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OPTIMAL CONTROL OF ELLIPTIC VARIATIONAL INEQUALITIES
WITH BOUNDED AND UNBOUNDED OPERATORS

L. BETZ* AND I. YOUSEPT*

Abstract. This paper examines optimal control problems governed by elliptic variational in-
equalities of the second kind with bounded and unbounded operators. To tackle the bounded case,
we exploit the dual formulation of the governing variational inequality, which turns out to be an
obstacle-type variational inequality featuring a test set with a polyhedric structure. Based thereon,
we are able to prove the directional differentiability of the associated solution operator, which leads to
a strong stationary optimality system. These results correspond to the ones obtained recently by De
los Reyes and Meyer [10]. Differently from their work, our results benefit from the L?-boundedness
property such that we do not require any additional regularity or structural assumption on the un-
known solution and the slack variable. The second part of the paper deals with the unbounded case.
Due to the non-smoothness of the variational inequality and the unboundedness of the governing
elliptic operator, the directional differentiability of the solution operator becomes highly difficult to
handle. Our strategy is to apply the Yosida approximation to the unbounded operator, while the
non-smoothness of the variational inequality is still preserved. Based on the developed strong sta-
tionary result for the bounded case, we are able to derive optimality conditions for the unbounded
case by passing to the limit in the Yosida approximation. Finally, we apply the developed results to
Maxwell-type variational inequalities arising in superconductivity.

Key words. variational inequality of the second kind, directional differentiability, strong sta-
tionarity, dual formulation, Yosida approximation, Maxwell variational inequality

1. Introduction. Deriving first-order necessary optimality conditions for opti-
mal control problems governed by variational inequalities (VIs) is a challenging issue,
which is mainly complicated by the lack of the Gateaux-differentiability of the cor-
responding solution operator. In the past decades, two main strategies have been
developed for the derivation of optimality conditions. The first strategy was intro-
duced by Barbu [2,3], which is based on a regularization approach for the non-smooth
variational inequalities. His method has been applied and extended by many authors
to various problems (see e.g. [9,11,12,14,16,18,19,29]). In all these contributions,
a regularized problem featuring a Géateaux differentiable solution operator is intro-
duced. This allows the derivation of a necessary optimality system after passing to
the limit with respect to the regularization parameter.

Without any use of regularization, Mignot and Puel [23] introduced a direct method
of proving necessary optimality conditions for the optimal control of elliptic obstacle
problems (VIs of the first kind). The main tool used in their direct approach is
based on the conical differentiability property developed by Mignot [22]. We note
that necessary optimality conditions obtained by Mignot and Puel [23] are stronger
than those by Barbu [3] and equivalent to necessary optimality conditions in the
primal form. For this reason, in the literature, they are also called strong stationary
conditions. In general, strong stationary conditions are more difficult to derive than
necessary optimality conditions by [3], since specific characteristics such as ample
controls (cf. [15]) are required. Furthermore, the direct approach mainly relies on
the directional differentiability property of the governing control-to-state mapping.
For H'(Q)-elliptic VIs of the second kind, this property requires some regularity and
structural assumptions on the unknown state and slack variable. See the recent work
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by De los Reyes and Meyer [10] and its extension [6]. Regarding other directional
differentiability and strong stationarity results for non-smooth problems, we refer to
the contributions [1,7,8,17,21].

The first goal of this paper is to analyze optimal control problems governed by elliptic
Vs of the second kind involving bounded operators. The problem we investigate reads
as follows:

min - J(y, f) ®)
st. —By+fcop(y) in L*(Q),

where U is a Hilbert space, so that U <, L*(Q) and J : L*(Q) x U — R is Fréchet
differentiable. The operator B : L*(Q) — L*(Q) is linear, bounded and coercive, i.e.,
there exists a constant o > 0 such that

(Bx,x)2 > a|z||3 Ve e L*().

Furthermore, the non-smooth functional ¢ : L*(Q) — R is defined as follows:

p(v) = / > sl de. (1.1)

with g € L*>°(Q; R") satisfying g; > 0 a.e. in Q foralli =1,...,n.

Our aim is to derive a strong stationary optimality system for (P;) in the spirit of
Mignot and Puel [23]|. To this end, we shall address the directional differentiability of
the control-to-state operator for (P;). The key idea here is to make use of the dual
formulation of the inclusion constraint in (P), which turns out to be an obstacle-type
variational inequality featuring a test set with a polyhedric structure. This property
allows us to derive the directional differentiability of the solution operator, which
leads to a strong stationary optimality system. Let us underline that our results
correspond to the ones established recently in the work [10] on the optimal control of
elliptic VIs of the second kind in the HE(Q2)—H ~1(Q) duality. Differently from [10],
our differentiability result benefits from the L2-boundedness of (Pj) and does not
require any additional regularity or structural assumption on the unknown state and
slack variable.

The second goal of this paper is to investigate an optimal control problem, where the
governing elliptic operator appearing in the constraint is unbounded, namely:

. 1 9 Ky .2
min iy — yal + 5 ull;

st. —vy— Ay +u € dp(y) in L*().

(P)

In the setting of (P), the function y, € L*(Q) denotes the desired state, and & > 0

the control cost term. Moreover, v € L*(Q; Ry ") is a uniformly positive definite

function and A : D(A) <, L?*(Q) — L*(Q) is a linear, unbounded and skew-adjoint
operator. We point out that the governing operator v + A arises e.g. from the time
discretization of first-order hyperbolic wave equations such as linear wave acoustic
equations or Maxwell’s equations. The Maxwell case will be considered in the final
part of the paper. The precise assumptions for the data involved in (P) will be
specified in Section 3.



The optimal control problem (P) features two main difficulties: the non-smooth char-
acter arising from the VI-structure and the unboundedness of the elliptic operator.
In particular, differently from (P), the unboundedness of the operator A makes the
directional differentiability of the control-to-state mapping difficult to tackle. To be
more precise, it is not clear if the difference quotients associated with the state are
uniformly bounded in suitable spaces. For this reason, we reach out to the Yosida
approximation of the unbounded operator A. This gives rise to an optimal control
problem governed by:

—vy— Ay +ucdp(y) inL*Q), uel. (1.2)

Here, A > 0 is a fixed parameter, while Ay is the Yosida approximation of A (see
Definition 3.2). We should underline that the variational inequality structure of the
second kind is preserved in (1.2), and thus the resulting optimal control problem
still has a non-smooth character. This is different from the regularization method
by Barbu [3]. By employing the developed results for (P,), we obtain an optimality
system of strong stationary type for the optimal control problem governed by (1.2).
Then, passing to the limit A N\, 0 in the strong stationary optimality system, we derive
optimality conditions for local minimizers of the original problem (P).

1.1. Preliminaries. Throughout this paper, C' denotes a generic positive con-
stant. For a given Hilbert space V, we use the notation || - ||y and (-,-)y for the
standard norm and the standard scalar product in V', respectively. By V*, we denote
the dual space of V and for the associated duality pairing we write (.,.)y~ . Let X
and Y be two normed linear spaces. If X is continuously embedded in Y, we write
X — Y. Furthermore, if X is compactly embedded in Y, we write X << Y, and

X <i> Y indicates that X is dense in Y. The open ball in X around xz € X with radius
R > 0 is denoted by Bx(x, R). Throughout this paper, € is a bounded subset of R?
and n € Nis fixed. L?(Q) stands for L?(€;R™), (-, )2 is the associated standard scalar
product, and || - ||z denotes the standard norm in L*(Q). Similarly, a bold typeface is
used to indicate an n-dimensional vector function or a Hilbert space of n-dimensional
vector functions. For a convex function F : L*(Q) — R U {oo} we denote by F (x)
the convex subdifferential of F at « € L*(Q), i.e.,

OF (z) = {€ € I*(9) : (€,0— w); < F(v) — F(x) Yve L*(Q)}.
The polar cone of a set M C L*(Q) is denoted by
M°:={z* € L*(Q): (z*,x)2 <0 VYxc M} (1.3)
The radial cone of M C L*(Q2) is defined as
cone M :=N{AC L*(Q): M C A, Ais a convex cone}. (1.4)
For the indicator functional of M C L?(Q), we write Zy;.

2. Strong Stationarity for (P,). We begin by noticing that the inclusion con-
straint of (Py)

~By+ f €0p(y) in L*(Q)
is equivalent to

(By,v—y)z2+¢(®) —¢o(y) > (f,v—y)2 foralwveL*Q). (V)
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LEMMA 2.1. For every f € L*(Q), (VI) admits a unique solution y € L*(2). The
associated solution operator S : L*(Q) — L*(Q), f — vy, fulfills

[S(f1) = S(F)llz2 <1/l f1 = fallz Vi, fa€ LQ(Q)a (2.1)

where a > 0 denotes the coercivity constant of B.

Proof. Since the functional ¢ is convex and continuous, the well-posedness for (VI)
follows from the classical result [20]. Let f,, f, € L*(Q) and y, := S(f,), yy :=
S(f,). Testing the VI for y; with y, and vice versa implies

(B(y1 —¥2),y1 — Y2)2 < (f1 — 2,41 — Y2)2, (2.2)

which by the coercivity of B then gives (2.1). 0
LEMMA 2.2. Let f € L*(Q). Then, the variational inequality (V1) is equivalent to

3i(@)y;(x) = gi() |y, ()], (2.3a)

l7:(@)| < gilz) forae xeQ, Vie{l,..,n}, (2.3b)

with y :== S(f) and j .= —-By+ f.
Proof. Testing in (VI) with 0 and 2v implies that (VI) is equivalent to

(J,v)2 < p(v) forallve LQ(Q), (2.4)

We first focus on the implication (VI)=>(2.3). To this end, let w € L?*() with
w > 0 a.e. in Q. Testing with the vector (w, 0,0, ...,0) in the inequality in (2.4) yields
j1(z) < g1(x) a.e. in Q. By choosing w € L?(Q2) with w < 0 a.e. in  and testing in
the exact same way, we arrive at |7, (z)] < g1(z) a.e. in Q. Completely analogously,
we obtain [j,(z)] < gi(z) a.e. in Q for all 4 € {1,...,n}, i.e., the inequality (2.3b).
From j,(z) € [—g:(x),0:(z)], it follows that j;(x)y,;(z) < gi(z)|y,;(x)| a.e. in Q for
all i € {1,...,n}. By defining for i € {1,...,n} the set M; := {z € Q: j,(z)y,;(z) <
g:(2)|y;(x)|} (up to a set of measure zero), one then has

(G, w)2— ¢ Z/ §i(@)ys (@) — 9:(@)|yi(@)] da.

<0

The identity (2.3a) now follows from the identity in (2.4). This proves (VI)=(2.3).

In order to show the opposite implication, we argue as follows. Let v € L2(Q) be
arbitrary, but fixed. From (2.3b), we deduce j;(z)v;(z) < gi(x)|vi(z)| a.e. in € for
all i € {1,...,n}. This together with (2.3a) immediately implies that (2.4), and thus,
(VI) holds true. The proof is now complete. o
DEFINITION 2.3 (Conjugate functional). For a functional F : L*(Q) — [—o0, 00|, we
define its conjugate functional F* : L*(Q) — [—o0, 0] as

F* () = sup (h,v)2 — F(v).

veL2(Q)

LEMMA 2.4. Let F : L*(Q) — RU {oco} be a positive homogeneous functional, i.e.,
F(\v) = AF(v) for allv € L*(Q) and for all A\ > 0. Then, its conjugate F* coincides
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with the indicator functional of the set K = {¢ € L*(Q) : (¢,v)2 < F(v) Yo €
L*(Q)}, ie., F* = Ik.

Proof. For ¢ € K, it holds that

F@)= sup (,0)2— F(v) <0.
veL?(Q)

Thus, since F'(0) = 0, we obtain that F™* (1) = 0 for all ¢ € K.
If ¢» ¢ K, then there is some w € L*(Q) so that (¢, w)s > F(w). Then, by the
definition, it follows that

F*(y) > sup (¥, yw)2 — F(yw) = Sup (P, w)2 — F(w)] = oo

>0
1]

In the upcoming lemma, we compute the conjugate functional of ¢; see (1.1) for its
definition.

LeEmMMA 2.5 (Conjugate functional of o). For every v € L*(Q), it holds that

. 0, if |¢;(z)| <gi(z) for a.e. x € Q and for all i € {1,...,n},
() =

00, otherwise.

In other words, ¢* = Zx, where
K :={we L*Q) : lwi(x)| < gi(x) for a.e. x € Q and for all i € {1,...,n}}. (2.5)

Proof. According to Lemma 2.4, we only have to show that the set K coincides with
the set M := {¢ € L*(Q) : ((,v)2 < ¢(v) Yv € L*(Q)}. Firstly, let us verify the
inclusion M C K. To this end, consider ¢ € L*(Q) with

(P, v)2 < LZgi(x)|vi(z)| dx Vv e L*(Q).

In the same way as in the proof of Lemma 2.2, we deduce that |¢,;(z)| < g;(z) for a.e. z €
Q and for all i € {1,...,n}, i.e., M C K. Let us now show X C M. To this aim, let
W € K and v € L*(Q). From |¢;(z)| < gi(x) for a.e. € Q and for all i € {1,...,n},

we have
P, (2)vi(z) < gi(x)|v;(z)| for a.e. z € Q and for all ¢ € {1,...,n}.
This proves L C M, in view of the definition of M and ¢. d

2.1. Directional differentiability. As pointed out in the introduction, we shall
establish the directional differentiability of the solution operator S by exploiting the
dual formulation of (VI), which turns out to be an obstacle-type variational inequality
featuring a polyhedric structure. In the following, let f € L?(Q) and we set

y:=S5(f) and j:=-By+f. (2.6)

Since ¢ is convex and continuous, a well known convex analysis result, see e.g. [25],
yields that the variational inequality (VI) is equivalent to

y € dp*(j§) in L*(Q). (2.7)
5



By Lemma 2.5, (2.7) is nothing but
JeEK, (yyv—3)2<0 Vvek. (VIp)
We recall here that the set K is given by
K :={w e L*Q) : lw;(x)| < gi(x) for a.e. z € Q and for all i € {1,...,n}}. (2.8)

Note that K is a convex and closed subset of L?(€2). This set turns out to be poly-
hedric, as we shall show in the upcoming lemma. To this aim, in all what follows, we
use for simplicity the following abbreviations:

Ric(x) := cone(K — ) for all x € K,
L 2 2 (2.9)
] :=={w e L*(Q) : (u,w)2 =0} for all u € L*(Q).

Note that according to (1.4), it holds that Rx(x) = {B(K —x) |5 > 0} for all z € K.

PROPOSITION 2.6 ([4, Proposition 6.35]). Let m € N and M denotes the power set
of {1,...,m}. Furthermore, let I : @ — M be a measurable mapping and

P(z) :={w e R"a;(z) - w < b;(z), i € I(x)} for a.e. x € Q,
with
a; € L(;R™) and b; € L™(Q) Vie{l,...,m}.
Then, the set
P ={ve L*Q)|v(z) € P(z) for a.e. z € Q}

satisfies the polyhedricity condition, i.e., cone(P —x)N[u]t is dense in cone(P — x)N
[u]* for all z € P and all p € cone(P — :c)o.

The next lemma is crucial for proving the directional differentiability of the solution
operator of (VI).

LEMMA 2.7. The set K is polyhedric, i.e., it satisfies

Re(@) N [p]" = Re(z)N[pu]t Vo € K, Vu € Re(x) . (2.10)

where R;C(m)o denotes the polar cone of Ri(x); see (1.3) for its definition.
Proof. We observe that

K={we L*Q): w(x) € K(z) ae. in Q}, (2.11)
with
K(z) ={veR": v, € [-gi(x),g:i(x)] foralli =1,...,n} a.. in Q.

The assertion follows immediately from Proposition 2.6 with I(z) = {1,...,2n} a.e. in
Q, in combination with g € L (Q; R"™). d

Now, let § f € L*(Q) and {7} € Rt with 7, \, 0. For every k € N, we set

yp = S(f +m6f) and jj = —Byy, + f + 76f. (2.12)
6



As an immediate consequence of (2.1), there exists a constant C' > 0, independent of
k, such that

HMH <C VkeN. (2.13)
Tk 2
Hence, there exists a (not relabeled) subsequence of {7} and dy € L*(Q) such that

Y=Y dy in L*(Q) as k — oo. (2.14)
Tk

By this weak convergence together with (2.6) and (2.12), we infer that

e =J By +8f =05 inL3Q) ask oo, (2.15)
Tk
where we have employed the weak sequential continuity of the operator B.

LEMMA 2.8. The weak limits in (2.14) and (2.15) are strong and satisfy
oy € aIc(f)(éj), (2.16)

where

C(f) = {v e L*(Q) : wi(z) <0 if j;(z) = gi(2),
vi() 2 0 if 4,(2) = —0:(2), (2.17)
vi(x)y;(x) =0 ae. inQ, i=1,...,n}.

Proof. The proof is divided into two steps: First, we pass to the limit by employing
the dual formulation (VIp). This will lead to (2.18) below. As a consequence, strong
convergence in (2.14) is also obtained. In the second part of the proof we precisely
characterize the test set in (2.18).

1. Step: We show that

87 € Re(3) N [ylt, (dy,v—685)2 <0 Vv e Re(5) N[yt (2.18)

We follow the ideas by [22] (cf. also [27, Theorem 5.2]). Let k € N be arbitrary, but
fixed. Then, by (VIp), we know that j, € K, and thus

Tk =J ¢ Re(4) VkeN.

Tk

The weak sequential closedness of R (j) together with (2.15) then gives that dj €
Ric(j). Let now 9 € Ri(j) be arbitrary, but fixed. By setting v = vy + j € K with
v > 0in (VIp), we have (y,1)2 < 0. Therefore, y € RK(j)o, by a density argument
employed in (y,)2 <0 for all ¥ € Ry (7). Altogether it holds that

yeRc(§), 6j€Rc(d), (y,84)2<0. (2.19)

We now consider €& € K with (y,&)2 = (y,7)2. In view of (VIp), we arrive at

Ys— Y . -y . -y . .
(=6~ )2 < (=€ —jp)2= (=4 —dr)2 VEkeEN
Tk Tk Tk
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Passing to the limit £ — oo then yields
(6y.€ —J)2 < (¥,0])2, (2.20)

where we have used (2.14)-(2.15) and the strong convergence 5, — j in L*(Q) due to
(2.1). By inserting & = j in the above inequality, we obtain from (2.19) that

55 € Re) N [y]* (2.21)
On the other hand, (2.20) together with the inequality in (2.19) implies that

(6y,()2<0 V¢e(K—j)n[yl*. (2.22)

By (2.9), it follows that (K — ) N [y]* = Ric(j) N [y]~ , which yields

(0y,¢)2 <0 V¢ € Re(4)N[y]L. (2.23)

In view of (2.21), the polyhedricity of K (Lemma 2.7) implies 5 € Rx(5) N [y]*
Ric(7) N [y]*+. Thus, by (2.23), we obtain

Further, we note that the operator B induces a norm on L?(Q), which we denote by
I |z :== +/(B-,-)2. Relying on (2.15) and (2.14) one has

0< —(85,0y)2 = (Boy — 6f,6y)2 < liminf(BYE—Y _ 55 Ye—Y),
k— oo Tk Tk

< limsup(Bu -4df, Yr — y)z <0,
k— o0 Tk Tk

in light of (2.2). Thus, (8j,dy)2 = 0, which combined with (2.21), (2.23) and the
polyhedricity of K gives in turn (2.18). Moreover, from (2.24) we infer that

HMH S 16ylls as k — co.
Tk B

The weak convergence (2.14) and the coercivity of B then gives

¥V —dy in L*(Q) ask — oo.
Tk
By the above convergence together with (2.6) and (2.12), we conclude the strong
convergence in (2.15).
2. Step: Now we prove that

0y € 91c(5)(63),
where C(f) is defined as in (2.17). To this aim, let us note that (2.18) yields

Thus, we only need to verify that Rx(j) N [y]* coincides with the set C(f). In view
of (2.11) and (2.19), [4, Lemma 6.34] implies that

Ri(4) N [y]* = {v e L*(Q) : v(x) € cone(K (x) — j()), v(z) - y(x) =0 a.e. in Q}.
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Moreover, it holds that

cone(K(z) —j(z)) ={w e R" : w; <0 if j,(x) = gi(x),
w; >0 if j,(z) = —gi(z), i=1,..,n} forae x€Q,

and thus,

Ric() N [y)* = {v € L*(Q) : wi(2) <0 if j;(2) = gi(2),
vi(x) >0 if j,(z) = —gi(x), i=1,...,n, (2.25)
(z) -y(x) =0 a.e. in Q}.

]

In particular, it follows that C(f) C Rx(j) N [y]*. Let now v € Rx(j) N [y]* be
arbitrary, but fixed. From (2.3a) we know that

Jji(x) =sgny,;(x)gi(z) a.e. in {x € N:y,;(x) A0} Vi=1,..,n.
Hence, by (2.25) we obtain
vi(2)y;(x) <0ae. inQ Vi=1,..n. (2.26)
Assume now that there exists a set w C 2 with |w| > 0 such that
vj(z)y;(z) <0 ae. in w,

for some j € {1,...,n}. Thus, (2.26) implies that

v(x) y(z) = Zvl(x)yl(x) <0 a.e. in w,

which is in contradiction with v € Ri(5) N [y]* (see (2.25)). Therefore, (2.26) holds
as an equality, which means that v € C(f) (see (2.17)). This completes the proof.

]
LEMMA 2.9. The polar cone C(f)° of (2.17) is given by

Q(f) = {v € L*(Q) : wi(x) =0 if |j;(2)] < gi(),
vi()§:(@) > 0 if [j,(2)] = ga(x) and y,(z) =0 (2.27)
a.e. inQ, i=1,..,n}

Proof. (i) We first show that Q(f) C C(f)°. To this end, let v € Q(f) and &€ € C(f)
be arbitrary, but fixed. For every i € {1,...,n}, we set

Up:=A{z € Q:|j;(2)] <ai(2)},
Vit = {z € Q1j4,(2) = gi(2), y,(2) = 0},
Vi ={z € Q:j;(x) = —0i(2), y;(x) =0},
Wi = {z € Q:j,(2)| = gi(), y;(x) # 0}.
Since j € K, cf. (VIp), we have Q = U; UV;" UV,” UW,. Note that v;(xz) > 0
a.e. in V;" N {g; > 0}, while &;(z) < 0 ae. in V;" N {g; > 0} and &;(x) = 0 a.e. in
9
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V;* n{g; = 0}. Moreover, v;(x) < 0 a.e. in V;” N {g; > 0}, while &(x) > 0 a.e. in
V."Nn{g; >0} and §;(z) =0 a.e. in V" N {g; = 0}. Thus

vi(2)€;(r) <0 ae. in V;TUV. (2.29)

Since y,(x) # 0 a.e. in W;, &;(x) = 0 must hold a.e. in W;, due to the identity in
the definition of C(f), see (2.17). From the above and by employing the definition of
Q(f) we have

(v, & 272/ vi(z der/V o vl(xi?(x) dx+/Wi 'vz(x)@;(’xl dx
<0,

(2.30)
from which v € C(f)° follows.
(ii) Let now z € C(f)° be arbitrary, but fixed and consider ¢ € {1,...,n}. Our goal is
to prove that z € Q(f). To this end, we first show that

zi(x) =0 ae. in {z € Q:|j,(x)] < gi(x)}. (2.31)
We define the sets
Upi={z e Q:j,(2)] = gi(x)} U{z € Q: |5;(2)] < gi(2), zi(x) = 0},
tTi={r e Q:|j,(@)] < gi(z), z;(z) > 0}, (2.32)
Vi ={z e Q:|ji(2)] <gi(x), zi(z) <0}
and the function &, : 2 — R as
€& (z):=0ae inlU;, ¢&(z):=1lae inV;", §&(z):=—-1lae inV,.

We notice Q = U; UV,;T UV, since j € K. Note that the resulting vector valued
function € : @ — R™ is measurable, since U;, V;" and V,~ are measurable (as j;, g;
and z; do so). Further, & satisfies a.e. in

() <0 aein{zeQ:j(z)=gi(x)}

) =
£(x)>0aein{zeQ:j(z)=—giz)},
& (2)y;(z) =0ae in Q (y;(x) =0 ae in V;" UV, due to (2.3a)).

Hence, € € C(f). Then, z € C(f)° leads to

z&sz/ z;i(x der/V‘_z\i(/@é(’@dz.

_1 K <0 =-1

If the set ij+ or V;” has positive measure for some j € {1,...,n}, the term on the
above right-hand side is strictly positive, which is in contradiction with z € C(f)°.
Thus, V;" or V;~ have measure zero for all i € {1,...,n} and in view of (2.32), we can
now deduce (2.31) Vi € {1,...,n}.

It remains to show z;(x)j,(x) > 0 a.e.in {z € Q : |j;(z)| = gi(x)and y,;(x) = 0}.
First we observe that

zi(x)j;(x) >0 ae. in{z € Q:|j;(x)] = gi(z), gi(z) =0andy,(z) =0}  (2.33)
10



is automatically fulfilled. In the following we prove

zi(x) >0 ae. in{rx € Q:j,(x) =gi(z),gi(z) > 0andy,(z) = 0}. (2.34)
Let us point out that (2.34) does not necessarily hold true on the set {x € Q: j,(x) =
gi(z) =0 and y,;(z) = 0}, see (2.33). To prove (2.34), we define

Wii= {0 €0 4,(0) = 0i(x),0i(x) > 0, () = 0, 2,(x) < 0} (2.35)
and £, : 2 = R as

& (z):=—lae inW,;, £/(x):=0ae inQ\W,.
Note that &€ € L*(Q) satisfies:
(x ae. in {zx € Q:j,(z) =gi(x)},
)=

&(z) <0
§i(z) 20 ae. in {z € Q:j;(z) = —gi(x)} Win{j;=—g:} =0),
& (x)y,(z) =0ae inQ (y,(x) =0 ae. in W;).

(

Hence, £ € C(f), and due to z € C(f)° one has

0200220 |, 2ol o
=T

=—1

If the set W, has positive measure for some j € {1,...,n}, the term on the above
right-hand side is strictly positive, which is in contradiction with z € C(f)°. Thus,
W, has measure zero for all ¢ € {1,...,n} and in view of (2.35), it follows that (2.34)
holds true for all ¢ € {1,...,n}. Its counterpart, namely

zi(z) <0 ae. in{zeQ:j,(z)=—gi(z), g;(x) > 0and y,;(z) = 0}, (2.36)
follows by defining

Wi={z €Q:j;(z) = —gi(2), gi(x) > 0, y;(z) = 0, z;(x) > 0},
&(z):=Tae inW;, &(x):=0ae inQ\W;
and arguing as above. The inclusion C(f)° C Q(f) is now given by (2.31), (2.33),
(2.34) and (2.36). This completes the proof. |
We have now all ingredients to prove the (strong) directional differentiability of S.

THEOREM 2.10. The solution operator S : L*(Q) — L*(Q) of (VI) is directionally
differentiable. For all f € L*(Q) and 6f € L*(Q), its directional derivative n :=
S'(f;0F) is the unique solution of the following VI of the first kind

neQ(f), (Bn—6f,v—m)2=0 VoeQ(f), (2.37)

where Q(f) was defined in (2.27).

Proof. Let f,0f € L*(Q) and {r,} € Rt with 7, \, 0. We set y = S(f) and
Yy, = S(f +710f) for all kK € N. According to Lemma 2.8, there is a (not relabeled)
subsequence of {7;,} and dy € L*(Q) such that

Y — Y

—dy in L*(Q) ask — .
Tk

11



We also know from (2.16) that
0y € Lc(5)(—Bdéy +4f). (2.38)

Moreover, in the second part of the proof of Lemma 2.8 we established that C(f) =
Ri(3)N[y]*, where j := —By+ f. Hence, C(f) is a nonempty, convex and closed cone,
see (2.9). Therefore, Zp () is a proper, convex and lower semicontinuous functional,
and so (2.38) is equivalent to

On the other hand, Lemma 2.4 implies that Ig(f) = Tk, where K := {¢ € L*(Q) :

(¢,v)2 <0 Vv € C(f)} = C(f)°. Hence, on account of Lemma 2.9, (2.38) is
equivalent to

—Béy+4df € 8Ig(f)(6y). (2.39)

Thus, dy is the unique solution of (2.37) (see e.g. [13] for the existence and uniqueness

result). Therefore, if we consider another subsequence of the original sequence {73},

Ye—Y
Tk

such that the associated sequence } convergences strongly, then its limit will

be the same dy. Altogether, we conclude
S(f +m0f) —S(f)

Tk

—mn in L*(Q) V7, \0,

where 7 is characterized by (2.37). This completes the proof. 0

REMARK 2.11. The operator S is Hadamard directionally differentiable, since it is
directionally differentiable and Lipschitz continuous, see e.g. [4, Proposition 2.49].

2.2. Strong Stationarity. Exploiting the directional differentiability of the so-
lution operator S, we shall prove a strong stationary optimality system for (Py), i.e.,
optimality conditions which are equivalent to the necessary optimality condition in
primal form (cf. [26]).

THEOREM 2.12. Let @ be a local optimum of (Py) with associated state y. Then
there is a unique adjoint state p € L*(Q) and a unique multiplier p € L*() so that
the following strong stationary optimality system is fulfilled

—By +u € 0p(g), (2.40a)

OyJ(y,u) — B*p+ p =0, (2.40b)
neC(m), (2.40c)

p € Qu), (2.40d)

p+0.J(g, @) =0, (2.40¢)

where C(w) and Q) are defined as in (2.17) and (2.27), respectively.
Proof. Let us introduce the control-reduced objective functional of (P;) by
f:U =R, flu):=J(S(u),u).

As J: L*(Q)xU — R is Fréchet-differentiable and S : L*(Q) — L*(Q) is directionally
differentiable (Theorem 2.10), it follows that f : U — R is directional differentiable

12



(cf. [15, Lemma 3.9]). Its directional derivative at @ in the direction h € U is given by
OyJ (g, w)S'(u; h) + 0, J (g, u)h. Thus, u satisfies the following necessary optimality
condition

9yJ(y,w)S (u;h) + 0, J (g, )h >0 YheU. (2.41)

We define p := -39, J(y,u). By testing (2.37) with 0 and 25’ (u; h), respectively, we
obtain

ol (w; h)||2 < (BS'(a; k), S'(@; h))s = (h,S"(a;h)2 Yh e L*(Q). (2.42)
From (2.41)-(2.42) it follows that

(P, hu-u < cl|0yJ(y,u)llz||hllz VheU,

and so Hahn-Banach’s theorem implies that p € L*(Q). Then, as U < L2 (Q), (2.41)
yields that

dyJ(g,w)S'(w;h) — (p,h)2 >0 Yh e L*(Q), (2.43)

where we also employed that S’(@;-) : L*(Q) — L*(Q) is continuous, due to [4,
Proposition 2.49].
By Theorem 2.10, we have that S’(u; h) € Q(w), and so inserting h € Q(@)° in (2.42)
implies S’(w; h) = 0 for all h € Q(w)°. It follows therefore from (2.43) that

(p,h)2 <0 VheQ(m)® = pe(Qm)°)° =Qu),

since Q(w) is a nonempty closed convex cone (Lemma 2.9).

Let us now set
= —0yJ(y,u) + B*p. (2.44)
It remains to prove that g € C(@). By Theorem 2.10, it holds that
al|S'(w; Bv) —v||3 < (BS'(w; Bv) — Bv, S'(w; Bv) —v)2 <0 VYov € Q(a),

where the first inequality is again a result of the coercivity of B. Thus, S’(u; Bv) = v
for all v € Q(m). Testing in (2.43) with h € BO(@) now gives in turn

(”’a ’0)2 \:’/ 78:11(](@,1])’0 + (B*pa ’0)2 < 0 Vve Q(ﬁ) = JTRS Q(i)o = C(H)a
(2.44)

where we have used Lemma 2.9 and the fact that C(w) is a nonempty closed convex

cone. In conclusion, (2.40c) is valid.

Let us finally show that (2.40) is strong stationary, i.e., it is equivalent to (2.41).

Indeed, this follows from (2.40¢), C(uw) = Q(w)°, (2.37) and (2.40d), which imply
(i, S (w;h))2 <0< (BS'(u;h) — h,p)2 Vhe L*(Q).

Thus, the inequality (2.41) is an immediate result of the above inequality in combi-
nation with (2.40b) and (2.40e). The proof is now complete. O
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REMARK 2.13. Let us compare our results with the ones obtained in [10] for H(2)-
elliptic VIs of the second kind. Firstly, we notice that our set Q(f) corresponds to
the one in [10, Eq. (3.28)]. Moreover, Theorems 2.10 and 2.12 correspond to [10,
Theorems 3.19 and 5.4] with the exception that [10] requires an additional regularity
and structural assumptions on the unknown solution. This is due to the fact that
K is polyhedric in L*(Q), cf. Lemma 2.7, while in [10], the corresponding set {¢ €
H7Y(Q) : (&v) < |lv|]h Yv € HE(Q)} is not polyhedric in H=*(Q) (see the recent
contribution [8]). Thus, additional assumptions have to be imposed in [10] to guarantee
the polyhedricity. We also note that the authors of [10] show only weak directional
differentiability.

3. Optimality system for (P). In this section, we analyze the optimal control
problem (P) involving an unbounded operator:

i Lly - yal + 2 ful?
min — — —
my 3 Y —Yall2 B U

st. —vy— Ay +u € 9p(y).

(P)

We summarize all mathematical assumptions for the data involved in (P):
ASSUMPTION 3.1. For the quantities in (P) we require the following:

1. Q C R? is a bounded Lipschitz domain.
2. v:Q— REEN is a function of class L>(Q;RE ). Moreover, v is uniformly
coercive, in the sense that there exists vy > 0 so that

wlv(z)w > vo|w|? a.e. in Q,Vw € R™.

3. A:D(A) 4 L*(Q) — L*(Q) is a linear, unbounded and skew-adjoint opera-
tor, i.e., D(A*) = D(A) and A* = —A.

4. U is a Hilbert space, so that U <% L2(Q) and U << L2(Q). Moreover,
UCD(A).

5. The desired state yg4 belongs to L*() and k > 0.

As the operator A is skew-adjoint, a standard result implies that A is maximal mono-
tone. For this reason, the Yosida approximation of A is well-defined as follows:

DEFINITION 3.2. For every A > 0, the Yosida approximation of A is given by the
operator Ay : L*(Q) — L*(Q) defined as Ay :== (I — (I + A)™Y).

For convenience of the reader we enumerate here some properties of A which will be
needed throughout this paper:

(Ayv,v)2 >0 Vo€ L*(Q) and VA > 0, (3.1a)
Ay 3% Av in L2(Q), Vv € D(A), (3.1b)
|Ayvl|z < [|Av]lz Yo € D(A) and VA > 0. (3.1c)

PROPOSITION 3.3. Let F : L*(Q) — [0,00) be a convex, lower semicontinuous and
positive homogeneous functional, i.e., F(fw) = BF(w) for all w € L*(Q) and for all
B > 0. Then, for any u € L*(Q) the equation

—vy— Ay+u € IF(y) (3.2)
14



admits a unique solution y € D(A).

Proof. Let A > 0 be fixed and define y, := S (u), where ST : L*() — L?*(Q) is the
solution operator of

—vy — Ay +u € 0F (y).

Note that its existence is due to [13]. Since Sf'(0) = 0, we deduce by the Lipschitz
continuity of S§ : L*(Q) — L*(Q) that ||ly,||2 < L ||u||2, where L > 0 is independent
of A\. Thus, we can extract a weakly convergent subsequence, denoted by the same
symbol such that

yy— 9 in L*(Q) as A \,0. (3.3)
Further, we define j, := —vy, — Ay, +u and j : D(A) — R as
i(v) == =¥, )2 — (§, A"v)2 + (u,v)2. (34)
By Lemma 5.1, (3.1b) and (3.3) we have for all v € D(A)
(Aryrsv)2 = (Y, AXv)2 = (Yo, Ayv — A™0)2 + (Y, A7v)2 = (9, A™0)2,

—0

which together with (3.3) gives
jr(v) = j(w) VveD(A) asA\0. (3.5)
Since 7, € OF(y, ), we have in view of the positive homogeneity of F' the following

{(J',\:y,\)2 = F(y,),

. 9 (3.6)
(Jr,v)2 < F(v) for all v e L*(Q).

Passing to the limit in the inequality in (3.6) gives that j(v) < F(v) for all v € D(A),
due to (3.5). By Hahn-Banach’s theorem we then infer that there exists j € L*(9)

so that
{( j(w) =j(v) forall v € D(A), 57)

7,v)2 < F(v) for all v € L*(Q).
Since A is a maximal monotone operator, there exists a unique y € D(A) such that
Y+ AG+vy—§—u=—j. (3.8)
Combined with the identity in (3.7) and (3.4), this yields for all v € D(A)
(Y- Ay —vy+ 9y +u,v)2 = —(¥g,v)2 — (9, A0)2 + (v, v)2. (3.9)
From the above identity and Assumption 3.1.3 we deduce
(y+ Ay, v)s — (9,v) = (9, Av)2 = — (9, Av)s Vv € D(A). (3.10)
Thus, § € D(A*) = D(A), see e.g. [24]. Relying on D(A) <, L?*(Q) and (3.10), we
arrive at (I + A)(y — ) = 0 in L*(Q), since —(§, Av)z = (Ag,v)2. The maximal
monotonicity of A gives in turn that ¢ = y. Therefore, in view of (3.8),

—vy— Ay +u=j. (3.11)
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By the weak sequential lower semicontinuity of F' and (3.3), the identity in (3.6), the
definition of j, and (3.1a), we further obtain

F(y) < liminf F(y,) = liminf(j,,y,)z
A—0 A—0

= liminf(—vy, — Axy, + U, ¥y)2
A—=0

< limsup(—vy, +u,y,)2
A—0

< (_V’g + ’U/,@)z.

Note that for the last inequality we employed the weak lower semicontinuity of
L*(Q) 3 v = (vv,v)2. In view of (A9, %)z = 0 and (3.11), the above inequality
can be continued as

F(y) <(G,9)2 < F(9), (3.12)

where the last inequality is due to the inequality in (3.7). Hence, 3, Y)2 = F(9).
Thanks to the inequality in (3.7) and in view of (3.11), we can now conclude that
there exists § € D(A) so that —vgy — Ay + u € OF(g). To show the uniqueness, let
Y1,Ys € D(A) be two solutions of (3.2). Testing the VI for y, with y, and viceversa
then gives

(V(Y1 —¥Y2), Y1 — Ya)2 + (A(Yy1 — ¥2), Y1 — Ya)2 <0,
=0

whence y,; = y, follows, by the uniform coercivity of v. This completes the proof. O

Since ¢ satisfies the assumptions of Proposition 3.3 (see (1.1)), the variational in-
equality associated with (P) admits a unique solution. In the following, we denote by
S: L*(Q) — D(A),u — y, the solution operator for

—vy — Ay +u € 0p(y). (3.13)

REMARK 3.4. As in the proof of Lemma 2.1, by employing the fact that A(v,v) =0
for all v € D(A) and the uniform coercivity of v, it can be shown that the solution
operator S is Lipschitz continuous from L*() to L*(Q). Then, due to the compact
embedding U —— L*(Q), the direct method of calculus of variations yields that (P)
admits at least one solution.

Next, for every A > 0, let Sy : L*(Q) — L*(Q) denote the solution operator to
—vy — Ay +u € dp(y). (3.14)

From Assumption 3.1.2 and (3.1a) we deduce that vI + Ay is linear, bounded and
coercive with coercivity constant vy. Therefore, in view of Lemma 2.1, the following
result holds:

LEMMA 3.5. For every u € L*(Q) the equation (3.14) admits a unique solution
y € L*(Q). The associated solution operator Sy : L*(Q) — L*(Q) is Lipschitz
continuous with Lipschitz constant independent of .

LEMMA 3.6. Ifuy — uw in U as A\, 0, then

Sx(uy) = S(u) in L*(Q), as A\, 0.
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Proof. Let {ux}x C U be a fixed sequence such that uy — w in U as A \, 0. Let
A > 0 be arbitrary, but fixed. We define y, := Sx(u)) and y := S(u). Testing (3.13)
with y, and (3.14) with y and adding the resulting inequalities then yields

@Y —yn) ¥ =Yz + (Ay — Ay, ¥ —yy)2 + (ur —u,y —y,)2 <0
The uniform coercivity of v, cf. Assumption 3.1.2, and (3.1a) then give in turn

volly —yallz + (Ay — Axy, y =y )2 + (A (¥ — y2). ¥y — ya)2 < lur —ull2)ly — v, |2
>0

By bringing the second term on the right-hand side and by dividing with ||y — ¥, ||=
(we assume y # vy, ), we then have

wlly = yallz < flux — ullz + [[Ay — Axy|2.
Assumption 3.1.4 and (3.1b) combined with y € D(A) imply the assertion. d

For the rest of this section let @ € U be an arbitrary, but fixed local minimizer of
(P). For a given A > 0, we consider the following optimization problem:

. 1 K 1 B
min 2y~ yald + 5l + 5w —al

st. —vy — Ay +u € 0p(y).

(Px)

We emphasize that (P ) is still a non-smooth problem. Here, the non-smooth variational-
inequality-structure is preserved, while the unbounded operator A is approximated
using the Yosida approximation. In the following, we shall make use of the reduced
cost functionals of (P) and (P)), denoted respectively by

1 K
J:U =R, we o||S(w) = yallz + 5l (3.152)
1 K 1 _

TiU =R wes i) - yalh+ Sluly + 5lu-ali. (315)
PROPOSITION 3.7 (Convergence of the minimizers). Let w € U be a local minimizer
of (P). Then, there exists a sequence {uy}r>o of local minimizers of (P)) such that

uy —>u inlU as AN\0. (3.16)
Moreover,

Sx(uy) — S(a) in L*(Q) as A \, 0. (3.17)

Proof. Let B(w, p) := By(a, p) with some p > 0 be the closed ball of local optimality
of u, i.e.,

J@) < J(u) Yue€ B(u,p). (3.18)
For every A > 0, we consider the following auxiliary optimal control problem:
min 7 (u) }

s.t. u € B(u,p).
17
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The existence of global minimizers for (Pg) follows by standard arguments thanks
to the compactness embedding U << L*(€)) and the Lipschitz continuity of S :
L*(Q) — L*(Q) (Lemma 3.5). In the sequel, for every A > 0, let uy denote a
global minimizer of (P{). As {ux} C B(w,p), we can select a weakly converging
subsequence, which we denote by the same symbol, i.e.,

uy—=u inU as A \0. (3.19)

Note that since B(w,p) is weakly closed, & € B(u,p) follows. By the weak lower
semicontinuity of the squared norm, we arrive at

_ 1. _ 1 - K . 1, _
J(@) + 5o = alfy < 518(@) - yallz + Slaly + 5la - aly  ((3.15) and (3.18))
1 1
< liminf = ||Sx(ux) — ygll2 + EHu>\||2U + ~Jlux —a|?  ((3.19) and Lemma 3.6)
A—0 2 2 2
. 1 K 1 _
< limsup o [[Sx(ux) = yallz + 5 lually + 5 llux — alE
A=0 2 2 2
1
< lim sup 5”8,\(11) —yall3 + g||ﬂ||?J (uy global optimal for (P{) and (3.15b))
A—0
=J(u) (Lemma 3.6 and (3.15a)),

whence uw = @ follows. Using this information in the above series of inequalities we
further obtain

1 K 1 _ _
lim 2183 (wx) — yall3 + 5 funa [ + 1 s — iy = ()

1 _ K _
SIS@) = yall3 + 3 .

Since Lemma 3.6 yields the strong convergence Sy(uy) — S(@) in L*(), it follows
that

. K 1 _ K, _
;ﬂ%gn%\”% + §HUA —alf = 5““\%7
which can be written as

I(Viur,ux = @)llgw = [(VEG,0)[Gwy  as ANO.

Thanks to uy — @ in U and since U is a Hilbert space (Assumption 3.1.4), this gives
in turn wy — @ in U. Since (3.17) is a direct result of Lemma 3.6, it only remains to
prove that wy is a local minimizer for (Py). To this end, let v € By (uy, p/2). Then,
for sufficiently small A > 0, (3.16) leads to

lv —allu < Jlus —ally +lo —wllo < 5+ 5 =p.
This yields v € B(w, p), and the global optimality of uy for (P%) implies Jx(uy) <
Jxr(v). Since v € By (uy, p/2) was choosen arbitrarily, the claims follows. |

THEOREM 3.8. Let u be a local optimum of (P) with the associated state y. Then
there is a unique adjoint state p € U and a unique multiplier p € L2(Q) so that the
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following optimality system is fulfilled

—vy — Ay + u € Jp(), (3.20a)
Yy—yg—vp—A'p+pu=0, (3.20Db)
p+rku=0, (3.20¢)

pi(2)y;(x) =0 ae inQ, Vi=1,...,n, (3.20d)

w(@)p;(x) <0 ae inQ, Vi=1,..,n. (3.20e)

Proof. Let {ux}r>0 be the sequence of local minimizers of (P)) established in Proposi-
tion 3.7, which converges strongly to w as A\ — 0. For every A > 0, we set y, = Sx(u»).
As Ay : L*(Q) — L*(Q) is a linear bounded operator, we see that (Py) is a special
case of (Pp) with B = v + Ay. Thus, we may apply Theorem 2.12 to (P,) to deduce
that

Y —Ya— W1+ AN)'py+ 1y =0, (3.21a)
py € Cluy), (3.21b)
Py € Qun), (3.21¢)

where C(uy) and Q(u)) are defined as in (2.17) and (2.27).
By the definition of p, and (3.16), it follows that

py— —ku=:p inU as A\, 0. (3.22)
Moreover, (3.22) combined with U C D(A), Lemma 5.1, (3.1b) and (3.1c¢) imply that

[AXpy — A"pll2 < |AX(Py — P)ll2 + (A} — A")pl|2
< [[A*(py —P)ll2 + [[(AX — A%)pll2 = 0 as A\, 0.

(3.23)
Passing to the limit A — 0 in (3.21a) together with (3.17), (3.22) and (3.23) yields

py — o in L*(Q) as A\, 0, (3.24)
where —p =9y —y4 —vp— A*p.
It remains to prove (3.20d)-(3.20e). Due to (3.21b),

ph(z)yl(z) =0ae inQ, Vi=1,...n
holds. Furthermore, from (3.24) and (3.17) we have for all ¢ = 1,...,n that
pAYs — 1’y in L'(Q) as A\, 0,

whence (3.20d) follows. To prove (3.20e), we define for every A > 0 and i € {1,...,n}
the following sets (up to sets of measure zero):

Uy = {z € Q: 3 ()] < gi(2)},
Vig = {z € Q:4i(2) = gi(e), gi(z) > 0, y(z) = 0},
Vi = {z € Q:j5(2) = —gi(2), gi(x) > 0, yi(z) = 0},

W = {z € Q: |j)(2)| = 0, yi(2) = 0} U{z € Q: |j}(2)] = gi(2), yi(z) # 0}.
19
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Clearly, @ = Uy UV{ , UV) _UW]. In view of (3.21b) and (3.21c), we obtain that

Altogether, this implies p} (z)ph (z) < 0 a.e. in Q. By means of (3.22) and (3.24), we
infer as above that (3.20e) holds. This completes the proof. d

4. Application to the Bean critical-state model. Throughout this section,
we set n = 6, and thus L*(Q) stands for L?(Q;R%). We consider the following optimal
control problem:

(fminﬂ iHe ed||L2(Q R T35 Hh hdHL2(Q]R3) +5 ||(f 9%
ee—curlh+j5=Ff inQ,
ph+curle=g in Q, (4.1)
s.t. exn=0 ondQ,
Ji(@)e;(x) = je(x)|e;(x)|  for aa. z €, Vi=1,2,3,
|7,(x)] < je(xz) foraa zeQ, Vi=1,23.

Here, (eq, hq) € L*(Q) and k > 0 are fixed. The electric permittivity e : Q — RE o
and the magnetic permeability p :  — R are assumed to be of class L>(€; RE ().

There exist constants ¢y > 0 and pg > 0 such that

wle(x)w > e|w|? and w?p(z)w > polw|® ae. in Q, Vw € R™.
The function j. : 2 — R is Lebesgue measurable, nonnegative and essentially bounded.
We notice that the PDE-constraint in (4.1) arises from the time-discretization of
Bean’s critical-state model for type-II superconductivity (cf. [28,29]). Let us now re-
formulate (4.1) as a problem of the type (P). To this aim, we introduce the following
Hilbert spaces:

H(curl) := {v € L*(R?) | curlw € LQ(Q;R?’)},
H(curl) :{vechrl ’vxn—OonaQ}
H(div) = {v € L*(;R?) | divw € LQ(Q)}
Hy(div) = {veHdlv |v- n_OOnaQ}
H = (Ho(curl) N H(div)) x (H(curl) N Hy(div)),

where the curl- and div-operators, as well as the tangential and normal traces are
understood in the sense of distributions. We set

ADU) € B 5 @), A= (g ST ).

curl 0
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where the domain of A is given by
D(A) := Hy(curl) x H(curl). (4.2)

We note that the operator A : D(A) ¢ L*(Q) — L*(Q) is skew-adjoint, i.e., it
holds for the corresponding adjoint operator that A* = —A and D(A*) = D(A) =
H(curl) x H(curl). Thus, A satisfies Assumption 3.1.3.

Next, we specify ¢ : L*(22) — R to be

o(v) / Z lvi(z)| de. (4.3)

Then, the relation

Ji(@)e;(x) = jo(x)]e;(x)] fora.a. x €Q, Vi=1,2,3, (4.4)
17:(2)] < je(x) fora.a. £ €Q, Vi=1,2,3. '

can be equivalently written as (j,0) € Op(e, h); see the proof of Lemma 2.2. Finally,
by introducing
s € 0
=0 4 )

we conclude that (4.1) is equivalent to

. 1 1 K
(fffglgH §||e - edH%?(sz;Rs) + §||h - hd||%2(S2;R3) + 5”(.1:79)“%-[
s.t. _V(67 h) - A(ev h) + (.fag) € 8()0(67 h)

(PBean)

We observe that (Ppeqn) is a special case of (P), where Assumption 3.1 is fulfilled.
Thus, we can apply Theorem 3.8 to (Ppgearn) and obtain the following result:
COROLLARY 4.1. Let (f,g) € H be a local optimum of (Ppean) with the associated
state (e, h) € Hy(curl) x H(curl). Then, there is a unique adjoint state p € H and
a unique multiplier p € L? (Q) so that the following optimality system is fulfilled

—v(e,h) — A(e,h) + (f,g) € 0¢(e, h), (4.5a)
(e,h) — (eq,hq) —vp— A*p+p =0, (4.5b)
p+r(f,g) =0, (4.5¢)

pi(x)ei(z) =0 a.e inQ, Vi=1,2,3, (4.5d)

pi(x)p;(x) <0 ae inQ, Vi=1,2,3, (4.5¢)

p(x) =0 ae inQ, Vi=4,5,6. (4.5f)

Proof. The system (4.5a)-(4.5¢) is a direct consequence of Theorem 3.8. To prove
(4.5f), let us consider the sequence {(f,,g,)} associated to (f,g) from Proposition
3.7. Moreover, let ey, j, and p, denote the corresponding quantities. In view of the
definition of ¢, it follows that

(2) <0 if §7(2) = je(2),

() = 0 if 5} (x) = —je(a),
vi(z)eMx) =0ae. inQ, i=1,..,3,
(x) =0ae. inQ, i =4,. 6},



which together with (3.21b) yields that p?(x) = 0 a.e. in Q, Vi = 4,...,6. Thus, by
(3.24), we have (4.5f). d

REMARK 4.2. Note that the structure of (4.1) allows us to improve the system in
Proposition 3.8. To be more precise, the fact that the current density has only three
components (instead of n = 6) allows us to choose g4 = g5 = g6 = 0 a.e. in Q (see
the definition of ). This yields the additional information in (4.5f).

5. Appendix. LEMMA 5.1. Let H be a Hilbert space and A: D(A) C H - H
be a maximal monotone operator. Then, for any A > 0, it holds (A*)x = (A))*, where
(A*) is the Yosida approximation of A*.

Proof. Let us begin by noticing that the maximal monotonicity of A ensures the
maximal monotonicity of A*, in view of [5, page 194], see also [24, Lemma 10.2, page
38]. Hence, one can indeed define the Yosida approximation of A*. To show the
desired result, we argue as in the proof of [5, Proposition 7.6]. Let A > 0 be arbitrary,
but fixed. For x,y € H, we define w := (I + M) 'z and 2 := (I + AA*)~!y. Note
that w € D(A) and z € D(A*), in view of the maximal monotonicity of A and A*,
respectively. Moreover, we have the identities

w4+ NAw = x,
2+ ANz =y.

Testing the above identities with z and w, respectively, implies that
(w,2)g = (z,2)g — MAw, 2)g = (y,w)g — AM(A"z,w)q. (5.1)

On the other hand, w € D(A) and z € D(A*) yields (Aw, z)g = (A*z,w)n. Then, by
the definition of w and z, we deduce from (5.1) the following

(2, (I + XA ")y = (T +XA) "Lz, y)m.

Hence,

(5. 0) (5 T+ 245 y) = (o

This gives in turn
1 *\—1 1 -1
(2, 3T =T +2AA) N y) = (5T =T+ M) 2,y) g,

(A*)A Ax

in view of Definition 3.2. Since x,y € H were arbitrary, the proof is now complete. O
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