε → 0) for the nonlinear term not to
blow up, the argument inside the regularization function needs to be non-positive,
which of course then retrieves the gradient constraint. This type of regularization
was first introduced by Gerhardt [30] with the aim of approximating the solution to
an elliptic minimization problem, and the specific form (18) was used in [61, 67] to
tackle parabolic variational inequality problems. See also [69, 13]. The function gε

satisfies the useful monotonicity property [13]
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(gε(|x|2−a)x−gε(|y|2−a)y)(x− y)≥ 0

which allows one to pass to the limit in the weak formulation of (17) after having
obtained uniform estimates. Rigorous details of this can be found in the cited works.

This type of regularization, though powerful in the theoretical setting, has not
been proven useful yet in the development of solution algorithms. In fact, if we
formulate (17) as F(y) = 0 and try to identify a Newton derivative (as done in the
previous section), we face differentiating the highest order terms of the associated
nonlinear differential operator, a complex task in its own right. Furthermore, the
Newton-type iterations would require, in the case of discretization by finite ele-
ments, a time consuming reassembling of the stiffness matrix in each iteration.

3.6 Drawbacks of the iteration yn+1 = T (yn)

Since problem (2) is suitable for numerical resolution via diverse methods, a first
approach for computing fixed points of T is to consider the iteration

yn+1 = T (yn), n = 0,1, . . . ,

with y0 ∈V given.
The properties of A determine that the sequence {un} is bounded in V and hence

it contains weakly convergent subsequences. Additionally, suppose that sufficient
properties of Φ are available so that K(vn)→K(v) in the sense of Mosco if vn ⇀ v
in V . Then it follows that T : V → V is completely continuous: if vn ⇀ v, then
T (vn)→ T (v) in V .

This seemingly amenable circumstance described above leads to the following
erroneous argument that is common in the literature: “Denote also by {yn} a weakly
convergent subsequence of {yn} with limit y∗. Then taking the limit on both sides of
yn+1 = T (yn), we observe that y∗ is a fixed point of T ”. The mistake clearly lies in
assuming that if ynk ⇀ y∗, then {ynk+1} has the same weak limit. In particular what
this attemps to show is that the compactness properties of T determine that the sets
of weak and strong accumulation points of {yn} (denoted as A ) are identical, and
if y ∈A , then T (y) ∈A .

Since T (A ) ⊂ A , we can try to extend the digression further and study the
possibility of finding a fixed point since we have now a T -invariant set. If A
can be proven to be convex (it is usually not), then T has a fixed point in A via
Schauder’s fixed point. The alternative is to consider the search of a fixed point in
the closed convex hull of A denoted by co A . If T (co A ) ⊂ co T (A ) holds true,
then T (coA )⊂ coA and Schauder’s fixed point theorem can be used to deduce that
T has a fixed point in co A . However, for obstacle type problems, if Φ is concave,
the map T is too (see [15]), so that T (coA )≥ co T (A ).
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4 Optimal control problems

There exist several applications for optimization problems where the QVI is a con-
straint. Then, often solutions of the QVI are controlled in such a way that they are
close to some desired state. These types of problems have been almost completely
neglected in the literature. An instance of such a problem is

Problem (P) :

minimize J(y, f ) over (y, f ) ∈V ×U,

subject to f ∈Uad ⊂U ⊂V ′, and y solves (PQVI),
(P)

where J : V ×U → R is weakly lower semicontinuous and Uad is compact in V ′.
Note that if K(vn)

M−−→K(v) whenever vn ⇀ v in V , then problem (P) has a solution:
Indeed, let {(yn, fn)} be an infimizing sequence. Then, there exists a subsequence,
denoted also as {(yn, fn)}, such that yn ⇀ y∗ in V , fn ⇀ f ∗ in U and fn→ f ∗ in V ′.
We have that yn = S( fn,K(yn)) and y∗ = S( f ∗,K(y∗)) by taking limits on both sides,
and hence limJ(yn, fn) = J(y∗, f ∗) so that (y∗, f ∗) is a minimizer of the problem.

The literature on such problems is scarce; see [1, 20] for exceptions. Further,
it falls short in tackling the real problems in the QVI setting. The solution set of
the QVI is in general not a singleton, and in case of industrial applications it is of
interest to control the entire solution set. In view of this, we have the following open
questions.

Open problems. In the QVI context, it is sometimes important to control the full
solution set Q( f ) on a certain interval of interest [y,y]. We consider the Gelfand
triple setting of section 2.2. A possible formulation for such control problems is as
follows:

Problem (P̃):

minimize J(O, f ) := J1(Tsup(O),Tinf(O), f )

over (O, f ) ∈ 2H ×U,

subject to f ∈Uad,

y ∈O, O = {z ∈V : z solves (PQVI)∩ [y,y]}.

(P̃)

In the above problem we consider J1 : H×H×U → R and for y,y ∈ H we define
the set map Tsup

Tsup(O) :=
{

supz∈O∩[y,y] z, O∩ [y,y] 6= /0 ;
y, otherwise.

The map Tinf defined analogously as

Tinf(O) :=
{

infz∈O∩[y,y] z, O∩ [y,y] 6= /0 ;
y, otherwise.
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As explained in section 2.2, the supremum of an arbitrary subset of H that is
bounded above (in the order) is also correctly defined since H is Dedekind com-
plete, which shows that Tinf and Tsup are well defined in our setting.

Recall the framework of section 2.2 where y and y are respectively sub- and
supersolutions of the map T (·) = S( f ,K(·)). Then the reduced version of problem
(P̃) is formulated in terms of the operators m and M as

minimize J1(M( f ),m( f ), f )

subject to f ∈Uad.
(P̃red)

An important example is when it is required to force the solution set to be a singleton
and the element in question to be close to some desired state yd . Here, a possible
choice for J1 is given by

J1(M( f ),m( f ), f ) =
1
2

∫
Ω

|M( f )−m( f )|2 dx+
σ

2

∫
Ω

|yd−m( f )|2 dx.

To the best of our knowledge, problem (P̃) (and its reduced version) has not been
considered in the literature, and it is a topic of active research by the present au-
thors. Important (and currently still open) subtasks for analyzing the above control
problem are (i) the study of stability properties of the maps f 7→ M( f ),m( f ) and
(ii) their (generalized) differentiability properties. While (i) typically helps to es-
tablish existence of a solution to the optimization problem, (ii) allows for suitable
stationarity conditions characterizing solutions.

5 Differentiability

We consider in this section the differential stability of the solution map associated to
(PQVI), in particular, the mapping taking the source term into the set of the solutions.
Showing that this map is differentiable (in some sense) is not only an interesting
analytical task in its own right but is also of use for optimal control, numerics and
applications.

The corresponding differentiability study for variational inequalities has been
thoroughly investigated [33, 59, 74]. Let us set the scene and outline this theory first
before moving on to QVIs.

Let X be a locally compact topological space which is countable at infinity with
ξ a Radon measure on X . Suppose V ⊂ L2(X ;ξ ) =: H is a Hilbert space with the
embedding continuous and dense and such that |u| ∈ V whenever u ∈ V , and let
A : V → V ′ be now a linear operator satisfying the boundedness, coercivity and T-
monotonicity properties from before, i.e., (A1), (A2), and (A3). The pair (V,A) falls
into the class of positivity preserving coercive forms with respect to L2(X ;ξ ) [58,
16]. We further assume that

V ∩Cc(X)⊂Cc(X) and V ∩Cc(X)⊂V are dense embeddings, (19)
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thus (V,a) is a regular form [27, §1.1] [16, §2]2. This framework allows us to define
the notions of capacity, quasi-continuity and related objects, see [59, §3] and [33,
§3]. Several concrete examples of V and A are given in [59, §3] and [3, §1.2].

Given an obstacle φ ∈V+, we define the set

K := {w ∈V : w≤ φ},

and given a source term f ∈ V ′, we make an abuse of notation here and define by
S : V ′ → V the mapping S( f ) := S( f ,K) with the latter defined in (2). It is use-
ful to introduce the well known notions of the tangent cone and the critical cone
associated to K, given respectively by

TK(y) := {ϕ ∈V : ϕ ≤ 0 q.e. on {y = φ}} and KK(y) := TK(y)∩ [ f −Ay]⊥. (20)

The coincidence set appearing in the tangent cone is of course calculated over X .
This is worth emphasis since for example if V is chosen to be the Sobolev space
H1(Ω) on a bounded Lipschitz domain Ω , then X should be Ω̄ , the closure of the
domain, and not Ω itself; see [3, §1.2].

The following result of Mignot tells us that the mapping S is directionally differ-
entiable.

Theorem 5 (Theorem 3.3 of [59]). Given f ∈V ′ and d ∈V ′, there exists a function
S′( f )(d) ∈V such that

S( f + td) = S( f )+ tS′( f )(d)+o(t) ∀t > 0

holds where t−1o(t)→ 0 as t→ 0+ in V and δ := S′( f )(d) satisfies the VI

δ ∈KK(y) : 〈Aδ −d,v−δ 〉 ≥ 0 ∀v ∈KK(y), where y = S( f ).

The directional derivative δ = δ (d) is positively homogeneous in d.

In [44], the authors essentially extended the results of Mignot to a more general
setting and turned the question of directional differentiability for VIs with more
general constraint sets (than those of obstacle type) into a geometric question of the
polyhedricity of the underlying constraint set, and more details and background can
be found in the cited text.

One says that strict complementarity holds if the critical cone simplifies to the
linear subspace

KK(y) = SK(y) := {ϕ ∈V : ϕ = 0 q.e. on {y = φ}}. (21)

In this case, the VI satisfied by δ simplifies to a variational equality due to the
relaxation of constraints on the test functions for the inequality. It is not hard to

2 A space V under all of the previous assumptions except the second density assumption in (19) is
referred to by Mignot in [59] as a ‘Dirichlet space’ — this is rather inconsistent with the modern
literature [27] where Dirichlet spaces and Dirichlet forms are defined differently (see [27, §1.1]).
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see that, at least formally, strict complementarity arises when the biactive set {Ay−
f = 0}∩ {y− φ = 0} is empty; see [28, 29] for some technical details regarding
biactivity that include its proper definition under low regularity of y and f . Under
strict complementarity, the derivative in Theorem 5 is in fact a Gâteaux derivative
as the next result shows.

Theorem 6 (Theorem 3.4 of [59]). In the context of Theorem 5, if strict comple-
mentarity holds, then the derivative α satisfies

α ∈SK(y) : 〈Aδ −d,v−δ 〉= 0 ∀v ∈SK(y).

In this case, δ = δ (d) is linear in d.

5.1 Directional differentiability for QVIs

To formulate the QVI case, let Φ : V → V be increasing with Φ(0) ≥ 0. Given
f ∈V ′, consider (PQVI) in the obstacle case (i.e., ψ ◦G≡ id):

y ∈K(y) : 〈Ay− f ,v− y〉 ≥ 0 ∀v ∈K(y). (22)

We consider Q : V ′+ ⇒V , the multi-valued solution mapping taking f 7→ y. To show
that this map is directionally differentiable (in some sense), the obvious idea that
springs to mind is to rewrite (22) by transforming the obstacle onto the source term
and then to apply Mignot’s theory. Indeed, the inequality implies that the quantity
ŷ := (id−Φ)y solves

ŷ ∈K0 : 〈A(id−Φ)−1ŷ− f ,φ − ŷ〉 ≥ 0 ∀φ ∈K0,

with K0 := {w ∈V : w≤ 0}; however, in general, the elliptic operator A(id−Φ)−1

is not linear, coercive nor T-monotone, so the VI theory is not applicable and a
different approach is needed.

The idea in [3] is the following: approximate the QVI solution q(t) ∈Q( f + td)
by a sequence qn(t) of solutions of VIs (each of which by definition has a explicit
obstacle), obtain suitable differential formulae for those VIs and then pass to the
limit to (hopefully) obtain an expansion formula relating elements of Q( f + td) to
Q( f ). There are some delicacies in this procedure:

1. derivation of the expansion formulae for the above-mentioned VI iterates
qn(t); they must relate q(t) to a solution y ∈Q( f ), and recursion plays a highly
nonlinear role in the relationship between one iterate and the preceding iterates;

2. obtaining uniform bounds on the directional derivatives; even though the
derivatives satisfy a VI, it requires the handling of a recurrence inequality unless
some regularity is available (see [3, §4.3]);



Recent trends and views on elliptic quasi-variational inequalities 25

3. identifying the limit of the higher-order terms as a higher-order term; this
procedure involves two limits: one as t→ 0+ and one as n→ ∞, and commuta-
tion of limits in general requires an additional uniform convergence.

The main difficulty is indeed the final point above. Although the directional deriva-
tives and higher-order terms of the VI iterates do possess some monotonicity prop-
erties, this information unfortunately does not help as much as one may hope.

The iteration scheme alluded to above requires some further restrictions on the
data f and the direction d that the derivative is taken in, and we shall outline these
in the following. We assume that f ∈ V ′+ and define ȳ ∈ V as the (non-negative)
weak solution of the unconstrained problem Aȳ = f . In a similar fashion to ū, define
q̄(t) ∈ V as the solution of the unconstrained problem with right hand side f + td:
Aq̄(t) = f + td.

Since we are considering the issue of sensitivity of QVIs with (by definition)
implicit obstacles defined through the mapping Φ , it is clear that further regularity
is required of Φ . We introduce these further assumptions below where we state the
main theorem of [3], but first let us define

KK(y)(y,α) := Φ
′(y)(α)+KK(y)(y)

which can be thought as a translated critical cone.3

Theorem 7 (Theorem 1.6 of [3]). Let f ,d ∈V ′+. Given y∈Q( f )∩ [0, ȳ], assume the
following:

(H1) the map Φ : V →V is Hadamard directionally differentiable4

(H2) either

a. Φ : V →V is completely continuous, or
b. V =H1(Ω), X =Ω where Ω is a bounded Lipschitz domain, Φ : L∞

+(Ω)→
L∞
+(Ω) and is concave with Φ(0)≥ c > 0, and f ,d ∈ L∞

+(Ω)5

(H3) the map Φ ′(v) : V →V is completely continuous (for fixed v ∈V )
(H4) for any b ∈V , h : (0,T )→V and λ ∈ [0,1],

‖Φ ′(y+ tb+λh(t))h(t)‖V
t

→ 0 as t→ 0+ if
h(t)

t
→ 0 as t→ 0+

(H5) given T0 ∈ (0,T ) small, if z : (0,T0)→V satisfies z(t)→ y as t→ 0+, then∥∥Φ
′(z(t))b

∥∥
V ≤CΦ ‖b‖V where CΦ <

1
1+ c−1C

for all t ∈ (0,T0), where C and c are from (A1) and (A2).

3 Explicitly this set is {ϕ ∈V : ϕ ≤Φ ′(y)(w) q.e. on {y=Φ(y)} and 〈Ay− f ,ϕ−Φ ′(y)(w)〉= 0}.
4 In fact, (H1) can be weakened significantly by requiring Hadamard differentiability of Φ only at
the point y, i.e., locally, as in assumptions (H4) and (H5).
5 In this case, solutions of the QVI (22) are unique [55].
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Then there exists q(t) ∈Q( f + td)∩ [y, q̄(t)] and α = α(d) ∈V+ such that

q(t) = y+ tα +o(t) ∀t > 0

holds where t−1o(t)→ 0 as t→ 0+ in V and α satisfies the QVI

α ∈KK(y)(y,α) : 〈Aα−d,v−α〉 ≥ 0 ∀v ∈KK(y)(y,α)

The directional derivative α = α(d) is positively homogeneous in d.

It should be emphasized that the assumptions (H4) and (H5) depend on the specific
function y, i.e., these are local conditions. The assumption (H5) implies certain
restrictions: in the case that Φ is linear, it imposes a smallness condition on the
operator norm of Φ which enforces uniqueness of solutions of the QVI. However, it
does not necessarily rule out the multivalued setting in the case of nonlinear Φ .

Open problems. The result in the general multi-valued setting given in Theorem
7 is a differentiability result for a specific selection mechanism that associates to a
function y ∈Q( f ) a function q(t) ∈Q( f + td) (the precise mechanism is expounded
in [3, §3.2.1]). A useful variant of the theorem would be to obtain the result for the
mapping that selects the minimal or maximal solution to the QVI, i.e., if M( f ) ∈
Q( f ) is the maximal solution of the QVI with source term f , is M directionally
differentiable? A difficulty lies in the approximation scheme we use; in the proof of
Theorem 7 we chose q0 = y; instead we could choose q0 = y0 where 0 ≤ y0 ≤ ȳ
which leads to the equality

qn(t) = yn(t)+ tα̂n + ôn(t)

where yn = S( f ,K(yn−1)). The main problem is in dealing with the limiting be-
haviour of the higher-order terms ôn(t), which now depends on the base point yn
which depends on n. This fact constrains us in this direction. For more details see
[3, Remark 3.9].

It is worth restating Theorem 7 in the case when Q : V ′+ ⇒ V is single-valued
(i.e., the QVI problem has a unique solution).

Theorem 8. Suppose Q is single-valued and let the hypotheses of Theorem 7 hold
given f ,d ∈V ′+. There exists a function Q′( f )(d) ∈V+ such that

Q( f + td) = Q( f )+ tQ′( f )(d)+o(t) ∀t > 0

holds where t−1o(t)→ 0 as t → 0+ in V and Q′( f )(d) satisfies the QVI given in
Theorem 7.

Similarly to Theorem 6, under a modification of the notion of strict complemen-
tarity, we obtain a regularity result on the directional derivative. In this setting, strict
complementarity holds if the set KK(y)(y,w) simplifies to
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KK(y)(y,w) = SK(y)(y,w)

:= {ϕ ∈V : ϕ = Φ
′(y)(w) q.e. on {y = Φ(y)}}.

Theorem 9 (Theorem 1.7 of [3]). In the context of Theorem 7, if strict complemen-
tarity holds, then the derivative α satisfies

α ∈SK(y)(y,α) : 〈Aα−d,α− v〉= 0 ∀v ∈SK(y)(y,α).

In this case, if h 7→ Φ ′(v)(h) is linear, α = α(d) satisfies α(c1d1 + c2d2) =
c1α(d1)+ c2α(d2) for constants c1,c2 > 0 and directions d1,d2 ∈V ′+.

Naturally, we recover the results of [59] in the case where Φ is a constant mapping.

Open problems. A focus of ongoing work by the authors is the study of optimal
control problems with QVI constraints of the following type:

Problem (P′) :

minimize
1
2
‖y− yd‖2

H +
λ

2
‖ f‖2

U over (y, f ) ∈V ×U,

subject to f ∈Uad ⊂U ⊂V ′, and y solves (22),
(23)

Here, the data yd is a desired state and λ > 0 is a constant. Under certain as-
sumptions on the mapping Φ and the spaces featured above, existence of an opti-
mal control and state can be shown using relatively standard methods. Obtaining
stationarity conditions that explicitly characterize the optimal control and optimal
state (which would, in particular, allow for a feasible numerical resolution of the
problem) is of prime importance in optimization. Typically, strong stationarity con-
ditions are sought and such conditions in the VI case have been obtained [60] by
making use of the differentiability of the VI solution mapping, and we would like to
extend this result also to the QVI case. A challenge lies in the fact that, in Theorem
7, differentiability (in the QVI setting) is only obtained for non-negative directions.
Hence, problem (23) would contain pointwise a.e. bounds on the control. From [73]
it is however known that obtaining strong stationarity is impossible in the VI case
with such pointwise a.e. control bounds (without further restrictions on the bounds
themselves). This represents a major issue. However, there are other notions of sta-
tionarity (see [39]) that could be obtained.

6 Conclusion

We have considered a variety of key topics and we have highlighted limitations
and open questions associated to QVIs of elliptic type. For the existence results we
focused on compactness approaches and the lack of necessity and sufficiency results
for Mosco convergence in cases other than constraint sets of obstacle type, and
we also tackled some order approaches. For the simple fixed point arguments, we
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provided some positive results, and showed that the popular extension approaches
to Lions–Stampacchia are in the best case scenario unnecessary. Additionally, we
have provided some second-order solution algorithms of the semismooth Newton
type. Finally, we have established some novel optimization problems that take into
account the multivalued nature of the solution set of the QVI and gave an account
of the newly established directional differentiability for the QVI solution map.
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