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In this paper, we show how a special class of inverse optimal control prob-
lems of elliptic partial differential equations can be solved globally. Using the
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Clarke-stationarity-type system. Moreover, we relax the feasible set of the
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1 Introduction

The aim of the inverse problem considered in this paper is the determination of finitely
many parameters in the cost function of a given optimal control problem of a linear
(partial) differential equation such that the resulting optimal state and control minimize a
given superordinate functional, e.g. the distance to given data functions, see Example 2.2.
In the context of human locomotion, similar inverse problems of ordinary differential
equations are considered in Albrecht et al. [2012], Albrecht and Ulbrich [2017], Mombaur
et al. [2010].
Due to their structure, the inverse problems of interest turn out to be so-called bilevel

optimal control problems, i.e. hierarchical optimization problems with two decision levels
where at least one decision maker has to solve an optimal control problem, see e.g. the
monographs Bard [1998], Dempe [2002], Dempe et al. [2015], Shimizu et al. [1997] and
Hinze et al. [2009], Lewis et al. [2012], Tröltzsch [2009], Troutman [1996] for detailed
introductions to bilevel programming and optimal control (of ordinary as well as partial
differential equations), respectively. Some more applications of bilevel optimal control
can be found in Fisch et al. [2012], Hatz [2014], Kalashnikov et al. [2015], Knauer and
Büskens [2010] while necessary optimality conditions are the subject in e.g. Benita and
Mehlitz [2016], Mehlitz [2017], Mehlitz and Wachsmuth [2016], Ye [1995, 1997]. First
steps regarding inverse optimal control of partial differential equations were carried out
recently, see Harder and Wachsmuth [2018a], Holler et al. [2018]. Therein, the authors
heavily exploit the uniqueness of the lower level solution for any fixed upper level vari-
able and the properties of the associated solution operator. Note that optimal control
problems with variational inequality constraints like the optimal control of the obstacle
problem can be interpreted as bilevel optimal control problems as well, see Harder and
Wachsmuth [2018b] and the references therein.
To the best of our knowledge, there mainly exist methods for the numerical handling of

inverse optimal control problems of ordinary differential equations, see e.g. Albrecht et al.
[2012], Albrecht and Ulbrich [2017], Hatz [2014], Hatz et al. [2012]. These algorithms fo-
cus on the replacement of the lower level optimal control problem by means of optimality
conditions. This, however, is a delicate approach since the resulting surrogate problem
is not necessarily equivalent to the original bilevel programming problem anymore, see
Dempe and Dutta [2012], where the authors deal with this issue in the finite-dimensional
situation. Furthermore, there is an uncomfortable lack of convergence results.
In this paper, we will strike a different path to derive necessary optimality conditions

and to state an algorithm which can be used to solve a special class of inverse opti-
mal control problems of (partial) differential equations. For that purpose, the optimal
value function of the parametric optimal control problem (OC(x)) is used. The idea of
using value functions in hierarchical programming dates back to Outrata [1990]. Here,
we first exploit the aforementioned optimal value function in order to transfer the given
hierarchical model (IOC) into an equivalent single-level program. Although the result-
ing nonconvex surrogate problem does not satisfy standard constraint qualification, see
Lemma 5.1 and Example 5.2, necessary optimality conditions of Clarke-stationary-type
can be derived via a relaxation approach, see Theorem 5.11. In our setting, the lower
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level value function is convex which allows us to compute an upper approximation which
is piecewise affine. This idea is taken from Dempe and Franke [2016]. Afterwards, we
can decompose the obtained surrogate problem into finitely many convex optimal con-
trol problems which enables us to solve the relaxed surrogate problem globally. In an
iterative way, the upper approximation of the lower level value function is improved, see
Algorithm 1 for details. Finally, it is shown that the proposed algorithm converges to a
global solution of the underlying inverse optimal control problem, see Theorem 6.5.
The remaining parts of the paper are organized as follows: In Section 2, the precise

problem statement is presented. Afterwards, we clarify our notation and comment on
some preliminary results in Section 3. Section 4 is dedicated to the study of the prop-
erties of the lower level optimal value function. In Section 5, we transfer the original
inverse optimal control problem into an equivalent single-level optimal control problem
by exploiting the aforementioned value function. Furthermore, we discuss the properties
of the resulting surrogate problem. Using a relaxation approach, necessary optimality
conditions for (IOC) are derived for the special setting where Uad is a box-constrained set
in L2(Ω). Finally, we present a solution algorithm in Section 6. Its global convergence is
shown theoretically. An illustrative example is included in order to visualize the obtained
theory.

2 Problem statement

We consider the parametric optimal control problem (also called lower level problem)

f(x, y, u) := 1
2 ‖C[y]− P[x]‖2M + σ

2 ‖u− Q[x]‖2U → min
y,u

A[y]− B[u] = 0

u ∈ Uad

(OC(x))

whose parameters x ∈ Rn have to be identified in the superordinate upper level opti-
mization problem

F (x, y, u) → min
x,y,u

x ∈ S

(y, u) ∈ Ψ(x).

(IOC)

Therein, Ψ: Rn ⇒ Y×U denotes the solution set mapping of the parametric optimization
problem (OC(x)) and S ⊂ Rn is a nonempty polytope, i.e. a compact polyhedron.
Before we comment on the inverse optimal control problem (IOC) in more detail, we

state the fundamental assumptions of this paper.

Assumption 2.1. Let Y,M, and U be Hilbert spaces. Furthermore, the objective func-
tional F : Rn×Y×U → R is assumed to be continuously Fréchet differentiable and convex.
The set S ⊂ Rn is a nonempty polytope. Moreover, we fix an isomorphism A ∈ L [Y,Y?]
as well as continuous linear operators B ∈ L [U ,Y?], C ∈ L [Y,M], P ∈ L [Rn,M], and
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Q ∈ L [Rn,U ]. The set of feasible controls Uad ⊂ U is assumed to be nonempty, closed,
and convex. Finally, the regularization parameter σ > 0 is fixed.

Due to Assumption 2.1, the lower level objective function f : Rn × Y × U → R is
continuous and convex.
Next, we present a specific setting of the data which shows the close relationship of

(IOC) and inverse control.

Example 2.2. Here, we comment on the inverse optimal control of Poisson’s equation.
Therefore, let Ω ⊂ Rd be a bounded domain and choose the spaces Y := H1

0 (Ω) as well
as M := U := L2(Ω). For some observed state yo ∈ L2(Ω) and some observed control
uo ∈ L2(Ω), we consider the tracking-type objective

∀(x, y, u) ∈ Rn ×H1
0 (Ω)× L2(Ω): F (x, y, u) := 1

2 ‖y − yo‖
2
L2(Ω) + 1

2 ‖u− uo‖2L2(Ω) .

We set S := ∆n where ∆n represents the standard simplex, i.e.

∆n :=

{
x ∈ Rn

∣∣∣∣∣x ≥ 0,

n∑
i=1

xi = 1

}
.

Furthermore, let C be the continuous embedding H1
0 (Ω) ↪→ L2(Ω) and let Q be the zero

operator. For fixed form functions f1, . . . , fn ∈ L2(Ω), we define P ∈ L
[
Rn, L2(Ω)

]
by

means of

∀x ∈ Rn : P[x] :=
n∑
i=1

xifi,

i.e. the objective of the lower level problem (OC(x)) takes the following form:

Rn ×H1
0 (Ω)× L2(Ω) 3 (x, y, u) 7→ 1

2 ‖y −
∑n

i=1xifi‖
2
L2(Ω) + σ

2 ‖u‖
2
L2(Ω) ∈ R.

The operator B ∈ L
[
L2(Ω), H−1(Ω)

]
, where H−1(Ω) denotes the dual space of H1

0 (Ω), is
the canonical embedding, i.e., the adjoint of C. Finally, A ∈ L

[
H1

0 (Ω), H−1(Ω)
]
equals

the negative Laplace operator, i.e., we have 〈A[y], v〉H1
0 (Ω) =

∫
Ω∇y(ω) · ∇v(ω) dω for all

y, v ∈ H1
0 (Ω).

In Mehlitz [2017], the author studies a bilevel programming problem which is closely
related to (IOC) in terms of necessary optimality conditions. Exploiting the fact that
under the postulated assumptions, (OC(x)) possesses a unique optimal solution for any
instance of the parameter x ∈ Rn, the bilevel program is transferred into a single-level
problem by inserting the solution mapping of the lower level problem into the upper level
objective. It is shown that the lower level solution mapping is directionally differentiable
as long as Uad is polyhedric or, more general, if the projection onto Uad is directionally
differentiable in the sense of Haraux, see Haraux [1977]. Thus, the author is capable
of deriving necessary optimality conditions for the bilevel programming problem via its
implicit reformulation. However, the necessary constraint qualifications may fail to hold
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in the special setting (IOC) since the upper level variable is finite dimensional while the
lower level variables are in general not.
Here, we want to use the so-called optimal value function ϕ : Rn → R of the parametric

optimization problem (OC(x)) defined by

∀x ∈ Rn : ϕ(x) := min

{
1
2 ‖C[y]− P[x]‖2M + σ

2 ‖u− Q[x]‖2U

∣∣∣∣∣ A[y]− B[u] = 0

u ∈ Uad

}
in order to solve problem (IOC) globally. It is well known that the surrogate optimization
problem

F (x, y, u) → min
x,y,u

x ∈ S

f(x, y, u)− ϕ(x) ≤ 0

A[y]− B[u] = 0

u ∈ Uad,

(OVR)

is equivalent to the model problem (IOC), see Dempe [2002]. Utilizing value functions
in bilevel programming dates back to Outrata [1990].

3 Notation and preliminaries

3.1 Notation

In this paper, we equip Rn, the space of all real vectors with n ∈ N components, with the
Euclidean norm |·|2. The Euclidean inner product of two vectors x, y ∈ Rn is denoted
by x · y. The sets R+

0 and R−0 represent the nonnegative and nonpositive real numbers,
respectively. For some arbitrary Banach space X , ‖·‖X denotes its norm. The set BεX (x̄)
is the closed ε-ball around x̄ ∈ X w.r.t. the norm in X . Let X ? be the (topological) dual
of X . Then, 〈·, ·〉X : X ? × X → R expresses the associated dual pairing. For some set
A ⊂ X , convA, coneA, clA, intA, and ∂A denote the convex hull of A, the smallest cone
containing A, the closure of A, the interior of A, and the boundary of A, respectively.
Furthermore, we define the polar cone of A by means of

A◦ := {x? ∈ X ? | ∀x ∈ A : 〈x?, x〉X ≤ 0} .

Note that A◦ is a nonempty, closed, convex cone. Now, assume that A is convex and
fix a point x̄ ∈ A. We define the radial cone, the tangent (or Bouligand) cone, and the
normal cone (in the sense of convex analysis) to A at x̄ via

RA(x̄) := cone(A− {x̄}), TA(x̄) := clRA(x̄), NA(x̄) := TA(x̄)◦.

Note that NA(x̄) = (A− {x̄})◦ holds.
For some other Banach space Y, L [X ,Y] is the Banach space of all bounded, linear

operators mapping from X to Y. For some operator F ∈ L [X ,Y], F? ∈ L [Y?,X ?]
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denotes its adjoint. The operators O ∈ L [X ,Y] and IX ∈ L [X ,X ] represent the zero-
operator (which maps all elements of X to the zero in Y) and the identity operator
of X , respectively. For Banach space X1, . . . ,Xn and Y1, . . . ,Ym as well as operators
Fi,j ∈ L [Xj ,Yi], i = 1, . . . ,m, j = 1, . . . , n, we define the associated product operator in
L [X1 × · · · × Xn,Y1 × · · · × Ym] byF1,1 . . . F1,n

...
...

Fm,1 . . . Fm,n


x1

...
xn

 :=


∑n
j=1F1,j [xj ]

...∑n
j=1Fm,j [xj ]


for all (xj)

n
j=1 ∈ X1×· · ·×Xn. For a Hilbert space H, an operator G ∈ L [H,H?] is called

elliptic (or coercive) if there is a constant α > 0 such that

∀x ∈ H : 〈G[x], x〉H ≥ α ‖x‖
2
H

Recall that a mapping J : X → Y is called Fréchet differentiable at x̄ ∈ X if there
exists an operator J ′(x̄) ∈ L [X ,Y], which satisfies

lim
‖d‖X↘0

‖J(x̄+ d)− J(x̄)− J ′(x̄)[d]‖Y
‖d‖X

= 0.

In case of existence, J ′(x̄) is called the Fréchet derivative of J at x̄. If the mapping
X 3 x 7→ J ′(x) ∈ L [X ,Y] is well-defined and continuous in a neighborhood of x̄, then J
is said to be continuously Fréchet differentiable at x̄.
Finally, we would like to mention that for an arbitrary domain Ω ⊂ Rd, L2(Ω) is used

to represent the usual Lebesgue space of (equivalence classes of) measurable, square-
integrable functions. As usual, H1

0 (Ω) denotes the closure of C∞0 (Ω), the set of all
arbitrarily often continuously differentiable functions with compact support in Ω, w.r.t.
the common H1-Sobolev norm, see [Adams and Fournier, 2003] for details. We use
H−1(Ω) := H1

0 (Ω)? for its dual.

3.2 Preliminary results

Now, we take a look at the optimization problem

j(x) → min
x

J(x) ∈ C
(P)

where j : X → R as well as J : X → Y are continuously Fréchet differentiable mappings
between Banach spaces X and Y while C ⊂ Y is a nonempty, closed, convex set. A
feasible point x̄ ∈ X of (P) satisfies the so-called Karush-Kuhn-Tucker (KKT for short)
conditions if the following holds:

∃λ ∈ NC(J(x̄)) : j′(x̄) + J ′(x̄)?[λ] = 0.
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If x̄ is a locally optimal solution of (P) which fulfills Robinson’s constraint qualification,
i.e. the condition

J ′(x̄)[X ]−RC(J(x̄)) = Y,
is valid, then the KKT-conditions are satisfied, see [Bonnans and Shapiro, 2000, Theo-
rem 3.9]. In the absence of Robinson’s constraint qualification, this result does not hold
in general. Further information on constraint qualifications and necessary optimality
conditions addressing optimization problems in Banach spaces can be found in Bonnans
and Shapiro [2000], Robinson [1976], Zowe and Kurcyusz [1979].
In order to show the equivalence of certain constraint qualifications of Robinson-type

in the setting of product structures, the following lemma will be useful. Similar results
can be found in [Mehlitz, 2017, Lemma 3.4, Corollary 3.5].

Lemma 3.1. Let Banach spaces X1, X2, Y1, and Y2 as well as sets U ⊂ X2 and V ⊂ Y1

be given. Moreover, let A ∈ L [X1,Y1], B ∈ L [X2,Y1], C ∈ L [X1,Y2], and D ∈ L [X2,Y2]
be linear operators such that C is an isomorphism. We consider the following conditions:

[
A B

C D

](
X1

U

)
−
(
V
{0}

)
=

(
Y1

Y2

)
, (1a)(

A ◦ C−1 ◦ (−D) + B
)
[U ]− V = Y1. (1b)

Then, (1a) and (1b) are equivalent.

Proof. We show both implications separately.
“=⇒”: Assume that (1a) is valid and choose y ∈ Y1. Then, we find x ∈ X1, u ∈ U ,
and v ∈ V such that A[x] − B[u] − v = y and C[x] + D[u] = 0 are valid. Observing
x = (C−1 ◦ (−D))[u], we obtain (A ◦ C−1 ◦ (−D) + B)[u]− v = y. Consequently, (1b) holds.
“⇐=”: Next, we suppose that (1b) is valid and choose y1 ∈ Y1 as well as y2 ∈ Y2

arbitrarily. Due to the validity of (1b), we find ũ ∈ U and ṽ ∈ V such that

(A ◦ C−1 ◦ (−D) + B)[ũ]− ṽ = y1 − (A ◦ C−1)[y2]

holds true. Let us set x̃ := C−1[y2 − D[ũ]]. Then, we have C[x̃] + D[ũ] = y2 and

A[x̃] + B[ũ]− ṽ = (A ◦ C−1)[y2] +
(
A ◦ C−1 ◦ (−D)

)
[ũ] + B[ũ]− ṽ

= (A ◦ C−1)[y2] + y1 − (A ◦ C−1)[y2] = y1.

This shows that (1a) holds.

4 Properties of the lower level optimal value function

The following result follows by standard arguments which are, nevertheless, included for
the readers convenience.

Lemma 4.1. There are Lipschitz continuous functions ψy : Rn → Y and ψu : Rn → U
which satisfy Ψ(x) = {(ψy(x), ψu(x))} for all x ∈ Rn, i.e. the solution set mapping of
(OC(x)) is single-valued and Lipschitz continuous.
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Proof. Let us first introduce the control-to-observation operator S := C◦A−1◦B ∈ L [U ,M]
of the lower level optimal control problem (OC(x)). Eliminating the state variable y, the
so-called reduced formulation of (OC(x)) is given by

1
2 ‖S[u]− P[x]‖2M + σ

2 ‖u− Q[x]‖2U → min
u

u ∈ Uad.

Observing that its objective function is continuous, convex, and coercive for any choice
of x while its feasible set is nonempty, closed, and convex, standard arguments show that
the reduced problem possesses a unique optimal solution ψu(x) for any x ∈ Rn. Defining
ψy := A−1 ◦ B ◦ ψu, we can deduce Ψ(x) = {(ψy(x), ψu(x))}.
It is easily seen that the global optimal solution ψu(x) of the reduced problem is the

uniquely determined solution of the following variational inequality of the first kind:

find u ∈ Uad : 〈(S? ◦ S + σIU )[u], v − u〉U ≥ 〈(S
? ◦ P + σQ)[x], v − u〉U ∀v ∈ Uad.

Noting that the operator S? ◦ S + σIU is elliptic with constant σ > 0 it follows that

∀x, x′ ∈ Rn :
∥∥ψu(x)− ψu(x′)

∥∥
U ≤ σ

−1
∥∥(S? ◦ P + σQ)[x− x′]

∥∥
U

≤ σ−1 ‖S? ◦ P + σQ‖L[Rn,U ]

∣∣x− x′∣∣
2
,

see [Kinderlehrer and Stampacchia, 1980, Theorem II.2.1]. Thus, ψu is Lipschitz contin-
uous. Exploiting the representation ψy = A−1 ◦ B ◦ ψu, the Lipschitz continuity of ψy

follows immediately.

As a consequence of Lemma 4.1, the continuity of F , and the compactness of S ⊂ Rn,
we obtain the following corollary from Weierstraß’ famous theorem.

Corollary 4.2. The inverse optimal control problem (IOC) possesses a globally optimal
solution.

Note that in the remaining parts of the paper, we will exploit the notion of ψy : Rn → Y
and ψu : Rn → U as introduced in Lemma 4.1.
In the following, we study the properties of the optimal value function ϕ in more

detail. First, we show that ϕ is a convex function. The essentials of the proof date back
to [Fiacco and Kyparisis, 1986, Proposition 2.1].

Lemma 4.3. The optimal value function ϕ is convex.

Proof. Obviously, the function f is convex w.r.t. all variables. Defining

M := {(y, u) ∈ Y × Uad | A[y]− B[u] = 0} , (2)

we easily see that

∀x ∈ Rn : ϕ(x) = min
y,u
{f(x, y, u) | (y, u) ∈M}
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is valid. Clearly, M is convex.
Choose x̃, x′ ∈ Rn as well as α ∈ [0, 1] arbitrarily. Let us fix the corresponding

lower level solutions (ỹ, ũ) := (ψy(x̃), ψu(x̃)) and (y′, u′) := (ψy(x′), ψu(x′)). The joint
convexity of f as well as the obvious fact αM + (1− α)M = M lead to

ϕ(αx̃+ (1− α)x′) = min
y,u
{f(αx̃+ (1− α)x′, y, u) | (y, u) ∈M}

= min
y1,y2,u1,u2

{f(α(x̃, y1, u1) + (1− α)(x′, y2, u2)) | (y1, u1), (y2, u2) ∈M}

≤ min
y1,y2,u1,u2

{αf(x̃, y1, u1) + (1− α)f(x′, y2, u2) | (y1, u1), (y2, u2) ∈M}

= αf(x̃, ỹ, ũ) + (1− α)f(x′, y′, u′)

= αϕ(x̃) + (1− α)ϕ(x′).

This completes the proof.

For later purposes, we formulate the KKT-system of the lower level problem (OC(x))
for a feasible point (y, u) ∈ Y × U of (OC(x)) for fixed parameter x ∈ Rn:

f ′y(x, y, u) + A?[p] = C?[C[y]− P[x]] + A?[p] = 0, (3a)

f ′u(x, y, u)− B?[p] + λ = σ(u− Q[x])− B?[p] + λ = 0, (3b)
λ ∈ NUad(u). (3c)

It is easily seen that for fixed x ∈ Rn, y := ψy(x), and u := ψu(x), the Lagrange
multipliers p ∈ Y and λ ∈ U? are uniquely determined. Thus, we introduce mappings
φp : Rn → Y and φλ : Rn → U? which assign to any x ∈ Rn the respective Lagrange mul-
tipliers p and λ which characterize the associated lower level solution (y, u). Clearly, φp

and φλ are Lipschitz continuous since ψy and ψu are Lipschitz continuous, see Lemma 4.1.
The next lemma shows the differentiability of ϕ. We note that this result follows

partially from [Bonnans and Shapiro, 2000, Theorem 4.13]. However, we included a
proof for the reader’s convenience.

Lemma 4.4. The optimal value function ϕ is continuously Fréchet differentiable. At a
given point x̄ ∈ Rn, the associated Fréchet derivative is given as follows:

ϕ′(x̄) = P?[P[x̄]− C[ψy(x̄)]] + σQ?[Q[x̄]− ψu(x̄)].

Proof. Fix a reference point x̄ ∈ Rn and choose x ∈ Rn arbitrarily. For brevity, we will
use the notation

ȳ = ψy(x̄), ū = ψu(x̄), λ̄ = φλ(x̄),

y = ψy(x), u = ψu(x), λ = φλ(x).

We exploit that f is a quadratic functional and that the functions ψy and ψu are Lipschitz
continuous. Thus, we obtain

ϕ(x)− ϕ(x̄) = f(x, y, u)− f(x̄, ȳ, ū)

= f ′x(·) (x− x̄) + f ′y(·) (y − ȳ) + f ′u(·) (u− ū) +O(|x− x̄|22).
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Here, (·) abbreviates the argument (x̄, ȳ, ū). By utilizing the optimality conditions of
(OC(x)), we have

B?[(A−1)?[f ′y(·)]] + f ′u(·) + λ̄ = 0.

Together with y − ȳ = A−1[B[u− ū]], this yields

ϕ(x)− ϕ(x̄) = f ′x(·) (x− x̄) +
〈
−λ̄, u− ū

〉
U +O(|x− x̄|22).

Finally, we observe

0 ≤
〈
−λ̄, u− ū

〉
U ≤

〈
λ− λ̄, u− ū

〉
U ≤ C |x− x̄|

2
2

due to the definition of the normal cone and the Lipschitz continuity of ψu as well as φλ.
Together with the straightforward computation of f ′x(·), this yields

ϕ′(x̄) = f ′x(·) = P?[P[x̄]− C[ψy(x̄)]] + σQ?[Q[x̄]− ψu(x̄)]

and the proof is completed.

5 The optimal-value-reformulation

5.1 On the lack of regularity

Exploiting Lemma 4.4, we know that the optimal-value-reformulation (OVR) of (IOC) is
an optimization problem with continuously Fréchet differentiable data. However, (OVR)
is still a challenging problem due to the following observation.

Lemma 5.1. Robinson’s CQ is violated at any feasible point of (OVR).

Proof. We fix an arbitrary feasible point (x̄, ȳ, ū) ∈ Rn × Y × U of (OVR). In order to
show the lemma’s assertion, it is sufficient to construct a nontrivial singular Lagrange
multiplier, see [Bonnans and Shapiro, 2000, Proposition 3.16(i)].
Let us consider the smooth optimization problem

f(x, y, u)− ϕ(x) → min
x,y,u

A[y]− B[u] = 0

u ∈ Uad.

(4)

By definition of the optimal value function ϕ, its infimal value is given by 0. The
feasibility of (x̄, ȳ, ū) for (OVR) yields f(x̄, ȳ, ū) − ϕ(x̄) = 0, i.e. (x̄, ȳ, ū) is a globally
optimal solution of (4). Obviously, Robinson’s CQ is satisfied at any feasible point of
problem (4). Thus, we find p ∈ Y and η ∈ U? which satisfy

0 = f ′x(x̄, ȳ, ū)− ϕ′(x̄),

0 = f ′y(x̄, ȳ, ū) + A?[p],

0 = f ′u(x̄, ȳ, ū)− B?[p] + η,

η ∈ NUad(ū).
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Thus, (0, 1, p, η) ∈ Rn × R × Y × U? is a nonvanishing singular Lagrange multiplier for
(OVR) at (x̄, ȳ, ū). Since (x̄, ȳ, ū) was an arbitrarily chosen feasible point of (OVR), the
proof is completed.

In Ye and Zhu [1995], the authors try to overcome this well-known drawback of the
optimal-value-reformulation of finite-dimensional bilevel programming problems by pe-
nalizing the violation of the constraint f(x, y, u) − ϕ(x) ≤ 0 in the objective func-
tion. There exist several situations where this penalization is exact (e.g. if the lower
level problem is fully linear) and, consequently, the KKT-conditions of the optimal-
value-reformulation may serve as necessary optimality conditions for the original bilevel
programming problem. However, in our situation, the lower level problem (OC(x)) is
quadratic (and possibly infinite dimensional). In the following example, we show that
even in the finite-dimensional setting, it is not promising to rely on the KKT-conditions
of (OVR).

Example 5.2. We consider the state-reduced bilevel programming problem

x2 − u → min
x,u

x ∈ [0, 1]

u ∈ argmin
u
{(u− x)2 |u ≥ 0}.

The lower level solution operator and the lower level optimal value function are given as
stated below:

∀x ∈ R : ψu(x) :=

{
0 if x < 0

x if x ≥ 0
ϕ(x) =

{
x2 if x < 0

0 if x ≥ 0.

One can easily check that the global optimal solution of the bilevel programming problem
is given by (x̄, ū) = (1

2 ,
1
2). On the other hand, the KKT-conditions of the associated

optimal value reformulation at (x̄, ū) are given by

0 = 1 + κ+ 0 · ρ,
0 = −1 + 0 · ρ+ η,

κ ∈ N[0,1](
1
2) = {0},

ρ ≥ 0,

η ∈ NR+
0

(1
2) = {0}

and cannot be satisfied.

5.2 Relaxing the optimal value constraint

The violation of Robinson’s CQ at all the feasible points of (OVR) is caused by the con-
straint f(x, y, u)−ϕ(x) ≤ 0 which is, in fact, fulfilled with equality for all feasible points

11



due to the definition of the optimal value function. Thus, a nearby idea to overcome this
problem is given by considering the relaxed problem

F (x, y, u) → min
x,y,u

x ∈ S

f(x, y, u)− ϕ(x) ≤ εk

A[y]− B[u] = 0

u ∈ Uad,

(OVR(εk))

for a sequence of positive relaxation parameters {εk}k∈N converging to zero as k →∞.

Lemma 5.3. Fix k ∈ N. Then, Robinson’s CQ is valid at any feasible point of (OVR(εk)).

Proof. Let (x̄, ȳ, ū) ∈ Rn × Y × U be a feasible point of (OVR(εk)). We consider two
cases.
Case 1: f(x̄, ȳ, ū)−ϕ(x̄) = εk. Suppose on the contrary that Robinson’s CQ is violated

at (x̄, ȳ, ū). Then, we have

[
f ′x(x̄, ȳ, ū)− ϕ′(x̄) f ′y(x̄, ȳ, ū) f ′u(x̄, ȳ, ū)

O A −B

] RS(x̄)
Y

RUad(ū)

− (R−0{0}
)
6=
(
R
Y?
)
.

Exploiting the fact that A is a bijection, this leads to

[
f ′x(x̄, ȳ, ū)− ϕ′(x̄) f ′y(x̄, ȳ, ū) ◦ S + f ′u(x̄, ȳ, ū)

]( RS(x̄)
RUad(ū)

)
− R−0 6= R

where S := A−1◦B ∈ L [U ,Y] is the solution operator of the state equation, see Lemma 3.1.
The latter is only possible if(

f ′y(x̄, ȳ, ū) ◦ S + f ′u(x̄, ȳ, ū)
)
[RUad(ū)] ⊂ R+

0

is valid. Clearly, this is a first order optimality condition for the optimization problem

f(x̄, S[u], u) → min
u

u ∈ Uad.

Noting that f is convex while S is linear, the objective function of this optimization prob-
lem is convex in u. Consequently, ū solves this problem globally. Due to the definition of
S, we have ū = ψu(x̄) and S[ū] = ȳ = ψy(x̄). As a result, f(x̄, ȳ, ū) − ϕ(x̄) = 0 is valid.
This, however, contradicts f(x̄, ȳ, ū)− ϕ(x̄) = εk > 0.
Case 2: f(x̄, ȳ, ū)− ϕ(x̄) < εk. The condition

[
f ′x(x̄, ȳ, ū)− ϕ′(x̄) f ′y(x̄, ȳ, ū) ◦ S + f ′u(x̄, ȳ, ū)

]( RS(x̄)
RUad(ū)

)
− R = R

12



is trivially satisfied. Thus, Lemma 3.1 shows that[
f ′x(x̄, ȳ, ū)− ϕ′(x̄) f ′y(x̄, ȳ, ū) f ′u(x̄, ȳ, ū)

O A −B

] RS(x̄)
Y

RUad(ū)

− ( R
{0}

)
=

(
R
Y?
)

is valid as well. However, the latter equals Robinson’s CQ for (OVR(εk)) at (x̄, ȳ, ū).

Lemma 5.4. For any k ∈ N, the surrogate problem (OVR(εk)) possesses an optimal
solution.

Proof. Let {(xl, yl, ul)}l∈N be a minimizing sequence of (OVR(εk)), i.e.

lim
l→∞

F (xl, yl, ul) = αk

where αk ∈ R ∪ {−∞} denotes the infimal value of (OVR(εk)).
Obviously, {xl}l∈N ⊂ S is bounded. Using the feasibility of (xl, yl, ul) to (OVR(εk)),

we obtain
∀l ∈ N : ‖ul − Q[xl]‖U ≤

√
2
σ (ϕ(xl) + εk)

which yields

∀l ∈ N : ‖ul‖U ≤
√

2
σ (ϕ(xl) + εk) + ‖Q[xl]‖U .

Since {xl}l∈N is bounded while ϕ is continuous, see Lemma 4.4, {ul}l∈N is bounded
as well. Furthermore, we have yl = (A−1 ◦ B)[ul] for any l ∈ N, i.e. the continuity of
A−1◦B ∈ L [U ,Y] and the boundedness of {ul}l∈N yield the boundedness of {yl}l∈N. Thus,
the sequence {(xl, yl, ul)}l∈N is bounded and, therefore, possesses a weakly convergent
subsequence (w.l.o.g. we use the same index again) with weak limit point (x̄, ȳ, ū) since
Y and U are Hilbert spaces while Rn is finite dimensional. Especially, we have xl → x̄.
The closedness of S and the convexity and closedness of Uad lead to x̄ ∈ S and ū ∈ Uad.
Furthermore, A[ȳ]− B[ū] = 0 follows from the linearity and continuity of the operators A
and B. Since f is convex and continuous, it is weakly lower semicontinuous. Furthermore,
ϕ is continuous. This yields

f(x̄, ȳ, ū)− ϕ(x̄) ≤ lim inf
l→∞

f(xl, yl, ul)− lim
l→∞

ϕ(xl) = lim inf
l→∞

(
f(xl, yl, ul)− ϕ(xl)

)
≤ εk,

i.e. (x̄, ȳ, ū) is feasible to (OVR(εk)).
Finally, since F is convex and continuous, it is weakly lower semicontinuous as well

and we obtain
F (x̄, ȳ, ū) ≤ lim inf

l→∞
F (xl, yl, ul) = αk.

Combining this observation with the feasibility of (x̄, ȳ, ū) to (OVR(εk)), we obtain that
it is a global solution of this problem. This completes the proof.

Lemma 5.5. Fix k ∈ N. Let (x, y, u) ∈ Rn × Y × U be a feasible point of (OVR(εk))
and set ȳ := ψy(x) as well as ū := ψu(x). Then, we have

‖u− ū‖U ≤
√

2εk/σ, ‖y − ȳ‖Y ≤ C
√

2εk/σ

where C > 0 is a constant independent of k, x, y, and u.
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Proof. Exploiting the fact that U and M are Hilbert spaces while (y, u) is feasible to
(OC(x)) and (ȳ, ū) is optimal for (OC(x)), we obtain

σ ‖u− ū‖2U = σ ‖u− Q[x]‖2U − 2 〈u− ū, σ(ū− Q[x])〉U − σ ‖ū− Q[x]‖2U
≤ σ ‖u− Q[x]‖2U − 2 〈u− ū, σ(ū− Q[x])〉U − σ ‖ū− Q[x]‖2U + ‖C[y]− C[ȳ]‖2M
≤ σ ‖u− Q[x]‖2U − 2 〈u− ū, σ(ū− Q[x])〉U − σ ‖ū− Q[x]‖2U

+ ‖C[y]− P[x]‖2M − 2 〈C[y − ȳ], C[ȳ]− P[x]〉M − ‖C[ȳ]− P[x]‖2M
= 2
(
f(x, y, u)− ϕ(x)

)
− 2
(
f ′y(x, ȳ, ū)[y − ȳ] + f ′u(x, ȳ, ū)[u− ū]︸ ︷︷ ︸

≥0

)
≤ 2
(
f(x, y, u)− ϕ(x)

)
≤ 2εk

which yields the first formula. The second one follows from y− ȳ = (A−1 ◦ B)[u− ū] with
C :=

∥∥A−1 ◦ B
∥∥
L[U ,Y]

.

Theorem 5.6. For any k ∈ N, let (x̄k, ȳk, ūk) ∈ Rn×Y×U be a globally optimal solution
of (OVR(εk)). Then, the sequence {(x̄k, ȳk, ūk)}k∈N possesses a convergent subsequence
whose limit point is a globally optimal solution of (OVR) and, thus, of (IOC). Moreover,
any accumulation point of {(x̄k, ȳk, ūk)}k∈N is a globally optimal solution of (OVR).

Proof. Since {x̄k}k∈N ⊂ S is bounded, it possesses a convergent subsequence (w.l.o.g. we
use the same index again) with limit point x̄ which lies in S since this set is closed. Let
us set ȳ := ψy(x̄) and ū := ψu(x̄). Obviously, (x̄, ȳ, ū) is feasible to (OVR).

Using Lemma 5.5, we find a constant C > 0 such that

∀k ∈ N : ‖ūk − ψu(x̄k)‖U ≤
√

2εk/σ ‖ȳk − ψy(x̄k)‖Y ≤ C
√

2εk/σ

holds. That is why we obtain

0 ≤ lim
k→∞

‖ūk − ū‖U ≤ lim
k→∞

(‖ūk − ψu(x̄k)‖U + ‖ψu(x̄k)− ψu(x̄)‖U )

≤ lim
k→∞

(√
2εk/σ + Lu |x̄k − x̄|2

)
= 0

where Lu > 0 denotes the Lipschitz constant of ψu, see Lemma 4.1. Especially, {ūk}k∈N
converges to ū. Similarly, we can show that {ȳk}k∈N converges to ȳ.
Now, let (x, y, u) ∈ Rn×Y×U be feasible to (OVR). Then, it is feasible to (OVR(εk))

for all k ∈ N which yields

∀k ∈ N : F (x̄k, ȳk, ūk) ≤ F (x, y, u).

Noting that {(x̄k, ȳk, ūk)}k∈N converges strongly to (x̄, ȳ, ū) while F is continuous, we
obtain F (x̄, ȳ, ū) ≤ F (x, y, u). Since (x̄, ȳ, ū) is feasible to (OVR), it must be a globally
optimal solution of this problem.
We can reprise the above arguments in order to show that any accumulation point of
{(x̄k, ȳk, ūk)}k∈N is a globally optimal solution of (OVR).
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If, for some k ∈ N, a globally optimal solution of (OVR(εk)) is feasible to (IOC),
then it is a globally optimal solution of the latter problem as well since its feasible set is
smaller than the feasible set of (OVR(εk)).

In the upcoming Section 5.3, we show how the above theory can be used to derive nec-
essary stationarity conditions for local minimizers of the inverse optimal control problem
(IOC).

5.3 Derivation of stationarity conditions

We intent to derive stationarity conditions for (IOC). However, we will only consider the
case where U := L2(Ω) holds for a bounded domain Ω ⊂ Rd equipped with Lebesgue’s
measure and Uad is given as stated below:

Uad := {u ∈ L2(Ω) | ua(ω) ≤ u(ω) ≤ ub(ω) f.a.a. ω ∈ Ω}.

Therein, ua, ub : Ω→ [−∞,∞] are measurable functions such that Uad is nonempty.
First, we will formulate the desired stationarity conditions.

Definition 5.7. We say that a feasible point (x̄, ȳ, ū) ∈ Rn × Y × L2(Ω) of (OVR) is
weakly stationary, W-stationary for short, if there exist multipliers p̄ ∈ Y?, λ̄ ∈ L2(Ω),
z̄ ∈ Rn, w̄ ∈ L2(Ω), µ̄ ∈ Y, ρ̄ ∈ Y, and ξ̄ ∈ L2(Ω) which satisfy

F ′x(x̄, ȳ, ū)−
(
P? ◦ C

)
[µ̄]− σQ?[w̄] + z̄ = 0, (5a)

F ′y(x̄, ȳ, ū) +
(
C? ◦ C

)
[µ̄] + A?[ρ̄] = 0, (5b)

F ′u(x̄, ȳ, ū) + σw̄ − B?[ρ̄] + ξ̄ = 0, (5c)
A[µ̄]− B[w̄] = 0, (5d)

z̄ ∈ NS(x̄), (5e)
C?[C[ȳ]− P[x̄]] + A?[p̄] = 0, (5f)
σ(ū− Q[x̄])− B?[p̄] + λ̄ = 0, (5g)

λ̄ ≤ 0 a.e. on Ib−(ū), (5h)
λ̄ ≥ 0 a.e. on Ia+(ū), (5i)

ξ̄ = 0 a.e. on Ia+(ū) ∩ Ib−(ū), (5j)
w̄ = 0 a.e. on {ω ∈ Ω | λ̄(ω) 6= 0}. (5k)

If these multipliers additionally satisfy the condition

ξ̄w̄ ≥ 0 a.e. on Ω, (6)

then (x̄, ȳ, ū) is said to be Clarke-stationary, C-stationary for short.
Here, the measurable sets Ia+(ū), Ib−(ū) ⊂ Ω are defined via

Ia+(ū) := {ω ∈ Ω | ua(ω) < ū(ω)}, Ib−(ū) := {ω ∈ Ω | ū(ω) < ub(ω)}.
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Note that (5f)-(5i) are the KKT-conditions for the lower level problem (OC(x)) for
the fixed parameter x = x̄. Obviously, these conditions are always satisfied for a feasible
point of (OVR). The remaining conditions (5a)-(5e), (5j), and (5k) can be interpreted
as the weak stationarity conditions of the equilibrium problem

F (x, y, u) → min
x,y,u,p,λ

x ∈ S

A[y]− B[u] = 0

C?[C[y]− P[x]] + A?[p] = 0

σ(ū− Q[x])− B?[p] + λ = 0

u ∈ Uad

λ ∈ NUad(u),

which results from (IOC) replacing the implicit constraint (y, u) ∈ Ψ(x) by the lower
level feasibility and optimality conditions.
We will derive the system of W-stationarity by using the KKT-conditions of (OVR(εk))

and observing the behaviour of the system as k tends to infinity. For a fixed k ∈ N,
let (xk, yk, uk) ∈ Rn × Y × L2(Ω) be a globally optimal solution of (OVR(εk)). Due
to Lemma 5.3, we know that the point (xk, yk, uk) satisfies the KKT-conditions of
(OVR(εk)). Thus, there exist multipliers zk ∈ Rn, αk ∈ R, pk ∈ Y, and λk ∈ L2(Ω)
which solve the system

F ′x(xk, yk, uk) + zk + αk
(
P?[P[xk]− C[yk]] + σQ?[Q[xk]− uk]− ϕ′(xk)

)
= 0, (7a)

F ′y(xk, yk, uk) + αkC
?[C[yk]− P[xk]] + A?[pk] = 0, (7b)

F ′u(xk, yk, uk) + αkσ(uk − Q[xk])− B?[pk] + λk = 0, (7c)
zk ∈ NS(xk), (7d)
λk ∈ NUad(uk), (7e)

0 ≤ αk ⊥ f(xk, yk, uk)− ϕ(xk)− εk ≤ 0. (7f)

Recall that ψy : Rn → Y and ψu : Rn → L2(Ω) are the solution functions of the lower
level (OC(x)), while φp : Rn → Y and φλ : Rn → L2(Ω) denote the associated Lagrange
multiplier mappings defined via the KKT-system (3), see Section 4 for details.

Lemma 5.8. For each k ∈ N, let (xk, yk, uk) ∈ Rn × Y × L2(Ω) be a global minimizer
of (OVR(εk)) and let (zk, αk, pk, λk) ∈ Rn × R × Y × L2(Ω) be the respective Lagrange
multipliers from (7). We assume w.l.o.g. that {(xk, yk, uk)}k∈N converges to a globally
optimal solution (x̄, ȳ, ū) ∈ Rn ×Y ×L2(Ω) of (IOC), see Theorem 5.6 Then, there exist
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z̄ ∈ Rn, w̄ ∈ L2(Ω), ρ̄ ∈ Y, ξ̄ ∈ L2(Ω), and µ̄ ∈ Y such that

αk(uk − ψu(xk)) ⇀ w̄, (8a)
αk(yk − ψy(xk)) ⇀ µ̄, (8b)
pk − αkφp(xk) ⇀ ρ̄, (8c)

λk − αkφλ(xk) ⇀ ξ̄, (8d)
zk → z̄ (8e)

along a subsequence. Moreover, the limits z̄, w̄, ξ̄, µ̄, and ρ̄ satisfy the conditions (5a)-
(5e).

Proof. Exploiting the introduced notation, we notice that

C?[C[ψy(xk)]− P[xk]] + A?[φp(xk)] = 0, (9a)

σ(ψu(xk)− Q[xk])− B?[φp(xk)] + φλ(xk) = 0, (9b)

φλ(xk) ∈ NUad(ψu(xk)) (9c)

is valid for any k ∈ N. Let us focus on (8a). Multiplying (9a) and (9b) with αk and
subtracting these equations from (7b) and (7c) yields

F ′y(xk, yk, uk) + A?[pk] + αk(C
? ◦ C)[yk − ψy(xk)]− αkA?[φp(xk)] = 0, (10a)

F ′u(xk, yk, uk)− B?[pk] + λk + αkσ(uk − ψu(xk)) + αk(B
?[φp(xk)]− φλ(xk)) = 0. (10b)

Testing (10a) with yk − ψy(xk) yields〈
F ′y(xk, yk, uk) + A?[pk − αkφp(xk)], yk − ψy(xk)

〉
Y

= −αk 〈(C? ◦ C)[yk − ψy(xk)], yk − ψy(xk)〉Y = −αk ‖C[yk − ψy(xk)]‖2M ≤ 0

and, therefore,

〈B?[pk − αkφp(xk)], uk − ψu(xk)〉L2(Ω)

= 〈B[uk − ψu(xk)], pk − αkφp(xk)〉Y
= 〈A[yk − ψy(xk)], pk − αkφp(xk)〉Y
= 〈A?[pk − αkφp(xk)], yk − ψy(xk)]〉Y
≤
〈
−F ′y(xk, yk, uk), yk − ψy(xk)]

〉
Y

=
〈
−F ′y(xk, yk, uk), (A−1 ◦ B)[uk − ψu(xk)]

〉
Y

≤ C1 ‖uk − ψu(xk)‖L2(Ω)

holds for a constant C1 > 0 that is independent of k. If we use this after testing (10b)
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with uk − ψu(xk), we obtain

σαk ‖uk − ψu(xk)‖2L2(Ω)

=
〈
B?[pk − αkφp(xk)]− F ′u(xk, yk, uk) + αkφ

λ(xk)− λk, uk − ψu(xk)
〉
L2(Ω)

≤
〈
B?[pk − αkφp(xk)]− F ′u(xk, yk, uk), uk − ψu(xk)

〉
L2(Ω)

≤ C1 ‖uk − ψu(xk)‖L2(Ω) + 〈Fu(xk, yk, uk), uk − ψu(xk)〉L2(Ω)

≤ C2 ‖uk − ψu(xk)‖L2(Ω)

for a constant C2 > 0 that is independent of k. Therein, the first inequality follows
from αk ≥ 0, φλ(xk) ∈ NUad(ψu(xk)), and λk ∈ NUad(uk). From above, it follows
that αk(uk − ψu(xk)) is bounded in L2(Ω). Hence, we can extract a weakly convergent
subsequence and denote its weak limit by w̄ ∈ L2(Ω) in order to satisfy (8a).
Due to A[yk −ψy(xk)] = B[uk −ψu(xk)] we obtain (8b) and (5d) from (8a). Since F is

continuously Fréchet differentiable, it follows from (10a) that A?[pk−αkφp(xk)] converges
weakly. Since A is continuously invertible, the sequence {pk − αkφp(xk)}k∈N is weakly
convergent as well. Thus, defining ρ̄ as its weak limit yields (8c) and (5b). Using the
newly obtained convergence in (10b), we get that λk − αkφλ(xk) converges weakly in
L2(Ω). The weak limit ξ̄ satisfies (8d) and (5c).
It remains to show the convergence of zk. Using Lemma 4.4, we obtain

P?[P[xk]− C[yk]] + σQ?[Q[xk]− uk]− ϕ′(xk) = (P? ◦ C)[ψy(xk)− yk] + σQ?[ψu(xk)− uk].

Then, the previous convergences and (7a) imply (8e) and (5a). Finally, (5e) follows from
xk → x̄ and zk → z̄ due to the properties of the normal cone.

Lemma 5.9. We consider the setting of Lemma 5.8. Then, the resulting multipliers
ξ̄, w̄ ∈ L2(Ω) satisfy (5j) and (5k).

Proof. We start with proving (5j). W.l.o.g., we assume that {uk}k∈N and {ψu(xk)}k∈N
converge pointwise almost everywhere to ū (otherwise, we select a subsequence with that
property). Due to λk ∈ NUad(uk) and φλ(xk) ∈ NUad(ψu(xk)), we have

λk − αkφλ(xk) = 0 a.e. on

{
ω ∈ Ω

∣∣∣∣∣ ua(ω) < uk(ω) < ub(ω)

ua(ω) < ψu(xk)(ω) < ub(ω)

}

for all k ∈ N. Thus, the pointwise convergence of {uk}k∈N and {ψu(xk)}k∈N implies
λk − αkφλ(xk) → 0 almost everywhere on Ia+(ū) ∩ Ib−(ū). Since {λk − αkφλ(xk)}k∈N
converges weakly in L2(Ω) and pointwise almost everywhere on a subset, the limits must
coincide on that subset, i.e. ξ̄ = 0 holds almost everywhere on Ia+(ū) ∩ Ib−(ū).
We continue with proving (5k). If {αk}k∈N has a bounded subsequence, this already

implies w̄ = 0 and (5k). Thus, we only need to consider the situation αk → ∞. The
continuity of φλ implies φλ(xk) → λ̄ in L2(Ω). Combining this with (8d) yields the
convergence α−1

k λk → λ̄ in L2(Ω).

18



Now, let G ⊂ Ω be an arbitrary measurable set and let χG ∈ L∞(Ω) denote the
corresponding characteristic function which equals 1 on G and vanishes otherwise. The
equations below follow immediately from the definition of the normal cone:〈

α−1
k λk, αkχG(uk − ψu(xk))

〉
L2(Ω)

≥ 0,〈
φλ(xk), αkχG(uk − ψu(xk))

〉
L2(Ω)

≤ 0.

Using the strong convergence to λ̄ and the weak convergence to w̄ yields〈
λ̄, χGw̄

〉
L2(Ω)

= 0.

Since G ⊂ Ω was an arbitrary measurable set, this implies (5k).

In the next lemma, we show that condition (6) holds under an additional assumption.

Lemma 5.10. We consider the setting of Lemma 5.8. If one of the operators B or C

is compact, then the resulting multipliers ξ̄, w̄ ∈ L2(Ω) additionally satisfy the condition
(6).

Proof. In this proof, we will only consider subsequences such that the convergences in
Lemma 5.8 hold. Let G ⊂ Ω be an arbitrary measurable set and χG ∈ L∞(Ω) the
associated characteristic function.
Our first goal is to show

〈B?[pk − αkφp(xk)], αkχG(uk − ψu(xk))〉L2(Ω) → 〈B
?[ρ̄], χGw̄〉L2(Ω) . (11)

If, on the one hand, B is compact, then (11) follows immediately from (8a), (8c), and
the definition of the adjoint. If, on the other hand, C is compact, then the strong
convergence αk(C? ◦ C)[yk − ψy(xk)] → (C? ◦ C)[µ̄] follows. Using (10a), this implies the
strong convergence pk − αkφp(xk)→ ρ̄ and (11) follow.
Now, we can combine (11) with (5c), (10b), and the sequential weak lower semi-

continuity of w 7→ 〈σw, χGw〉L2(Ω) which yields〈
−ξ̄, χGw̄

〉
L2(Ω)

=
〈
F ′u(x̄, ȳ, ū) + σw̄ − B?[ρ̄], χGw̄

〉
L2(Ω)

≤ lim
k→∞

〈
F ′u(xk, yk, uk)− B?[pk − αkφp(xk)], αkχG(uk − ψu(xk))

〉
L2(Ω)

+ lim inf
k→∞

〈σαk(uk − ψu(xk)), αkχG(uk − ψu(xk))〉L2(Ω)

= lim inf
k→∞

〈
−(λk − αkφλ(xk)), χG(uk − ψu(xk))

〉
L2(Ω)

≤ 0.

Here, the last inequality follows from λk ∈ NUad(uk) and φλ(xk) ∈ NUad(ψu(xk)). Since
G ⊂ Ω is an arbitrary subset, the pointwise condition in the claim follows.

Now, we are in a position to state the final result of this section.
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Theorem 5.11. Let (x̄, ȳ, ū) ∈ Rn × Y × L2(Ω) be a locally optimal solution of (IOC).
Then, (x̄, ȳ, ū) is a W-stationary point of (IOC).
If, additionally, one of the operators B or C is compact, then (x̄, ȳ, ū) is already a

C-stationary point of (IOC).

Proof. First, we note that due to Lemma 4.1, x̄ is a locally optimal solution of

F (x, ψy(x), ψu(x)) → min
x

x ∈ S.

Let ε > 0 be the associated radius of local optimality. Then, x̄ is the unique globally
optimal solution of the regularized problem

F (x, ψy(x), ψu(x)) + 1
2 |x− x̄|

2
2 → min

x

x ∈ S ∩ Bε1(x̄)

where Bε1(x̄) := {x ∈ Rn | |x− x̄|1 ≤ ε} is the closed ε-ball around x̄ w.r.t. the 1-norm.
Consequently, (x̄, ȳ, ū) is the unique global minimizer of

F (x, y, u) + 1
2 |x− x̄|

2
2 → min

x,y,u

x ∈ S ∩ Bε1(x̄)

(y, u) ∈ Ψ(x).

(12)

Now, we are in a position to apply Lemma 5.8, Lemma 5.9, and Lemma 5.10 to (12)
which allows us to infer that (x̄, ȳ, ū) is a W- or even (under the additional compactness
of B or C) C-stationary point of (12).

Noting that the first-order derivative of x 7→ 1
2 |x− x̄|

2
2 vanishes at x̄ while x̄ is an

interior point of Bε1(x̄), the W- and C-stationarity conditions of (12) and (IOC) at the
point (x̄, ȳ, ū) coincide. This shows the theorem’s assertion.

We finish this section with a brief remark on the compactness of B and C.

Remark 5.12. Let us consider the setting of Example 2.2. Therein, we fixed a bounded
domain Ω ⊂ Rd and set M := U := L2(Ω) as well as Y := H1

0 (Ω). Furthermore, C was
chosen to be the natural embedding of H1

0 (Ω) into L2(Ω) which is known to be compact,
see [Adams and Fournier, 2003, Theorem 6.3].
Next, assume that A ∈ L

[
H1

0 (Ω), H−1(Ω)
]
is an elliptic operator while B is given by

∀u ∈ L2(Ω)∀z ∈ H1
0 (Ω): 〈B[u], z〉H1

0 (Ω) :=

∫
Ω
u(ω)z(ω)dω.

Thus, B equals the natural embedding of L2(Ω) into H−1(Ω) which is compact since the
adjoint embedding H1

0 (Ω) ↪→ L2(Ω) is compact.
Consequently, in the standard setting of elliptic optimal control, the operators B and C

are compact. Thus, due to Theorem 5.11, any locally optimal solution of the associated
program (IOC) is a C-stationary point.
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6 Computing globally optimal solutions

The major drawback of Theorem 5.6 w.r.t. its applicability is the fact that the optimal
value function ϕ is only implicitly known and, consequently, it is not clear how to solve
the relaxed problems (OVR(εk)) at any iterate of a potential algorithm.
Due to the convexity of ϕ, see Lemma 4.3, we note that the optimal value reformula-

tion (OVR) of (IOC) is a so-called DC-program where DC is the classical abbreviation
for Difference of Convex Functions. This structure allows the construction of algorithms
which can be used to find the global minimizers of (IOC), see [Horst and Thoai, 1999, Sec-
tion 5] and the references therein. However, the fact that ϕ is only implicitly known may
induce some essential difficulties again when trying to adapt those methods directly. On
the other hand, we note that the concavity of (OVR) only appears within the constraint
f(x, y, u)− ϕ(x) ≤ 0 and only w.r.t. the variable x.
In order to exploit this observation for the construction of a suitable solution algorithm,

we approximate the convex optimal value function ϕ from above using a piecewise affine
function ξ which exactly interpolates ϕ at an increasing number of points from S. Thus,
we formulate a relaxed surrogate problem associated with (OVR) which is different from
(OVR(εk)). Since ξ is piecewise affine, our approach allows us to decompose the resulting
surrogate problems into finitely many convex subproblems which are easy to solve. This
idea is used in [Dempe et al., 2015, Section 3.6.2] and [Dempe and Franke, 2016, Section 4]
to solve finite-dimensional bilevel programming problems with fully convex lower level
problem.

6.1 The algorithm and its convergence properties

Let X := {x1, . . . , xm} ⊂ Rn be a nonempty set such that S ⊂ int convX holds true.
The convexity of ϕ yields

∀x ∈ convX : ϕ(x) ≤ min
µ

{∑m
i=1µiϕ(xi)

∣∣µ ∈ ∆m,
∑m

i=1µix
i = x

}
=: ξX(x).

Obviously, ξX : convX → R is the optimal value function of a fully convex linear para-
metric optimization problem and, thus, convex and piecewise affine, see [Nožička et al.,
1974, Theorem 6.7, Theorem 6.9]. These properties also follow from the observation

epi ξX = conv{(xi, ϕ(xi)) | i = 1, . . . ,m}+ {0} × R+
0 .

Especially, there exists a finite partition {RjX}
r(X)
j=1 of convX into so-called regions of

stability such that ξX is affine on every set RjX , j = 1, . . . , r(X).
Note that for any i = 1, . . . ,m, we have ξX(xi) = ϕ(xi), i.e. ξX interpolates ϕ exactly

at all the points in X. This observation gives rise to the formulation of Algorithm 1.
Below, we comment on some features of Algorithm 1.

Remark 6.1. Similar as in Lemma 5.4 it is possible to show that (OVR(Xk)) possesses
a global solution for any k ∈ N. As mentioned above, at any iteration k ∈ N, we
can decompose S into r(k) ∈ N regions of stability on which ξXk

is affine, respectively.
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Algorithm 1 Computation of global solutions to (IOC)
S1 Let X1 ⊂ Rn be a finite set such that S ⊂ int convX1 is valid and set k := 1.

S2 Compute a global optimal solution (x̄k, ȳk, ūk) of the optimization problem

F (x, y, u) → min
x,y,u

x ∈ S

f(x, y, u)− ξXk
(x) ≤ 0

A[y]− B[u] = 0

u ∈ Uad.

(OVR(Xk))

S3 Compute ϕ(x̄k). If f(x̄k, ȳk, ūk) = ϕ(x̄k) holds true, then (x̄k, ȳk, ūk) is a globally
optimal solution of (OVR) (and, thus, of (IOC)) and the algorithm terminates.
Otherwise, set Xk+1 := Xk ∪ {x̄k} as well as k 7→ k + 1 and go to S2.

Thus, (OVR(Xk)) can be decomposed into r(k) convex subproblems which can be solved
by exploiting standard methods.

Remark 6.2. For any k, k′ ∈ N satisfying k ≤ k′, we have

∀x ∈ S : ϕ(x) ≤ ξXk′ (x) ≤ ξXk
(x).

In order to analyze the qualitative properties of Algorithm 1, we need the following
lemma.

Lemma 6.3. Let X1 ⊂ Rn be a finite set satisfying S ⊂ int convX1. Then, there is a
constant L > 0 such that ξX is Lipschitz continuous on the set S with modulus L for any
set X ⊂ Rn which is the union of X1 and some finite subset of S.

Proof. By definition of ϕ, ξX , and ξX1 the following relations are obvious:

∀x ∈ convX1 : 0 ≤ ϕ(x) ≤ ξX(x) ≤ ξX1(x).

Since ξX1 is continuous on the compact set convX1, its maximal value M ≥ 0 is well
defined and an upper bound for all the real numbers |ξX(x)| such that x ∈ convX1.
Since we have S ⊂ int convX1, there is some ε > 0 such that S + Bε2(0) ⊂ convX1

holds true. Here, Bε2(0) denotes the closed ε-ball in Rn around 0 w.r.t. the Euclidean
norm.
For x, y ∈ S satisfying x 6= y, we define

z := x+
ε

|x− y|2
(x− y), α :=

|x− y|2
ε+ |x− y|2
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By construction, we have z ∈ S + Bε2(0) ⊂ convX1 and x = (1− α)y + αz. Noting that
ξX is convex, we obtain ξX(x) ≤ ξX(y) + α(ξX(z) − ξX(y)) which yields the estimate
ξX(x)− ξX(y) ≤ α|ξX(z)− ξX(y)| ≤ 2αM . Thus, we obtain

ξX(x)− ξX(y) ≤ 2M
|x− y|2

ε+ |x− y|2
≤ 2M

ε
|x− y|2 .

Interchanging the roles of x and y yields that ξX is Lipschitz continuous on S with
Lipschitz modulus L := 2M

ε . Note that neither M nor ε depend on the precise choice of
X. Thus, the proof is complete.

The next example shows that the requirement S ⊂ int convX1 in Lemma 6.3 cannot
be relaxed.

Example 6.4. Let us assume that n = 2 and ϕ(x) = x2
2 hold. Further, we set

X1 :=
{

(1,−1), (1, 1), (0, 0)
}
, S := convX1.

Now, we consider an increasing sequence {θk}k∈N ⊂ (0, 1) ⊂ R with θk → 1. For all
k ∈ N, let us define Xk := X1 ∪

⋃k−1
i=1 {(θi, 0)} ⊂ R2. Then, it can be checked that

ξXk
(x) = max

{
x2,−x2,

x1 − θk−1

1− θk−1

}
is valid. In particular, the Lipschitz constant of ξXk

on S is given by (1 − θk−1)−1.
Clearly, this term is not bounded as k →∞.

Now, we are well prepared to study the qualitative properties of Algorithm 1.

Theorem 6.5. Either, Algorithm 1 terminates after a finite number of steps after pro-
ducing a global optimal solution, or it computes a sequence {(x̄k, ȳk, ūk)}k∈N of globally
optimal solutions of (OVR(Xk)). This sequence possesses a convergent subsequence whose
limit point (x̄, ȳ, ū) is a globally optimal solution of (OVR) and, thus, of (IOC). Moreover,
any accumulation point of {(x̄k, ȳk, ūk)}k∈N is a globally optimal solution of (OVR).

Proof. The feasible set of (OVR(Xk)) is larger than the feasible set of (OVR) for any
k ∈ N, Thus, if (x̄k, ȳk, ūk) is feasible to (OVR) for some k ∈ N, then this point must be
a globally optimal solution of this problem.
Suppose that the algorithm does not terminate. Then, the sequence {x̄k}k∈N is

bounded. The feasibility of (x̄k, ȳk, ūk) to (OVR(Xk)) and Remark 6.2 yield

∀k ∈ N : ‖ūk‖U ≤
√

2
σ ξX1(x̄k) + ‖Q[x̄k]‖U .

Since {x̄k}k∈N is bounded while ξX1 is continuous on S, {ūk}k∈N is bounded. From
the relation ȳk = (A−1 ◦ B)[ūk] for any k ∈ N and the continuity of A−1 ◦ B ∈ L [U ,Y],
{ȳk}k∈N is bounded as well. Consequently, {(x̄k, ȳk, ūk)}k∈N is bounded and, therefore,
possesses a weakly convergent subsequence (without relabeling) with weak limit (x̄, ȳ, ū).
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Especially, we have x̄k → x̄. The closedness of S and the closedness and convexity of
Uad yield x̄ ∈ S and ū ∈ Uad. Furthermore, A[ȳ] − B[ū] = 0 follows from the linearity
and continuity of A and B. Let L > 0 be the Lipschitz constant of ξXk

on S which, due
to Lemma 6.3, does not depend on k. Since f is convex and continuous, it is weakly
lower semicontinuous. Furthermore, ϕ is continuous by means of Lemma 4.4. Due to the
construction of the algorithm, we have ξXk

(x̄k−1) = ϕ(x̄k−1) for any k ∈ N which yields

ϕ(x̄) ≤ f(x̄, ȳ, ū) ≤ lim inf
k→∞

f(x̄k, ȳk, ūk)

≤ lim sup
k→∞

f(x̄k, ȳk, ūk)

≤ lim sup
k→∞

ξXk
(x̄k)

≤ lim sup
k→∞

(
ξXk

(x̄k−1) + L |x̄k − x̄k−1|2
)

= lim sup
k→∞

(
ϕ(x̄k−1) + L |x̄k − x̄k−1|2

)
= ϕ(x̄).

Therefore, (x̄, ȳ, ū) is feasible to (OVR). Moreover, the sequence of function values
{f(x̄k, ȳk, ūk)}k∈N converges to f(x̄, ȳ, ū). Combining this with the weak lower semi-
continuity of the functionals given by Rn × Y 3 (x, y) 7→ 1

2 ‖C[y]− P[x]‖2M ∈ R and
Rn × U 3 (x, u) 7→ 1

2 ‖u− Q[x]‖2U ∈ R yields

f(x̄, ȳ, ū) = 1
2 ‖C[ȳ]− P[x̄]‖2M + σ

2 ‖ū− Q[x̄]‖2U
< lim inf

k→∞
1
2 ‖C[ȳk]− P[x̄k]‖2M + lim inf

k→∞
σ
2 ‖ūk − Q[x̄k]‖2U

≤ lim inf
k→∞

1
2 ‖C[ȳk]− P[x̄k]‖2M + lim sup

k→∞

σ
2 ‖ūk − Q[x̄k]‖2U

= lim
k→∞

(
1
2 ‖C[ȳk]− P[x̄k]‖2M + σ

2 ‖ūk − Q[x̄k]‖2U
)

= f(x̄, ȳ, ū).

That is why we have ‖ūk − Q[x̄k]‖U → ‖ū− Q[x̄]‖U . Recalling ūk − Q[x̄k] ⇀ ū − Q[x̄]
and the fact that U is a Hilbert space, we already have uk − Q[x̄k] → ū − Q[x̄]. Since
x̄k → x̄ and, thus, Q[x̄k]→ Q[x̄] holds true, we obtain the strong convergence ūk → ū in
U . Applying the operator A−1 ◦ B, the convergence ȳk → ȳ in Y follows.
Pick an arbitrary feasible point (x, y, u) ∈ Rn×Y ×U of (OVR). By construction, we

have
∀k ∈ N : F (x̄k, ȳk, ūk) ≤ F (x, y, u).

Since F is continuous while {(x̄k, ȳk, ūk)}k∈N converges strongly to (x̄, ȳ, ū), we obtain

F (x̄, ȳ, ū) = lim
k→∞

F (x̄k, ȳk, ūk) ≤ F (x, y, u).

This shows that (x̄, ȳ, ū) is a globally optimal solution of (OVR) and, consequently, for
(IOC).
The above arguments can be reprised in order to show that any accumulation point of
{(x̄k, ȳk, ūk)}k∈N is a globally optimal solution of (OVR).
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Next, we present a counterexample which shows that Theorem 6.5 will not necessarily
hold if we only require S ⊂ convX1 in Algorithm 1.

Example 6.6. We consider a finite-dimensional version of (IOC). In particular, we
investigate the upper level problem

F (x, u) := 100
2

(
x1 − u+ 1√

2

)2
+ x1 + 1

2x
2
2 → min

x,u

x ∈ S := convX1

u ∈ Ψ(x),

(13)

in which Ψ: R2 ⇒ R is the solution map of the (state-reduced) lower level problem

f(x, u) := x2
2 + (x1 − u)2 → min

u

u ∈ [0, 2].
(14)

The set X1 is chosen as in Example 6.4. It is clear that Ψ(x) = {x1} and ϕ(x) = x2
2 hold

for all x ∈ S. Thus, the unique global solution of (13) is given by x̄ := (0, 0) and ū := 0.
Now, we will check that the sequence {(x̄k, ūk)}k∈N generated by Algorithm 1 (adapted

to the problem at hand, cf. Dempe and Franke [2016]) is recursively given by

x̄k =

(
1002 (1− (x̄k−1)1)

2 (100 + 2 (1− (x̄k−1)1))2
+ (x̄k−1)1, 0

)
, ūk = (x̄k)1 +

√
(x̄k)1 − (x̄k−1)1

1− (x̄k−1)1

with initial data x̄0 = 0. The convergences x̄k → (1, 0) and ūk → 1 +
√

2
2 can be checked.

This limit point is not a feasible point of (13).
In order to check that the algorithm produces the above iterates, we consider the sub-

problem

100
2

(
x1 − u+ 1√

2

)2
+ x1 + 1

2x
2
2 → min

x,u

x ∈ S := convX1

u ∈ [0, 2]

x2
2 + (x1 − u)2 ≤ ξX(x)

(15)

with X := X1 ∪ {(α, 0)} with α ∈ [0, 1). As in Example 6.4, we find

ξX(x) =


x1−α
1−α if x ∈ conv{(α, 0), (1,−1), (1, 1)},
x2 if x ∈ conv{(α, 0), (0, 0), (1, 1)},
−x2 if x ∈ conv{(α, 0), (0, 0), (1,−1)}.

Thus, (15) can be decomposed into three convex problems and, due to symmetry, we have
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to solve two of them. The first problem is

100
2

(
x1 − u+ 1√

2

)2
+ x1 + 1

2x
2
2 → min

x,u

x ∈ conv{(α, 0), (1,−1), (1, 1)}
u ∈ [0, 2]

x2
2 + (x1 − u)2 ≤ x1 − α

1− α
.

It can be checked (e.g. via the KKT-conditions) that its unique solution is given by

x̃(α) :=

(
1002 (1− α)

2 (100 + 2 (1− α))2
+ α, 0

)
, ũ(α) := x̃(α)1 +

√
x̃(α)1 − α

1− α
. (16)

Moreover, the objective value can be bounded from above by

F
((

1+α
2 , 0

)
, 1+α

2 + 1√
2

)
= 1+α

2 < 1.

The second subproblem for (15) is

100
2

(
x1 − u+ 1√

2

)2
+ x1 + 1

2x
2
2 → min

x,u

x ∈ conv{(α, 0), (0, 0), (1, 1)}
u ∈ [0, 2]

x2
2 + (x1 − u)2 ≤ x2.

The last constraint implies

u ≤ x1 +
√
x2 − x2

2 ≤ x1 + 1
2 .

Thus, for a feasible point (x, u) of this second subproblem, we can bound the objective by

F (x, u) ≥ 100
2

(
x1 − u+ 1√

2

)2
≥ 100

2

(
1√
2
− 1

2

)2
≥ 100

2

(
1
5

)2
= 2.

Hence, the global solution of (15) is given by (16).
Now, the problem solved by Algorithm 1 in step k is precisely (15) with α = (x̄k−1)1,

see also the calculation in Example 6.4.

Finally, we mention that Example 6.6 shows that [Dempe and Franke, 2016, Theo-
rem 4.3] does not hold as stated. In the proof, the authors claim that ξXk

possesses the
same Lipschitz constant as ϕ on S, but this is not true, see also Example 6.4.
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6.2 A numerical example

Now, we are going to present a numerical example of an inverse optimal control problem
with a PDE constraint. This will illustrate the performance of Algorithm 1. We will use
an example where the reduced upper level objective function x 7→ F (x, ψy(x), ψu(x)) has
multiple local minimizers and is not differentiable at the global minimum.
The problem under investigation is very similar to Example 2.2. First, we fix the

domain Ω := (−1, 1) × (−1, 1) and set n := 2, Y := H1
0 (Ω), and M := U := L2(Ω).

Moreover, we define f1, f2 ∈ L2(Ω) via

f1(ω) := 10 exp(−(ω1 − 0.7)2 + 5 (ω2 − 0.3)2),

f2(ω) := 10 exp(−(ω1 + 0.4)2 + 10 (ω2 − 0.5)2)

for any ω = (ω1, ω2) ∈ Ω and choose σ := 0.01 for the regularization parameter. Let us
set

S := conv{(0, 0), (1, 0), (0, 1)}.
In order to construct a nonsmooth and nonconvex example, we first set x̃ := (0.3, 0.3)

and define ũ ∈ L2(Ω) to be the unique solution of the optimal control problem without
control constraints

1
2 ‖y − x̃1f1 − x̃2f2‖2L2(Ω) + σ

2 ‖u‖
2
L2(Ω) → min

y,u

−∆y − u = 0 on Ω

y = 0 on ∂Ω.

(17)

Actually, we do not solve (17) but its finite element discretization. For the discretization,
we use piecewise linear finite elements (with mesh size 0.1) for the state y and the control
u. In order to obtain a coefficientwise projection formula (for problem (19) below), we
use mass lumping for the control variables.
Next, we define the lower and upper bounds ua, ub ∈ L2(Ω) by

∀ω ∈ Ω: ua(ω) := min{ũ(ω), 2}, ub(ω) := max{ũ(ω), 3}
These bounds will be used in the lower level problem in order to get a nonsmooth and
nonconvex example.
Now, we consider the inverse optimal control problem

1
2 ‖y − 0.2 f1 − 0.3 f2‖2L2(Ω) + (0.1, 0.3)>x → min

x,y,u

x ∈ S

(y, u) ∈ Ψ(x)

(18)

where Ψ: R2 ⇒ H1
0 (Ω) × L2(Ω) denotes the solution map of the parametric optimal

control problem
1
2 ‖y − x1f1 − x2f2‖2L2(Ω) + σ

2 ‖u‖
2
L2(Ω) → min

y,u

−∆y − u = 0 on Ω

y = 0 on ∂Ω

ua ≤ u ≤ ub a.e. on Ω.

(19)
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For problem (19), we use the same discretization as for (17).
We give some comments concerning the construction of this problem. Since ũ is the

optimal solution of problem (17), and since ua ≤ ũ ≤ ub holds almost everywhere on Ω
(by choice of the bounds), it is also the solution of the lower level problem (19) for x = x̃.
Moreover, since ũ is even the solution of (17), the bounds in (19) are only weakly active,
i.e., the multipliers corresponding to these bounds are zero. Thus, we could expect that
the function x 7→ ψu(x) is only directionally differentiable in x̃. Finally, the objective
function in the upper level problem (18) is chosen such that x̃ really becomes a global
minimizer.
For convenience, we denote the reduced objective function of the upper level problem

by
γ(x) := F (x, ψy(x), ψu(x)).

We can see in Figure 1 that this construction yields a nonsmooth reduced objective
function γ with a global minimizer at x̄ = x̃ = (0.3, 0.3). Moreover, γ is nonsmooth at x̄
and has further local minimizers at (0, 0) and approximately (0.36, 0).

0 0.2 0.4 0.6

0.65

0.7

0.75

0.8

t

γ(.3, t)

γ(t, .3)

Figure 1: The reduced objective function γ (left figure), and cross sections of γ (right
figure).

We initialize the algorithm with the choice

X1 :=
{(
−1

2 ,−
1
2

)
,
(

3
2 , 0
)
,
(
0, 3

2

)}
in order to guarantee S ⊂ int convX1. Then, we run 1000 iterations of Algorithm 1.
Because we solve a relaxed optimization problem in each iteration, we obtain (increasing)
lower bounds on the optimal value of the bilevel problem (18). On the other hand,
calculating γ(x̄k) yields upper bounds. Since x̄k is the solution of the relaxed problem,
the true value γ(x̄k) can be quite large. Therefore, we denote by x̂k the best known point
of γ in iteration k, i.e.,

x̂k := argmin
x∈{x̄1,...,x̄k}

γ(x).

This yields a decreasing upper bound γ(x̂k).
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The convergence of these lower and upper bounds, as well as the difference between
both bounds can be seen in Figure 2. Moreover, we show the triangulation of convX1

given by the regions of stability at iteration k = 50 in Figure 3. Recall that the nodes
of this triangulation are given by the set Xk := X1 ∪

⋃k−1
j=1{x̄j}. Finally, we record the

Euclidean distances |x̄k − x̄|2 and |x̂k − x̄|2 in Figure 4, and one can believe that x̄k → x̄
as predicted by Theorem 6.5.
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Figure 2: Errors of lower and upper bounds on function values

From these results, we can see that the convergence of the algorithm is comparatively
slow. In particular, in each iteration we have to solve several auxiliary convex problems
(to obtain the solution of (OVR(Xk))). This is, however, the expectable price we have
to pay for the guaranteed convergence towards a global minimizer.
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