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SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS FOR
OPTIMAL CONTROL OF NON-SMOOTH, SEMILINEAR

PARABOLIC EQUATIONS

LIVIA BETZ∗

Abstract. This paper is concerned with an optimal control problem governed by a non-smooth,
semilinear parabolic PDE. The nonlinearity in the state equation is only directionally differentiable,
locally Lipschitz continuous, and is allowed to have infinitely many non-differentiable points. By
employing its limited properties, Bouligand-differentiability of the control-to-state map is shown (in
an extended sense). This enables us to establish second-order sufficient optimality conditions. We
provide concrete settings where these reduce to the first-order necessary optimality condition.

Key words. Optimal control of PDEs, non-smooth optimization, second-order sufficient condi-
tions, Bouligand differentiability, two-norm discrepancy

AMS subject classifications. 49J20, 35K58, 49K99

1. Introduction. In this paper we establish second-order sufficient conditions
for the following optimal control problem:

min
u∈Lr(0,T ;L2(Ω))

J(y, u)

s.t. ẏ(t) +Ay(t) + f(y(t)) = B u(t) a.e. in (0, T )

y(0) = 0,

 (P)

where Ω ⊂ Rn, n = 2, 3, is a bounded Lipschitz domain, J is a smooth function,
A is a linear unbounded operator and f is a non-smooth mapping. The precise
statements will be given at the end of this section and in Assumption 2.1 below. The
essential feature of (P) is that the nonlinearity f appearing in the state equation is only
directionally differentiable. Thus, the second-order analysis cannot be performed by
classical techniques for smooth optimization problems in Banach spaces. Moreover, we
deal with a non-Hilbert space for the control, which gives rise to additional challenges
(such as the two-norm discrepancy).

Optimal control problems subject to non-smooth constraints are challenging even
in the finite dimensional case, see e.g. [30] and the references therein. Difficulties
arise from the non-smoothness of the control-to-state mapping, which does not allow
to apply the standard Karush-Kuhn-Tucker (KKT) theory. For this reason, various
optimality conditions of different strength have been introduced, such as e.g. Clarke
(C), Bouligand (B), and strong stationarity. In the spirit thereof, stationarity concepts
for the infinite dimensional case are defined in [19]. The most rigorous stationarity
concept is strong stationarity. In a previous work [24], necessary optimality conditions
of this type were established for (P), from which we will benefit in the present paper.

While second-order sufficient optimality conditions (SSC) for the optimal control of
smooth PDEs have been intensively investigated, see e.g. [4–8, 11, 15, 27, 29] and the
references therein, the literature on SSC for the optimal control of non-smooth prob-
lems is rather rare. To the best of our knowledge, the only contributions in this
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field deal with elliptic VIs. These were addressed in [22] (obstacle problem) and [3]
(static elastoplasticity). In [25] it was proven that the obstacle control problem is
convex if the desired state is behind the obstacle. This result was extended in [22],
where sufficient conditions for the optimal control of the obstacle problem in the gen-
eral case were presented. To the best of the author’s knowledge, the investigation of
second-order sufficient conditions for optimization problems governed by non-smooth
parabolic PDEs is an open research topic.
What distinguishes the problem (P) from the ones analyzed in [3] and [22] is not
only the parabolic component but also the very general non-smooth mapping f . For
example, we allow the set of non-differentiable points of f to be at most countable.
In our second-order analysis, we require (in addition to strong stationarity, positive-
definiteness/coercivity of the Hessian of the “Lagrangian”) only a sign condition on the
adjoint state. This is standard when it comes to deriving SSC for infinite dimensional
control problems which feature non-smooth solution operators, as it ensures a so-
called “safety distance”, cf. [3, Rem. 4.13]. A corresponding assumption regarding the
sign of the adjoint state is required in [22] and [3] as well. However, our SSC are
comparatively sharper, since in [22] an additional sign condition on the multiplier
is imposed, while in [3] additional regularity assumptions on the adjoint state and
multipliers are made (besides strong stationarity, positive-definiteness/coercivity of
the Hessian of the “Lagrangian”).
Letting the non-smooth nonlinearity aside, a further challenge in this paper arises from
the fact that we work with a non-Hilbert space for the control (which we motivate in
Remark 2.6 below). For this reason we need to consider the two-norm discrepancy. In
order to be able to carry out the second order analysis in this framework, it is crucial
to show an improved Bouligand-differentiability result for the solution operator of
the state equation (Theorem 3.4 below). In this context, we will exploit semi group
theory arguments and we shall rely on the global Lipschitz continuity of f ′(; ) w.r.t.
its direction, cf. Remark 3.3 below.
The paper is organized as follows. In Section 2 we state the precise assumptions on
the data and lay the foundations for our analysis, by recalling some useful results
from [24]. The findings in Section 3 play a fundamental role, as they lead to an
essential Bouligand-differentiability result for the control-to-state map. This in turn
constitutes the basis for the investigation of SSC, which will be performed in Section 4.
Here we present our main results, namely two sets of second-order sufficient conditions
for the optimal control of (P) (Theorems 4.13 and 4.16 below). In Section 5 we
introduce a setting where the necessary optimality condition alone is sufficient for
optimality.

Notation. Throughout the paper, C and c denote generic positive constants. If
X and Y are two linear normed spaces, the space of linear and bounded operators
from X to Y is denoted by L(X,Y ). For the open ball in X around x ∈ X with
radius R we write BX(x,R). The symbol X∗ stands for the dual space of X, while
〈., .〉X stands for the dual pairing between X and X∗. If X is compactly embedded

in Y , we write X ↪→↪→ Y , and X
d
↪→ Y means that X is dense in Y . If X and Y

are Banach spaces, we use the notation [X,Y ]θ for the complex and (X,Y )θ,ω for the
real interpolation space, respectively, where θ ∈ (0, 1) and ω ∈ [1,∞], see e.g. [31].
If a linear operator A is the infinitesimal generator of a semigroup, the latter will be
denoted by {etA}t≥0, see also [26, Chp. 2.5]. In all what follows, T > 0 is a fixed final
time and Ω ⊂ Rn, n = 2, 3, is a bounded Lipschitz domain in the sense of [23, Chp.
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1.1.9]. For simplicity, we abbreviate Q := (0, T )× Ω. The boundary of Ω consists of
two disjoint measurable parts ΓD and ΓN . By W 1,q

D (Ω) we denote the closure of the
set {ψ|Ω : ψ ∈ C∞0 (Rn), supp(ψ) ∩ ΓD = ∅} with respect to the W 1,q-norm, where
q ∈ (1,∞). For the dual space associated withW 1,q′

D (Ω) we use the symbolW−1,q(Ω),
where q′ stands for the conjugate exponent. Moreover, we abbreviate

Wr
0(W 1,q

D (Ω),W−1,q(Ω)) := {v ∈W 1,r(0, T ;W−1,q(Ω)) ∩ Lr(0, T ;W 1,q
D (Ω)) : v(0) = 0},

Wr′

T (W 1,q′

D (Ω),W−1,q′(Ω)) := {v ∈W 1,r′(0, T ;W−1,q′(Ω)) ∩ Lr
′
(0, T ;W 1,q′

D (Ω)) : v(T ) = 0},

where r ∈ (1,∞).

2. Standing assumptions and known results. This section is devoted to
collecting the assumptions on the data as well as crucial results from [24] concerning
the state equation.
Assumption 2.1. For the quantities in (P) we require the following:

1. Let

n < q ≤ 2n/(n− 2) and
2q

q − n
< r <∞ (2.1)

be fixed.
2. The operator A : W−1,q(Ω) → W−1,q(Ω) is linear, unbounded, and closed.

Its domain of definition is given by W 1,q
D (Ω). In addition, 0 /∈ σ(A), where

σ(A) denotes the spectrum of A.
3. Moreover, A satisfies maximal parabolic Lr(0, T ;W−1,q(Ω))-regularity, i.e.,

for every g ∈ Lr(0, T ;W−1,q(Ω)), the equation ẇ + Aw = g admits a unique
solution w ∈Wr

0(W 1,q
D (Ω),W−1,q(Ω)).

4. The nonlinearity f : R→ R is assumed to be monotone increasing. Moreover,
it is Lipschitz continuous on bounded sets, i.e., for all M > 0, there exists a
constant LM > 0 such that

|f(z1)− f(z2)| ≤ LM |z1 − z2| ∀ z1, z2 ∈ [−M,M ].

5. The function f is directionally differentiable at every point, i.e.,∣∣∣f(x+ τ h)− f(x)

τ
− f ′(x;h)

∣∣∣ τ↘0−→ 0 ∀x, h ∈ R.

Moreover, the set of non-differentiable points of f is at most countable.
6. The operator B : L2(Ω) → (W−1,q(Ω),W 1,q

D (Ω))ς,∞ is linear and bounded,
where ς ∈ (0, 1/2) is fixed.

7. The objective J : L2(0, T ;W 1,q
D (Ω)) × L2(Q) → R is twice continuously

Fréchet-differentiable.
Remark 2.2. With a little abuse of notation, the Nemytskii-operators associated with
f and B, considered with different ranges, will be denoted by the same symbol.
Comments regarding the above assumptions are provided at the end of this section.
From now on, Assumption 2.1 is tacitly assumed in the following without mentioning
it every time. We point out that this fits in the general setting of [24, Assumptions
2.1 and 2.5], as explained in the following. With the notations from the preceding
contribution [24] we have

X = W−1,q(Ω), D = W 1,q
D (Ω), U = L2(Ω), Y = L∞(Ω).
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Note that the maximal parabolic regularity assumption on A implies that A generates
an analytic semigroup, see [2, Section 3]. The Nemytskii operator f : L∞(Ω) →
L∞(Ω) is well-defined and Lipschitz continuous on bounded sets, i.e., for everyM > 0,
there exists LM > 0 so that

‖f(y1)− f(y2)‖L∞(Ω) ≤ LM ‖y1 − y2‖L∞(Ω) ∀ y1, y2 ∈ BL∞(Ω)(0,M). (2.2)

When considered with domain L∞(Ω) and range Lβ(Ω), β < ∞, f is directionally
differentiable, see proof of [24, Lemma 6.4] for details. Therein, Assumption 2.1.1
on r and q is justified as well. The condition q > n guarantees that there exists
θ ∈ (0, 1) such that (W−1,q(Ω),W 1,q

D (Ω))θ,∞ ↪→ L∞(Ω), see [24, (6.4)], while the
relation between r and q in (2.1) ensures that r(1 − θ) > 1, i.e., [24, (2.4)]. These
turn out to be essential not only for the existence of solutions of the state equation,
see [24], but also for the upcoming second-order analysis, see Remark 2.6 below. Note
that, in view of [31, Thm. 1.15.2 (d), p.101] and [26, Thm. 2.6.13, p.74], it holds

‖e−tA‖L(W−1,q(Ω),L∞(Ω)) ≤ c t−θ ∀ t ∈ (0, T ], (2.3)

which will be crucial in the proof of Theorem 3.4 below. Let us mention that we
dropped the density assumption on B and the convexity assumption on J , as they were
needed in [24] just for deriving (strong stationary) necessary optimality conditions and
for proving the existence of global minimizers, respectively, which is not the case in
this paper.

The embedding

Wr
0(W 1,q

D (Ω),W−1,q(Ω)) ↪→↪→ C([0, T ];C(Ω̄)) = C(Q̄) (2.4)

will be crucial in the next sections and is a consequence of [1, Thm. 3] combined with
W 1,q
D (Ω) ↪→↪→ W−1,q(Ω), (W−1,q(Ω),W 1,q

D (Ω))θ̂,1 ↪→ [W−1,q(Ω),W 1,q
D (Ω)]θ̂ ↪→ C(Ω̄),

see [1, Section 3], [16, Thm. 3.5], and [31, Thm. 4.6.1.e)]. Note that the last embedding
is true if θ̂ ∈ (0, 1) is chosen such that r(1− θ̂) > 1 and 2θ̂−1 > n/q, which is possible
in view of 1/r < (q − n)/2q, cf. (2.1).

Since the setting in Assumption 2.1 is just a special case of [24, Assumption 2.1], we
can apply the general results in [24, Sections 2-3] on our state equation. We begin by
introducing the control-to-state mapping.

Definition 2.3. The solution operator of

ẏ(t) +Ay(t) + f(y(t)) = B u(t) a.e. in (0, T ),

y(0) = 0
(2.5)

is denoted by S : Lr(0, T ;L2(Ω)) 3 u 7→ y ∈ Wr
0(W 1,q

D (Ω),W−1,q(Ω)). Note that, in
view of [24, Proposition 2.11], this is well-defined.

Proposition 2.4. [24, Proposition 2.11] The control-to-state mapping S is Lipschitz
continuous on bounded sets, i.e., for every R > 0, there exists a constant LR > 0 such
that, for all u1, u2 ∈ BLr(0,T ;L2(Ω))(0, R), it holds

‖S(u1)− S(u2)‖Wr
0(W 1,q

D (Ω),W−1,q(Ω)) ≤ LR‖u1 − u2‖Lr(0,T ;L2(Ω)). (2.6)

Theorem 2.5. [24, Lemma 3.3, Theorem 3.4] The solution operator S : Lr(0, T ;L2(Ω))→
Wr

0(W 1,q
D (Ω),W−1,q(Ω)) is directionally differentiable and its directional derivative
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η = S′(u;h) at u ∈ Lr(0, T ;L2(Ω)) in direction h ∈ Lr(0, T ;L2(Ω)) is given by the
unique solution of

η̇(t) +Aη(t) + f ′(y(t); η(t)) = B h(t) a.e. in (0, T )

η(0) = 0,
(2.7)

with y = S(u). The solution operator of (2.7), namely S′(u; ·) : Lr(0, T ;L2(Ω)) 3
h 7→ η ∈Wr

0(W 1,q
D (Ω),W−1,q(Ω)) is globally Lipschitz continuous.

Some remarks concerning Assumption 2.1 are in order:
Remark 2.6. Note that Assumption 2.1.1 does not allow us to consider the L2(Q)-
Hilbert space for the control, since r > 2 even in two dimensions. We deliberately
choose to work with such a setting, although additional assumptions on the nonlin-
earity f would enable us to set r = 2, cf. [24, Remark 6.5]. We proceed in this way
due to the following reason. The condition (2.1) guarantees that the control-to-state
mapping is (locally) Lipschitz continuous with range in C(Q̄) (see (2.6) and (2.4)).
This will be indispensable for the derivation of SSC: given a point y in a neighbor-
hood of the state ȳ, we have to be able to make assertions about the distance between
y(t, x) and ȳ(t, x), see proofs of Lemmas 4.8 and 4.10 below. Let us point out that if
r = 2, then one cannot expect L∞(Q)-regularity for the state, see [32, Chp. 5]. We
also emphasize that if we weaken the assumption on r as suggested by [24, Remark
6.5], see also Lemma A.1, (i.e., if we require that 2q

q−n+ς2q < r <∞, where ς is given
by Assumption 2.1.6), then the crucial embedding (2.4) is no longer true.
In the elliptic case, the local Lipschitz continuity of the control-to-state operator with
range in the space of essentially bounded functions is crucial too. Thanks to the Stam-
pacchia method, see [32], one can choose L2(Ω) as space for the control to guarantee
this. Let us emphasize that the entire second-order analysis for the elliptic version of
(P) can be performed in the same way as in the parabolic setting.
Remark 2.7. In two dimensions, Assumption 2.1.2 is satisfied by the operator A =
−div κ∇ defined as

A : W 1,q
D (Ω) 3 y 7→

∫
Ω

κ∇y∇ · dx ∈W−1,q(Ω),

if Ω ∪ ΓN is regular in the sense of Gröger, cf. [17], and the coefficient function
κ ∈ L∞(Ω;Rn×n) is uniformly elliptic and symmetric. The papers [21, Appendix]
and [12] provide many settings such that −div κ∇ fulfills Assumption 2.1.2 in three
dimensions too, e.g., if ΓN = ∅, κ is uniformly continuous and may jump across a
C1-interface, and Ω is a strong Lipschitz domain in the sense of [23, Chp. 1.1.9].
For more details, see [24, Remark 6.3]. In the more recent contribution [13] very
mild conditions on Ω are stated such that Assumption 2.1.3 is guaranteed in both
dimensions for A = −div κ∇ and κ as above. We refer to [13, Thm. 4.6(c)], where
rough settings are allowed, e.g. domains which are not Lipschitz and where Ω is not
required to lie on the same side of ΓD. Note further that A satisfies maximal parabolic
Ls(0, T ;W−1,q(Ω))-regularity for every s ∈ (1,∞), cf. [14].
Remark 2.8. The monotonicity property of f in Assumption 2.1.4 can be replaced by
the more general [24, Assumption 2.5], see the proof of [24, Lemma 6.6]. Alternatively,
one could require that f satisfies certain growth conditions, cf. [24, Remark 2.6].
Remark 2.9. Semilinear parabolic PDEs with non-smooth nonlinearities f of the type
(2.5) arise for instance in the modeling of combustion processes, see e.g. [34]. In this
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case, the combustion nonlinearity f features a so-called ignition-temperature Θ > 0.
For example, f could be identically zero on the interval (−∞,Θ], i.e., there is no
reaction below the ignition-temperature. Once Θ is reached, ignition and combustion
suddenly occur (so that Θ is a kink point of f). This leads to an abrupt change in
the physical regime modeled by the non-smooth function f . For more details, we refer
to [34, Chp. 1.2]. In Figure 5.1 below we depict an ignition-type nonlinearity with
three ignition temperatures.

3. Bouligand-differentiability of the control-to-state operator. This sec-
tion addresses an essential property of the operator S that will be needed in the proof
of the main result, namely its Bouligand-differentiability (in an extended sense). To
show this, we need the following

Proposition 3.1. Let {ξn} be a uniformly bounded sequence in C(Q̄) with ξn(t, x)→
0 a.e. in Q as n→∞. Then

‖f(y + ξn)− f(y)− f ′(y; ξn)‖Lβ(0,T ;L%(Ω))

‖ξn‖Lβ̂(0,T ;L%̂(Ω))

→ 0 ∀ y ∈ C(Q̄)

for all 1 ≤ β < β̂ ≤ ∞ and 1 ≤ % < %̂ ≤ ∞. In particular, f is Bouligand- and thus,
directionally differentiable from C(Q̄) to Lβ(Q) for every 1 ≤ β < ∞. Furthermore,
f ′(y; ξ) ∈ L∞(Q) ∀ y, ξ ∈ C(Q̄).

Proof. From Assumptions 2.1.4 and 2.1.5 it follows that f : R → R is Bouligand-
differentiable at any z ∈ R, i.e.,

|f(z + vn)− f(z)− f ′(z; vn)|
|vn|

→ 0 as vn → 0. (3.1)

Note that, for all M > 0, it holds

|f ′(z; v)| ≤ LM+1 |v| ∀ v ∈ R, z ∈ [−M,M ], (3.2)

where LM+1 > 0 is given by Assumption 2.1.4. This is due to the definition of the
directional derivative and its positive homogeneity w.r.t. direction, see also the proof
of [24, Lemma 3.1].
Let now {ξn} ⊂ C(Q̄) be a uniformly bounded sequence with ξn(t, x) → 0 a.e. in Q.
As a result of (3.1), we have the following convergence

gn(t, x) :=
|f(y(t, x) + ξn(t, x))− f(y(t, x))− f ′(y(t, x); ξn(t, x))|

|ξn(t, x)|
→ 0 a.e. in Q

as n→∞. Moreover, due to (3.2), it holds

|f ′(y(t, x); ξn(t, x))| ≤ L‖y‖C(Q̄)+1 |ξn(t, x)| ∀ (t, x) ∈ Q.

By assumption, there exists c > 0 such that ‖ξn‖C(Q̄) ≤ c for all n and by employing
the estimate in Assumption 2.1.4 we have

|f(y(t, x) + ξn(t, x))− f(y(t, x))| ≤ L‖y‖C(Q̄)+c
|ξn(t, x)| ∀ (t, x) ∈ Q.

Thus, by Lebesgue’s dominated convergence theorem, we obtain

gn → 0 in Lβ
′
(0, T ;L%

′
(Ω)) as n→∞,
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where we abbreviate β′ = ββ̂/(β̂ − β) ∈ [1,∞) and %′ = %%̂/(%̂ − %) ∈ [1,∞). In
view of the definition of gn, Hölder’s inequality, and the above convergence we finally
obtain

‖f(y + ξn)− f(y)− f ′(y; ξn)‖Lβ(0,T ;L%(Ω))

‖ξn‖Lβ̂(0,T ;L%̂(Ω))

=
‖gnξn‖Lβ(0,T ;L%(Ω))

‖ξn‖Lβ̂(0,T ;L%̂(Ω))

≤
‖gn‖Lβ′ (0,T ;L%′ (Ω))‖ξn‖Lβ̂(0,T ;L%̂(Ω))

‖ξn‖Lβ̂(0,T ;L%̂(Ω))

→ 0 as n→∞.

Note that f ′(y; ξ) ∈ L∞(Q) for all y, ξ ∈ C(Q̄), in light of (3.2).

Similarly to (3.2), we observe that, for all M > 0, it holds

|f ′(z; v1)− f ′(z; v2)| ≤ LM+1 |v1 − v2| ∀ v1, v2 ∈ R, z ∈ [−M,M ], (3.3)

where LM+1 > 0 is given by Assumption 2.1.4. This is due to the estimate in Assump-
tion 2.1.4 and the positive homogeneity of the directional derivative w.r.t. direction,
see also the proof of [24, Lemma 3.1]. By means of (3.3), we next prove that the
directional derivative h 7→ S′(u;h) can be extended on the Hilbert-space L2(Q) for
any u ∈ Lr(0, T ;L2(Ω)). We also obtain a crucial estimate, namely (3.5) below, which
will be the key ingredient for showing the extended Bouligand-differentiability of S.

Lemma 3.2. Let u ∈ Lr(0, T ;L2(Ω)) be given and y := S(u). For any right-hand side
h ∈ L2(Q), there exists a unique solution η ∈W2

0(W 1,q
D (Ω),W−1,q(Ω)) of

η̇(t) +Aη(t) + f ′(y(t); η(t)) = B h(t) a.e. in (0, T )

η(0) = 0.
(3.4)

The resulting solution operator of (2.7) is denoted by Su : L2(Q) 3 h 7→ η ∈
W2

0(W 1,q
D (Ω),W−1,q(Ω)). There exists a constant c = c(u) > 0 such that

‖Suh‖W2
0(W 1,q

D (Ω),W−1,q(Ω)) ≤ c ‖h‖L2(Q) ∀h ∈ L2(Q). (3.5)

Moreover, the operator Su : L2(Q) 3 h 7→ η ∈ W2
0(W 1,q

D (Ω),W−1,q(Ω)) is weakly
continuous.

Proof. Let h ∈ L2(Q) be arbitrary, but fixed. We first address the integral equation
associated to (3.4):

η(t) =

∫ t

0

e−(t−s)A(Bh(s)− f ′(y(s); η(s))
)
ds ∀ t ∈ [0, T ]. (3.6)

As in [24, Lem. 3.3], the unique solvability of (3.6) follows by Banach’s contraction
principle. We underline only the key aspects which have to be considered here, since
most of the arguments are rather standard. We first see that the term on the right-
hand side in (3.6) maps η ∈ C([0, T ];L2(Ω)) to C([0, T ];L2(Ω)). This is a result of
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(A.2), (3.2) together with y ∈ C(Q̄), Assumption 2.1.6, and (A.3), which imply∫ t

0

‖e−(t−s)A(Bh(s)− f ′(y(s); η(s))
)
‖2 ds

≤
(∫ T

0

‖e−sA‖2L((W−1,q(Ω),W 1,q
D (Ω))ς,∞,L2(Ω))

ds
)1/2

‖Bh‖L2(0,T ;(W−1,q(Ω),W 1,q
D (Ω))ς,∞)

+

∫ t

0

‖e−(t−s)A‖L(L2(Ω),L2(Ω))‖η(s)‖L2(Ω) ds

≤ c‖h‖L2(Q) +

∫ t

0

(t− s)−γ‖η(s)‖L2(Ω) ds ∀ t ∈ [0, T ],

(3.7)
where γ ∈ (1/2, 1). The continuity in time follows by standard arguments of semi-
group theory, cf. [26, Thm. 2.6.8(d) and Thm. 2.6.13(d)]. Further, the term on the
right-hand side in (3.6) is Lipschitz continuous w.r.t. η ∈ C([0, T ];L2(Ω)), since we
can estimate as in (3.7), where this time we use (3.3). This yields the contractivity
of the fixed point mapping on small time intervals. Then, a concatenation argu-
ment yields the global (in time) existence. Thus, (3.6) admits a unique solution
η ∈ C([0, T ];L2(Ω)). In view of (3.7), we can apply a generalized Gronwall’s inequal-
ity, cf. [18, Lemma 7.1.1, p. 188], which gives in turn

‖η‖C([0,T ];L2(Ω)) ≤ c‖h‖L2(Q). (3.8)

We now recall that A satisfies maximal parabolic L2(0, T ;W−1,q(Ω))-regularity, ac-
cording to Assumption 2.1.3 and [14], see also Remark 2.7. A boot strapping technique
similar to [24, Prop. 2.11] finally yields that η ∈W2

0(W 1,q
D (Ω),W−1,q(Ω)). Note that

f ′(y; η) ∈ L2(Q) ↪→ L2(0, T ;W−1,q(Ω)), by (3.2) and the assumption on q, see (2.1).

In the light of (∂t + A)−1 ∈ L(L2(0, T ;W−1,q(Ω));W2
0(W 1,q

D (Ω),W−1,q(Ω))), (3.2),
(3.8), and the boundedness of B, we conclude (3.5) with c depending on ‖y‖C(Q̄), and
thus on u.

The weak continuity of Su then follows by the exact same arguments as in [24, Lem.
2.13], by relying on the compact embedding

W2
0(W 1,q

D (Ω),W−1,q(Ω)) ↪→↪→ Lϑ(0, T ;Lq(Ω)) ∀ϑ ∈ [1,∞). (3.9)

This is a consequence of [1, Thm. 3] combined with the embeddings W 1,q
D (Ω) ↪→↪→

W−1,q(Ω), (W−1,q(Ω),W 1,q
D (Ω)) 1

2 ,1
↪→ [W−1,q(Ω),W 1,q

D (Ω)] 1
2

= Lq(Ω), see [1, Section
3] and [16, Thm. 3.5].

Remark 3.3. Let us underline that the global Lipschitz continuity of the nonlinearity
in (3.4) (along with the resulting global growth condition (3.2)) are the key tools in
the proof of Lemma 3.2. These allow us to work with the global Lipschitz continuous
Nemytskii operator f ′(y; ·) mapping from L2(Ω) to L2(Ω). If the nonlinearity does not
satisfy some sort of global growth condition (e.g. if it is only Lipschitz continuous on
bounded sets), then the associated Nemytskii operator is well-defined only on L∞(Ω)
(such as in our state equation (2.5)). In this case the fixed point function should
map between C([0, T ];L∞(Ω)) and C([0, T ];L∞(Ω)). An inspection of the proof of
Lemma A.1 then shows that the L∞(Ω)-norm of the integral in (3.6) is not finite for
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h ∈ L2(Q), but only for h ∈ Ls(0, T ;L2(Ω)) with some s > 2, see [24, Rem. 6.5].

Theorem 3.4. Let u ∈ Lr(0, T ;L2(Ω)) be fixed and h→ 0 in Lr(0, T ;L2(Ω)). Then

‖S(u+ h)− S(u)− S′(u;h)‖Wr
0(W 1,q

D (Ω),W−1,q(Ω))

‖h‖L2(Q)
→ 0.

Thus, the control-to-state mapping S : Lr(0, T ;L2(Ω)) → Wr
0(W 1,q

D (Ω),W−1,q(Ω)) is
Bouligand-differentiable.

Proof. Let u, h ∈ Lr(0, T ;L2(Ω)) be arbitrary, but fixed and set y := S(u), yh :=
S(u+h) and η := S′(u;h). By subtracting (2.5) and (2.7) from (2.5) with right-hand
side u+ h we have

d

dt
(yh − y − η) +A(yh − y − η) = −f(yh) + f(y) + f ′(y; η),

(yh − y − η)(0) = 0.
(3.10)

The associated integral equation reads

(yh − y − η)(t) =

∫ t

0

e−(t−s)A(− f(yh(s)) + f(y(s)) + f ′(y(s); η(s))
)
ds,

see e.g. [18]. Consequently, one obtains

‖(yh − y − η)(t)‖L∞(Ω)

≤
∫ t

0

‖e−(t−s)A‖L(W−1,q(Ω),L∞(Ω))

( =:Âh(s)︷ ︸︸ ︷
‖f
(
yh(s)

)
− f(y(s) + η(s))‖W−1,q(Ω)

+ ‖f(y(s) + η(s))− f(y(s))− f ′(y(s); η(s))‖W−1,q(Ω)︸ ︷︷ ︸
=:B̂h(s)

)
ds

(3.11)
for all t ∈ [0, T ]. We assume that ‖h‖Lr(0,T ;L2(Ω)) ≤ 1, since h → 0 later anyway.
Proceeding exactly as in the proof of [24, Lemma 6.6], we find

‖yh‖C(Q̄) ≤ C(1 + ‖u+ h‖Lr(0,T ;L2(Ω))) ≤ C(2 + ‖u‖Lr(0,T ;L2(Ω))) =: ρ1,

‖y + η‖C(Q̄) ≤ C(1 + ‖u‖Lr(0,T ;L2(Ω)) + Lu) =: ρ2,

where for the last estimate we used Theorem 2.5 combined with (2.4). Now, applying
(2.2) with M := max{ρ1, ρ2} yields

Âh(t) ≤ LM ‖(yh − y − η)(t)‖L∞(Ω) ∀ t ∈ [0, T ], (3.12)

in view of L∞(Ω) ↪→ W−1,q(Ω). To estimate B̂h, let us first observe that L2(Ω) ↪→
W−1,q(Ω), as a result of q ≤ 2n/(n−2), see (2.1). Now, by employing (3.5) and (3.9),
we have

‖B̂h‖Lr(0,T ) ≤ C
‖f(y + η)− f(y)− f ′(y; η)‖Lr(0,T ;L2(Ω))

‖η‖Lr+1(0,T ;Lq(Ω))
‖η‖Lr+1(0,T ;Lq(Ω))

≤ C
‖f(y + η)− f(y)− f ′(y; η)‖Lr(0,T ;L2(Ω))

‖η‖Lr+1(0,T ;Lq(Ω))
‖h‖L2(Q),
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provided that η 6= 0. In case that η = 0, we deduce B̂h = 0, by the definition of
B̂h. Further, we observe that ‖h‖Lr(0,T ;L2(Ω)) → 0 implies S′(u;h)→ 0 in C(Q̄), as a
consequence of Theorem 2.5 combined with (2.4). Thanks to q > 2, Proposition 3.1
gives in turn

‖B̂h‖Lr(0,T )

‖h‖L2(Q)
≤ C
‖f(y + η)− f(y)− f ′(y; η)‖Lr(0,T ;L2(Ω))

‖η‖Lr+1(0,T ;Lq(Ω))
→ 0, (3.13)

if ‖h‖Lr(0,T ;L2(Ω)) → 0. Now we return to (3.11), where inserting (3.12) results in

‖(yh − y − η)(t)‖L∞(Ω)

≤ LM
∫ t

0

‖e−(t−s)A‖L(W−1,q(Ω),L∞(Ω))‖(yh − y − η)(s)‖L∞(Ω) ds

+

∫ t

0

‖e−(t−s)A‖L(W−1,q(Ω),L∞(Ω))B̂h(s) ds

≤ LM
∫ t

0

c (t− s)−θ‖(yh − y − η)(s)‖L∞(Ω) ds

+ ‖e−·A‖Lr′ (0,T ;L(W−1,q(Ω),L∞(Ω)))‖B̂h‖Lr(0,T ) ∀ t ∈ [0, T ].

Here, θ ∈ (0, 1) denotes the exponent in (2.3). In view of the latter, the mapping
t 7→ e−tA belongs indeed to Lr

′
(0, T ;L(W−1,q(Ω), L∞(Ω))), since r′θ < 1. By means

of a generalized Gronwall’s inequality, cf. [18, Lemma 7.1.1, p. 188], we have

‖(yh − y − η)(t)‖L∞(Ω) ≤ C‖B̂h‖Lr(0,T ) ∀ t ∈ [0, T ].

Then, by (3.13), the estimate

‖yh − y − η‖C(Q̄)

‖h‖L2(Q)
≤ C
‖B̂h‖Lr(0,T )

‖h‖L2(Q)
→ 0 if ‖h‖Lr(0,T ;L2(Ω)) → 0 (3.14)

follows. Since A satisfies maximal parabolic Lr(0, T ;W−1,q(Ω))-regularity, see As-
sumption 2.1.3, we have

‖yh − y − η‖Wr
0(W 1,q

D (Ω),W−1,q(Ω))

≤ ‖(∂t +A)−1‖L(Lr(0,T ;W−1,q(Ω)),Wr
0(W 1,q

D (Ω),W−1,q(Ω)))‖ − f(yh) + f(y) + f ′(y; η)‖Lr(0,T ;W−1,q(Ω))

≤ c (‖Âh‖Lr(0,T ) + ‖B̂h‖Lr(0,T ))

≤ c (‖yh − y − η‖C(Q̄) + ‖B̂h‖Lr(0,T )),

by (3.10) and (3.12). Now the desired assertion follows from (3.14).

4. Second-order sufficient optimality conditions. This section is devoted to
establishing second-order sufficient conditions (SSC) which guarantee local optimality
for (P). Recall that this reads as follows:

min
u∈Lr(0,T ;L2(Ω))

J(y, u)

s.t. ẏ(t) +Ay(t) + f(y(t)) = B u(t) a.e. in (0, T )

y(0) = 0.

 (P)
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The upcoming second-order analysis relies on the extended Bouligand-differentiability
from Theorem 3.4 and the (local) Lipschitz continuity of S with range in C(Q̄), see
(2.6) and (2.4). The main findings are stated in Theorems 4.13 and 4.16 below.
Similarly to [3], we present two versions of second-order sufficient optimality condi-
tions. The first set of conditions involves the positive-definiteness of the Hessian of
a “Lagrangian” on the cone of critical directions and applies only to objectives with
a particular structure, see Assumption 4.11 below. The second set of SSC allows for
general (smooth) objectives. In this case, the Hessian of the “Lagrangian” is supposed
to be coercive on a larger cone, cf. Assumption 4.14 below. We point out that our
SSC are comparatively sharp, as explained at the end of this section. There we will
also see that if the nonlinearity f is twice continuously differentiable, then our main
results comply with the classical ones.
We begin by recalling the necessary optimality condition for (P) (in form of strong
stationarity) established in [24].
Theorem 4.1. [24, Thm. 5.3, Thm. 6.7] Suppose that the range of B is dense
in W−1,q(Ω). Let ū ∈ Lr(0, T ;L2(Ω)) be locally optimal for (P) with associated
state ȳ = S(ū) ∈ Wr

0(W 1,q
D (Ω),W−1,q(Ω)). Then there exists a unique adjoint state

p ∈ Wr′

T (W 1,q′

D (Ω),W−1,q′(Ω)) and a unique multiplier λ ∈ Lr
′
(0, T ;Ls(Ω)) with

s = nq
nq−n−q such that

˙̄y +A ȳ + f(ȳ) = B ū, ȳ(0) = 0, (4.1a)
−ṗ+A∗p+ λ = ∂yJ(ȳ, ū), p(T ) = 0, (4.1b)

λ(t, x) ∈ [f ′+(ȳ(t, x)) p(t, x), f ′−(ȳ(t, x)) p(t, x)] a.e. in Q, (4.1c)
B∗p+ ∂uJ(ȳ, ū) = 0, (4.1d)

where, for an arbitrary z ∈ R, the right- and left-sided derivative of f : R → R are
defined through f ′+(z) := f ′(z; 1) and f ′−(z) := −f ′(z;−1), respectively.
In the remaining of the section, let (ū, ȳ, λ, p) be a fixed point which satisfies the
system (4.1) and possesses the same regularity as in Theorem 4.1.
Lemma 4.2. For any u ∈ Lr(0, T ;L2(Ω)), there exists γ ∈ [0, 1] such that

J(y, u)− J(ȳ, ū) ≥
∫
Q

p(t, x)
(
f(ȳ)− f(y) + f ′(ȳ; y − ȳ)

)
(t, x) d(t, x)

+
1

2
J ′′(yγ , uγ)(y − ȳ, u− ū)2,

(4.2)

where we abbreviate y := S(u) and (yγ , uγ) := (ȳ, ū) + γ((y, u)− (ȳ, ū)).
Proof. Let u ∈ Lr(0, T ;L2(Ω)) be arbitrary, but fixed. Using the optimality system,
we find

∂yJ(ȳ, ū)(y − ȳ) + ∂uJ(ȳ, ū)(u− ū)

= 〈−ṗ+A∗p+ λ, y − ȳ〉Lr(0,T ;W 1,q
D (Ω)) − 〈B

∗p, u− ū〉Lr(0,T ;L2(Ω))

= 〈p, ẏ − ˙̄y +A(y − ȳ)−B(u− ū)〉Lr(0,T ;W−1,q(Ω)) + 〈λ, y − ȳ〉Lr(0,T ;W 1,q
D (Ω))

≥ 〈p, f(ȳ)− f(y)〉Lr(0,T ;W−1,q(Ω)) +

∫
Q

p(t, x)f ′(ȳ; y − ȳ)(t, x) d(t, x).

For the last equality, we applied the formula of integration by parts from [2, Proposi-
tion 5.1] in combination with the initial and final time conditions in (2.5) and (4.1b),

11



respectively. The above inequality can be deduced from the state equation (2.5)
and (4.1c) together with the positive homogeneity of the directional derivative. The
desired assertion follows now from the continuous Fréchet-differentiability of J , cf.
Assumption 2.1.7.

The key idea in the proofs of Theorems 4.13 and 4.16 below is to write the integral in
(4.2) as the sum of a nonnegative term, −1/2

∫
M p(t, x)f ′′(ȳ(t, x))S′(ū;u− ū)(t, x)2 d(t, x),

whereM is a suitable subset of Q, and o(‖u− ū‖2L2(Q)) for u→ ū in Lr(0, T ;L2(Ω)).
In preparation therefor, we discuss the first term on the right-hand side in (4.2) on
three different subsets of Q, by mainly distinguishing between those (t, x) for which
f is differentiable or not at ȳ(t, x), see (4.3), (4.7), and (4.10) below.

We identify the non-smooth and smooth points of the function f by means of the
following sets:

N := {z ∈ R | f is not differentiable at z},
S := {z ∈ R | f is differentiable at z}.

Recall that N is at most countable, cf. Assumption 2.1.5. This ensures that the sets
in (4.3), (4.7), and (4.10) below are measurable.

Next, we introduce the notion of local convexity/concavity for the nonlinearity f .
This will play a crucial role in the next two lemmas.

Definition 4.3. We say that the function f is convex around y ∈ R if there exists
ρ > 0 so that f is convex on the interval (y − ρ, y + ρ). Analogously, we say that
f is concave around y ∈ R if there exists ρ > 0 so that f is concave on the interval
(y − ρ, y + ρ).

We also define the following subset of Q:

Qn := {(t, x) ∈ Q | ∃ z ∈ N so that ȳ(t, x) = z}. (4.3)

Lemma 4.4. Suppose that at any z ∈ N , the function f is either convex or concave
around z with radius ρz > 0. If infz∈N ρz > 0, then there exists ε > 0 so that, for
any y ∈ C(Q̄) with ‖y − ȳ‖C(Q̄) < ε, there holds

p(t, x)
(
f(ȳ)− f(y) + f ′(ȳ; y − ȳ)

)
(t, x) ≥ 0 a.e. in Qn.

Proof. Let z ∈ N be a non-smooth point of f for which the set mz := {(t, x) ∈
Q | ȳ(t, x) = z} has positive measure. If f is convex around z, then straightforward
computation shows that f ′+(z) > f ′−(z), since z is a non-differentiable point. Thus,
f ′+(ȳ(t, x)) > f ′−(ȳ(t, x)) in mz. On the other hand, from (4.1c) we deduce that the
interval [f ′+(ȳ(t, x)) p(t, x), f ′−(ȳ(t, x)) p(t, x)] is nonempty for a.a. (t, x) ∈ Q. Thus,

p(t, x) ≤ 0 a.e. in mz. (4.4)

Since f is convex on (z − ρz, z + ρz), it holds

f(v)− f(z) ≥ f ′(z; v − z) for all v ∈ (z − ρz, z + ρz). (4.5)
12



Now, we define ε := infz∈N ρz > 0. Let y ∈ C(Q̄) with ‖y − ȳ‖C(Q̄) < ε be arbitrary,
but fixed. Then, y(t, x) ∈ (z − ρz, z + ρz) in mz, and from (4.5) combined with (4.4)
we deduce

p(t, x)
(
f(ȳ)− f(y) + f ′(ȳ; y − ȳ)

)
(t, x) ≥ 0 a.e. in mz. (4.6)

Analogously, if f is concave around z, one has p(t, x) ≥ 0 a.e. in mz, and (4.6) follows
in the same way as above. Since Qn = ∪z∈Nmz by definition, the proof is now
complete.

Remark 4.5. In view of (4.4), one always knows the sign of the adjoint state p a.e.
where ȳ(t, x) is a non-differentiable point of f . Unfortunately, this is no longer the
case in the smooth points. No matter how close ȳ(t, x) ∈ S is to some z ∈ N , a sign
for p(t, x) could not be provided. This turns out to be a problem precisely for those
(t, x) for which ȳ(t, x) is “too close” to the non-smooth points, as explained in Remark
4.7.(iii) below. This is why we need to assume a certain sign condition for p on this
critical subset of Q, below also known as Qs,δ.

Assumption 4.6. Suppose that, at any z ∈ N , the function f is either convex or
concave around z with radius ρz > 0. Moreover, assume that, for any z ∈ N , there
exists δz ∈ (0, ρz) so that the following conditions are fulfilled:

1. infz∈N ρz − δz > 0,
2. if f is convex around z: p(t, x) ≤ 0 a.e. where ȳ(t, x) ∈ (z − δz, z + δz) \ {z},
3. if f is concave around z: p(t, x) ≥ 0 a.e. where ȳ(t, x) ∈ (z− δz, z+ δz) \ {z}.

From now on, {δz}z∈N is supposed to be a fixed set of strict positive, as small as
possible values that satisfy Assumption 4.6. By means thereof, we define:

Qs,δ := {(t, x) ∈ Q | ȳ(t, x) ∈ ∪z∈N (z − δz, z + δz) \ {z}}. (4.7)

Remark 4.7. (i) For each z ∈ N , it is desirable to choose δz > 0 so (small) that
{(t, x) ∈ Q | ȳ(t, x) ∈ (z− δz, z+ δz) \ {z}} has measure zero, if possible. In this case,
Assumption 4.6.2-3 is automatically fulfilled at z ∈ N . On the other hand, ρz > 0
should be chosen large, so that the condition in Assumption 4.6.1 is satisfied (and so
that f is convex or concave on (z − ρz, z + ρz)). We point out that the neighborhoods
of non-smooth points, where f is locally convex or concave are allowed to overlap.
The same is true for the intervals (z − δz, z + δz). This does not affect our analysis.
However, keep in mind that in view of Assumption 4.6.2-3, δz > 0 should be as small
as possible.

(ii) We emphasize that Assumption 4.6.2-3 is characteristic for the second-order anal-
ysis of problems with non-differentiable solution mappings. It complies with [22, As-
sumption 1.(iii)] (elliptic obstacle problem) and [3, (4.8g)-(4.8h)] (static elastoplas-
ticity), where sign conditions for the adjoint state and the multiplier, respectively, are
required on a set corresponding to Qs,δ (i.e., on the set where ȳ is “too close” to the
non-smooth points). As explained in [3, Rem. 4.13], this sort of assumption is due to
the infinite-dimensional non-smooth framework and it ensures an additional so-called
“safety distance”. At the end of this section, we go into more detail by comparing
our upcoming main result (Theorem 4.13 below) with the main results from [3, 22].
We will see that our SSC are comparatively sharp and can be interpreted as a natural
generalization of the SSC for finite dimensional MPECs [30]. Moreover, in Section 5
below we provide settings for which Assumption 4.6 is guaranteed.
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(iii) On the set Q \ (Qn ∪ Qs,δ) we do not need any (sign) conditions. Here we can
evaluate the term (f(ȳ)− f(y) + f ′(ȳ; y− ȳ)(t, x) by means of a Taylor expansion for
any y ∈ BC(Q̄)(ȳ, ε), where ε > 0 is chosen appropriately, see (4.11) in the proof of
Lemma 4.10 below. Unfortunately, this cannot be done on the critical set Qs,δ: it is
not clear if a C(Q̄)-neighborhood of ȳ exists so that, for all y in this neighborhood, it
holds [ȳ(t, x), y(t, x)] ⊂ S for all (t, x) ∈ Qs,δ.
(iv) Let us point out that if there exists δ > 0 so that |ȳ(t, x)− z| ≥ δ a.e. in Q \Qn

for all z ∈ N , then Assumption 4.6 is no longer needed, and Lemma 4.8 below can
be omitted. In this case, we can find a neighborhood as depicted above. Then we can
argue as in the proof of Lemma 4.10 below and obtain the therein showed result for
the entire set Q \Qn.

Lemma 4.8. Let Assumption 4.6 hold true. Then, there exists ε > 0 so that, for all
y ∈ C(Q̄) with ‖y − ȳ‖C(Q̄) < ε, it holds

p(t, x)
(
f(ȳ)− f(y) + f ′(ȳ; y − ȳ)

)
(t, x) ≥ 0 a.e. in Qs,δ.

Proof. We define ε := infz∈N ρz− δz > 0 and consider y ∈ C(Q̄) with ‖y− ȳ‖C(Q̄) < ε
arbitrary, but fixed. Let z ∈ N and denote by qz the set {(t, x) ∈ Q | ȳ(t, x) ∈
(z− δz, z+ δz) \{z}}. Then, due to |y(t, x)− z|− |ȳ(t, x)− z| ≤ ‖y− ȳ‖C(Q̄) < ρz− δz
for all (t, x) ∈ Q, we have

|y(t, x)− z| < ρz ∀ (t, x) ∈ qz. (4.8)

If f is convex around z, the inequality f(v) − f(w) ≥ f ′(w; v − w) is true for all
v, w ∈ (z − ρz, z + ρz). Since ρz > δz by assumption, the definition of qz together
with (4.8) and the sign assumption on p, cf. Assumption 4.6.2, now yield

p(t, x)
(
f(ȳ)− f(y) + f ′(ȳ; y − ȳ)

)
(t, x) ≥ 0 a.e. in qz. (4.9)

In case that f is concave around z, one arrives at (4.9) in the same way as in the
convex case, by making use of Assumption 4.6.3. Since z ∈ N was arbitrary and
Qs,δ = ∪z∈N qz, the desired assertion follows now from (4.9).

Given the set of strict positive values {δz}z∈N from Assumption 4.6, we define:

Qs := {(t, x) ∈ Q | |ȳ(t, x)− z| ≥ δz ∀ z ∈ N}. (4.10)

Assumption 4.9. From now on, we assume that, in addition to Assumption 4.6, ε̂ :=
infz∈N δz/2 > 0 holds, and that the nonlinearity f is twice continuously differentiable
on {v ∈ R| |v − z| ≥ δz/2 ∀ z ∈ N}.
Notice that, as a direct consequence of Assumption 4.9, the mapping (t, x) ∈ Qs 7→
f ′′(ȳ(t, x)) ∈ R belongs to C(Qs).

The next lemma is the last essential step before proving the main result.

Lemma 4.10. Let Assumption 4.9 be satisfied. Then it holds∫
Qs

p(t, x)
(
f(ȳ)− f(S(u)) + f ′(ȳ;S(u)− ȳ)

)
(t, x) d(t, x)

= −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;u− ū)(t, x)2 d(t, x) + r(u),
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where

r(u)

‖u− ū‖2L2(Q)

→ 0 as u→ ū in Lr(0, T ;L2(Ω)).

Proof. Let y ∈ C(Q̄) with ‖y − ȳ‖C(Q̄) < ε̂ be arbitrary, but fixed. Note that
ε̂ = infz∈N δz/2 > 0, cf. Assumption 4.9. From

|ȳ(t, x)− z| − |y(t, x)− z| ≤ ‖y − ȳ‖C(Q̄) < δz/2 for all (t, x) ∈ Q, ∀ z ∈ N

we deduce that |y(t, x) − z| > δz/2 in Qs,∀ z ∈ N . Since for all z ∈ N it holds
|ȳ(t, x)− z| ≥ δz and |y(t, x)− ȳ(t, x)| < δz/2 for all (t, x) ∈ Qs, every point between
ȳ(t, x) and y(t, x) belongs to {v ∈ R| |v− z| > δz/2∀ z ∈ N} for all (t, x) ∈ Qs. Thus,
f is twice continuously differentiable on [ȳ(t, x), y(t, x)] for all (t, x) ∈ Qs, in view of
Assumption 4.9. This allows us to write the Taylor formula

f(y(t, x)) = f(ȳ(t, x)) + f ′(ȳ(t, x))(y(t, x)− ȳ(t, x)) + 1/2f ′′(ȳ(t, x))(y(t, x)− ȳ(t, x))2

+ o((y(t, x)− ȳ(t, x))2) ∀(t, x) ∈ Qs.
(4.11)

Further, from (2.6) and (2.4) we know that there exists a constant C = C(ū) > 0
such that

‖S(v)− ȳ‖C(Q̄) ≤ C‖v − ū‖Lr(0,T ;L2(Ω)) (4.12)

for all v ∈ BLr(0,T ;L2(Ω))(ū, 1). Let now ε := min{ε̂/2C, 1} > 0 and u ∈ BLr(0,T ;L2(Ω))(ū, ε),
u 6= ū, be arbitrary, but fixed. Then, due to (4.12), we have ‖S(u)− ȳ‖C(Q̄) < ε̂ and
as a result of (4.11), it holds

f(S(u)(t, x)) = f(ȳ(t, x)) + f ′(ȳ(t, x))(S(u)(t, x)− ȳ(t, x)) + 1/2f ′′(ȳ(t, x))(S(u)(t, x)− ȳ(t, x))2

+ o((S(u)(t, x)− ȳ(t, x))2)︸ ︷︷ ︸
=:hu(t,x)

∀(t, x) ∈ Qs.

(4.13)
Hence,∫
Qs

p(t, x)
(
f(ȳ)− f(S(u)) + f ′(ȳ;S(u)− ȳ)

)
(t, x) d(t, x)

= −1

2

∫
Qs

p(t, x) f ′′(ȳ(t, x))
(
S(u)(t, x)− ȳ(t, x)

)2
d(t, x)︸ ︷︷ ︸

Âu

−
∫
Qs

p(t, x)hu(t, x) d(t, x)︸ ︷︷ ︸
B̂u

.

(4.14)
In the following, we discuss the terms Âu and B̂u separately. We begin with the first
term on the right-hand side of (4.14). For convenience, we abbreviate

F (u) := S(u)− S(ū)− S′(ū;u− ū).

In view of Theorem 3.4, it holds

‖F (u)‖C(Q̄)

‖u− ū‖L2(Q)
→ 0 as u→ ū in Lr(0, T ;L2(Ω)), (4.15)
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where we again employed (2.4). Now we write Âu as

Âu =

∫
Qs

p(t, x) f ′′(ȳ(t, x))S′(ū;u− ū)(t, x)2 d(t, x)

+

∫
Qs

p(t, x) f ′′(ȳ(t, x))F (u)(t, x)
(
F (u)(t, x) + 2S′(ū;u− ū)(t, x)

)
d(t, x)︸ ︷︷ ︸

Du

.

(4.16)
As a result of [1, Section 3], [16, Thm. 3.5], and [31, Chp. 4.6.1-2], there exist β̂ > 2
and %̂ > q′ so that

p ∈Wr′

T (W 1,q′

D (Ω),W−1,q′(Ω)) ↪→ Lβ̂(0, T ;L%̂(Ω)). (4.17)

We obtain

|Du|
‖u− ū‖2L2(Q)

≤ ‖p‖L2(0,T ;Lq′ (Ω))‖f
′′(ȳ(·))‖L∞(Qs)

‖F (u)‖C(Q̄)

‖u− ū‖L2(Q)

(‖F (u)‖C(Q̄) + 2‖S′(ū;u− ū)‖L2(0,T ;Lq(Ω)))

‖u− ū‖L2(Q)

−→ 0 if ‖u− ū‖Lr(0,T ;L2(Ω)) → 0,
(4.18)

in the light of (4.15), (3.5) and (3.9). Next, we address the term B̂u. By relying again
on (3.5), (3.9), and (4.15), we see that for all β ∈ [1, 2) it holds

‖(S(u)− ȳ)2‖Lβ(0,T ;Lq(Ω)) ≤ c ‖u− ū‖2L2(Q) ∀u ∈ BLr(0,T ;L2(Ω))(ū, ε), (4.19)

where ε > 0 is small enough. Note that here we also employedW2
0(W 1,q

D (Ω),W−1,q(Ω)) ↪→
L2(0, T ;L∞(Ω)), since q > n. Further, from (4.13), we infer by applying the mean
value theorem, that

|hu(t, x)| ≤ |f(S(u)(t, x))− f(ȳ(t, x))− f ′(ȳ(t, x))(S(u)(t, x)− ȳ(t, x))|
+ L/2(S(u)(t, x)− ȳ(t, x))2

= |f ′′(ỹu(t, x))|(S(u)(t, x)− ȳ(t, x))2 + L/2(S(u)(t, x)− ȳ(t, x))2 ∀ (t, x) ∈Qs,

where ỹu(t, x) := γu(t, x)(S(u)(t, x) − ȳ(t, x)) + ȳ(t, x), with some γu(t, x) ∈ (0, 1),
and L > 0 is a constant depending on ȳ. Here we used Assumption 4.9 and the fact
that ȳ ∈ C(Q̄). Due to ‖S(u) − ȳ‖C(Q̄) < ε̂, we have |ỹu(t, x)| ≤ ε̂ + ‖ȳ‖C(Q̄) for all
(t, x) ∈ Qs, whence |f ′′(ỹu(t, x))| ≤ L for all (t, x) ∈ Qs follows, by Assumption 4.9.
Hence, we deduce

gu(t, x) :=
hu(t, x)

(S(u)(t, x)− ȳ(t, x))2
≤ 3L/2 for all (t, x) ∈ Qs.

Notice that, from (4.13) we have hu(t, x) = 0 if S(u)(t, x) = ȳ(t, x) at (t, x) ∈ Qs, in
which case we define gu(t, x) := 0. Since ‖u− ū‖Lr(0,T ;L2(Ω)) → 0 implies S(u)(t, x)→
ȳ(t, x) for all (t, x) ∈Q, the definition of hu (see (4.13)) gives gu(t, x)→ 0 for all (t, x) ∈
Qs if ‖u− ū‖Lr(0,T ;L2(Ω)) → 0. By Lebesgue’s dominated convergence we then have

gu → 0 in Lϑ(Qs) ∀ϑ ∈ [1,∞)

if u→ ū in Lr(0, T ;L2(Ω)). Together with (4.19) and (4.17), this yields

|B̂u|
‖u− ū‖2L2(Q)

≤ ‖p‖Lβ̂(0,T ;L%̂(Ω))

‖gu‖Lϑ(Qs)‖(S(u)− ȳ)2‖Lβ(0,T ;Lq(Ω))

‖u− ū‖2L2(Q)

−→ 0 (4.20)
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if ‖u − ū‖Lr(0,T ;L2(Ω)) → 0, where we set ϑ := 1/(1 − 1/q − 1/%̂) ∈ [1,∞) and
β := 1/(1 − 1/β̂ − 1/ϑ) ∈ [1, 2). By inserting (4.16), (4.18) and (4.20) in (4.14), we
finally arrive at the desired result.

We are now in the position to establish the first version of second-order sufficient
optimality conditions for (P).
Assumption 4.11. In addition to Assumptions 4.6 and 4.9, we require that

1. The objective J : L2(Q) × L2(Q) → R is given by J(y, u) = g(y) + j(u),
where g : L2(Q)→ R and j : L2(Q)→ R are both twice continuously Fréchet-
differentiable. There exists ν > 0 with

j′′(ū)(h, h) ≥ ν‖h‖2L2(Q) ∀h ∈ Lr(0, T ;L2(Ω)). (4.21)

2. For all h ∈ L2(Q) \ {0} and η = Sūh with g′(ȳ)η + j′(ū)h = 0, it holds

g′′(ȳ)(η, η) + j′′(ū)(h, h)−
∫
Qs

p(t, x)f ′′(ȳ(t, x))η(t, x)2 d(t, x) > 0, (4.22)

where Qs is the set associated with {δz}z∈N given by (4.10) and Sū is the
solution operator of the (extended) ’linearized’ equation (3.4), see Lemma
3.2.

Remark 4.12. (i) Assumption 4.11.1 is satisfied by the quadratic functional Ĵ(y, u) :=
1
2‖y − yd‖

2
L2(Q) + ν

2‖u− ud‖
2
L2(Q), where ν > 0 and yd, ud ∈ L2(Q).

(ii) Similarly to [3, Thm. 4.17], it can be shown that (4.22) is equivalent to

g′′(ȳ)(η, η) + j′′(ū)(h, h)−
∫
Qs

p(t, x)f ′′(ȳ(t, x))η(t, x)2 d(t, x) ≥ κ‖h‖2L2(Q), (4.23)

where κ > 0, provided that Assumption 4.11.1 is true. Since we work with Lr(0, T ;L2(Ω))
instead of L2(Q) as space for the control (see Remark 2.6), the coercivity condition
(4.21), and thus (4.23), gives rise to the so called two-norm discrepancy, cf. [10, Sec.
3.2]. As a consequence, the quadratic growth in Theorem 4.13 below is expected to
hold in the weaker L2(Q)-norm, cf. [10, Sec. 4.3], in particular [10, Thm. 4.11 and
4.13]. We point out that the set {h ∈ L2(Q) : g′(ȳ)Sūh + j′(ū)h = 0} corresponds to
the so-called cone of critical directions, see [10, Def. 4.7]. Hence, Assumption 4.11.2
complies with [10, (4.16)]. Note that in [10, Thm. 4.13], it is possible to show local
optimality in the sense of L2(Q) due to the presence of control constraints, see also [9].
(iii) We could replace (4.21) with the more restrictive coercivity condition

j′′(ū)(h, h) ≥ ν‖h‖2Lr(0,T ;L2(Ω)) ∀h ∈ Lr(0, T ;L2(Ω)), (4.24)

in which case we obtain Lr(0, T ;L2(Ω))-quadratic growth in Theorem 4.13 below, but
(4.24) is not expected to be true in general, since it may lead to an equivalence between
Lr(0, T ;L2(Ω))- and L2(Q)-norm. To see this, consider j(u) =

∫
Q
F (u) d(t, x) with

F ∈ C2(R) in (4.24), see also the examples presented in [10, Sec. 3.2].

Theorem 4.13. Let (ū, ȳ, λ, p) satisfy the first-order optimality system (4.1) given
by Theorem 4.1. If Assumptions 4.6, 4.9 and 4.11 are fulfilled, then there exist α > 0
and R > 0 such that

J(ȳ, ū) + α‖u− ū‖2L2(Q) ≤ J(S(u), u) ∀u ∈ BLr(0,T ;L2(Ω))(ū, R). (4.25)
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In particular, ū is locally optimal for (P).
Proof. The proof is inspired by the proof of [22, Thm. 2.12], see also the proof
of [3, Thm. 4.12]. We assume that (4.25) is not satisfied. Thus, there exists a
sequence {uk}k ⊂ Lr(0, T ;L2(Ω)) with uk → ū in Lr(0, T ;L2(Ω)) and

J(ȳ, ū) +
1

k
‖uk − ū‖2L2(Q) > J(yk, uk) ∀ k ∈ N,

where yk := S(uk) for the rest of the proof. For simplicity, we define σk := ‖uk −
ū‖L2(Q) and hk := uk−ū

σk
∈ Lr(0, T ;L2(Ω)). Then, the above inequality reads

J(ȳ, ū) +
1

k
σ2
k > J(yk, uk) ∀ k ∈ N. (4.26)

Since ‖hk‖L2(Q) = 1 and L2(Q) is reflexive, we can extract a subsequence, denoted
by the same symbol, so that

hk ⇀ h in L2(Q) as k →∞. (4.27)

By Lemma 3.2, the operator Sū : L2(Q) → W2
0(W 1,q

D (Ω),W−1,q(Ω)) is weakly con-
tinuous. Together with (3.9), this implies

S′(ū;hk)→ Sūh in Lϑ(0, T ;Lq(Ω)) ∀ϑ ∈ [1,∞) as k →∞. (4.28)

Moreover, according to Theorem 3.4 combined with (2.4), it holds

S(uk)− S(ū)− S′(ū;uk − ū)

σk
→ 0 in C(Q̄) as k →∞.

Hence, by the positive homogeneity of the directional derivative, we have

S(uk)− S(ū)

σk
→ Sūh in L2(Q) as k →∞. (4.29)

Next, we show that g′(ȳ)Sūh+ j′(ū)h = 0. As a result of (4.26), it holds

g′(ȳ)(yk − ȳ) + j′(ū)(uk − ū) <
σ2
k

k
− 1

2
g′′(ỹk)(yk − ȳ)2 − 1

2
j′′(ũk)(uk − ū)2 for all k,

(4.30)
where we abbreviate (ỹk, ũk) = (ȳ, ū)+γk((yk, uk)−(ȳ, ū)) with some γk ∈ [0, 1]. Due
to uk → ū in Lr(0, T ;L2(Ω)), we have yk → ȳ in C(Q̄), see Proposition 2.4 and (2.4).
Since g and j are twice continuously Fréchet-differentiable, we obtain

(g′′(ỹk)− g′′(ȳ))
(yk − ȳ

σk

)2

+ g′′(ȳ)
(yk − ȳ

σk

)2

→ g′′(ȳ)
(
Sūh, Sūh

)
as k →∞,

(4.31)
in view of (4.29), and

lim inf
k→∞

(j′′(ũk)− j′′(ū))
(uk − ū

σk

)2

+ j′′(ū)
(uk − ū

σk

)2

≥ j′′(ū)(h, h) as k →∞,
(4.32)

in the light of (4.27) and (4.21) (which tells us that the mapping h 7→ j′′(ū)(h, h)
is convex on L2(Q)). Dividing by σk in (4.30) and passing to the limit therein then
yields

lim
k→∞

g′(ȳ)
(yk − ȳ

σk

)
+ j′(ū)

(uk − ū
σk

)
≤ lim

k→∞

σk

k
− lim

k→∞

σk

2
g′′(ỹk)

(yk − ȳ
σk

)2

− lim
k→∞

σk

2
j′′(ũk)

(uk − ū
σk

)2

= 0.
(4.33)
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On the other hand, (4.29) and (4.27) lead to

lim
k→∞

g′(ȳ)
(yk − ȳ

σk

)
+ j′(ū)

(uk − ū
σk

)
= g′(ȳ)Sūh+ j′(ū)h ≥ 0, (4.34)

where the last inequality is due to (4.1) and the proofs of [24, Thm. 5.7 and Thm.
6.10]. Note that the density of the range of B in W−1,q(Ω) is not needed here. Thus,
by (4.33) and (4.34), we have

g′(ȳ)Sūh+ j′(ū)h = 0. (4.35)

Now, we discuss the difference of the values of the objective J . From Lemma 4.2 we
know that

J(yk, uk)− J(ȳ, ū) ≥
∫
Q

p(t, x)
(
f(ȳ)− f(yk) + f ′(ȳ; yk − ȳ)

)
(t, x) d(t, x)

+
1

2
g′′(ỹk)(yk − ȳ)2 +

1

2
j′′(ũk)(uk − ū)2 for all k.

(4.36)

We begin by estimating the first term on the right-hand side in (4.36). To this end,
we want to employ Lemmas 4.4, 4.8 and 4.10. Note that infz∈N ρz ≥ infz∈N (ρz −
δz) + infz∈N δz > 0, by Assumptions 4.6 and 4.9, so that all these three lemmas are
applicable. Let now ε1 > 0 and ε2 > 0 be given by Lemmas 4.4 and 4.8, respectively.
From (2.6) and (2.4) we know that there exists a constant C = C(ū) > 0 such that

‖S(v)− ȳ‖C(Q̄) ≤ C‖v − ū‖Lr(0,T ;L2(Ω)) (4.37)

for all v ∈ BLr(0,T ;L2(Ω))(ū, 1). We set ε := min{ε1/2C, ε2/2C, 1} > 0 and choose k̄
large enough such that uk ∈ BLr(0,T ;L2(Ω))(ū, ε) for all k ≥ k̄. Then, by (4.37), we
have ‖S(uk) − ȳ‖C(Q̄) < min{ε1, ε2} for all k ≥ k̄. We are now in the position to
apply Lemmas 4.4, 4.8 and 4.10, by means of which (4.36) can be continued as

J(yk, uk)− J(ȳ, ū) ≥ −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;uk − ū)(t, x)2 d(t, x) + r(uk)

+
1

2
g′′(ỹk)(yk − ȳ)2 +

1

2
j′′(ũk)(uk − ū)2 for all k ≥ k̄,

(4.38)
where

r(uk)

σ2
k

→ 0 as k →∞. (4.39)

Note that (4.38) is a result of Q = Qn ∪ Qs,δ ∪ Qs, see definitions (4.3), (4.7) and
(4.10). In view of (4.26) and (4.38), it further holds

1/k > −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′
(
ū;
uk − ū
σk

)
(t, x)2 d(t, x) +

r(uk)

σ2
k

+
1

2
g′′(ỹk)

(yk − ȳ
σk

)2

+
1

2
j′′(ũk)

(uk − ū
σk

)2

for all k ≥ k̄,
(4.40)

where we employed the positive homogeneity of the directional derivative. Since
p ∈ Lβ̂(0, T ;L%̂(Ω)) with β̂ > 2, %̂ > q′, see (4.17), (4.28) yields

p
(
S′(ū;hk)− Sūh

)
→ 0 in L2(0, T ;L1(Ω)) as k →∞.
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Together with f ′′(ȳ(·)) ∈ C(Qs), see Assumption 4.9, the uniform boundedness of
{‖S′(ū;hk) + Sūh‖L2(0,T ;L∞(Ω))}k, cf. (3.5) and (4.27), this implies∫
Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;hk)(t, x)2 d(t, x)→
∫
Qs

p(t, x)f ′′(ȳ(t, x))(Sūh)(t, x)2 d(t, x)

(4.41)
for k → ∞. We now build lim infk→∞ in (4.40), which by (4.41), (4.39), (4.31) and
(4.32), gives in turn

0 ≥ −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))(Sūh)(t, x)2 d(t, x) +
1

2
g′′(ȳ)

(
Sūh, Sūh

)
+

1

2
j′′(ū)(h, h).

(4.42)
By Assumption 4.11.2, which can be applied in view of (4.35), we deduce from (4.42)
that h = 0. This leads to Sūh = 0. As a result thereof, (4.41) and (4.31) now read∫

Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;hk)(t, x)2 d(t, x)→ 0 as k →∞,

g′′(ỹk)
(yk − ȳ

σk

)2

→ 0 as k →∞.
(4.43)

Thanks to ‖hk‖L2(Q) = 1, the coercivity condition (4.21), and (4.40), we obtain

1/k > −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′
(
ū;
uk − ū
σk

)
(t, x)2 d(t, x) +

r(uk)

σ2
k

+
1

2
g′′(ỹk)

(yk − ȳ
σk

)2

+
1

2
(j′′(ũk)− j′′(ū))

(uk − ū
σk

)2

+
ν

2

∥∥∥uk − ū
σk

∥∥∥2

L2(Q)︸ ︷︷ ︸
=1

∀ k ≥ k̄.

We pass again to the limit k →∞ on both sides, which in view of (4.43), (4.39), and
the continuity of j′′, results in 0 ≥ ν/2 > 0. This finally gives the contradiction and
completes the proof.

Next, we establish second-order sufficient optimality conditions for (P) which allow
for an arbitrary (twice continuously Fréchet-differentiable) objective.

Assumption 4.14. In addition to Assumptions 4.6 and 4.9, we assume that there
exists κ > 0 such that

J ′′(ȳ, ū)(η, h)2 −
∫
Qs

p(t, x)f ′′(ȳ(t, x))η(t, x)2 d(t, x) ≥ κ‖h‖2L2(Q) (4.44)

for all h ∈ Lr(0, T ;L2(Ω)) and η = S′(ū;h). Here Qs denotes again the set associated
with {δz}z∈N given by (4.10).

Remark 4.15. (i) According to Assumption 4.14, the price for allowing an arbitrary
objective J is the more restrictive condition (4.44). Unlike in Assumption 4.11.2, we
now deal with a coercivity property which has to be satisfied for the set of all directions,
instead of the cone of critical directions. If J = Ĵ from Remark 4.12.(i), (4.44) is
satisfied when

p(t, x)f ′′(ȳ(t, x)) ≤ 1 a.e. in Qs. (4.45)

In the next section, we provide conditions on the given data which ensure (4.45).
(ii) Since we ask that (4.44) holds in the L2(Q)-norm, we deal again with the two-norm
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discrepancy, see Remark 4.12.(ii). If we require (4.44) to hold in the Lr(0, T ;L2(Ω))-
norm, then we can overcome the two-norm discrepancy and we have Lr(0, T ;L2(Ω))-
quadratic growth in Theorem 4.16 below. However, in this case the issues mentioned
in Remark 4.12.(iii) apply.

Theorem 4.16. Let (ū, ȳ, λ, p) satisfy the first-order optimality system (4.1) given
by Theorem 4.1. If Assumptions 4.6, 4.9 and 4.14 are fulfilled, then there exist α > 0
and R > 0 such that

J(ȳ, ū) + α‖u− ū‖2L2(Q) ≤ J(S(u), u) ∀u ∈ BLr(0,T ;L2(Ω))(ū, R). (4.46)

In particular, ū is locally optimal for (P).

Proof. In the proof of Theorem 4.13 we already checked that, under Assumptions 4.6
and 4.9, Lemma 4.4 is applicable (in addition to Lemmas 4.8 and 4.10). We define
again ε := min{ε1/2C, ε2/2C, 1} > 0 and fix u ∈ BLr(0,T ;L2(Ω))(ū, ε), u 6= ū, where
ε1 > 0 and ε2 > 0 are given by Lemmas 4.4 and 4.8, respectively, and C = C(ū) > 0
is a constant so that (4.37) holds. Then, one has ‖y − ȳ‖C(Q̄) < min{ε1, ε2}, see the
proof of Theorem 4.13, where y := S(u) from now on. From Lemma 4.2 combined
with Lemmas 4.4, 4.8, and 4.10 we have

J(y, u)− J(ȳ, ū) ≥ −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;u− ū)(t, x)2 d(t, x) + r(u)

+
1

2
J ′′(yγu , uγu)(y − ȳ, u− ū)2,

(4.47)

where r(u)/‖u − ū‖2L2(Q) → 0 if u→ ū in Lr(0, T ;L2(Ω)) and (yγu , uγu) = (ȳ, ū) +

γu((y, u)− (ȳ, ū)) with some γu ∈ [0, 1]. Further, by means of some algebraic manip-
ulations, see the proof of [3, Thm. 4.6], we can write

r̂(u) : = J ′′(yγu , uγu)(y − ȳ, u− ū)2 − J ′′(ȳ, ū)(S′(ū;u− ū), u− ū)2

=
(
J ′′(yγu , uγu)− J ′′(ȳ, ū)

)
(y − ȳ, u− ū)2 + ∂2

yJ(ȳ, ū)(y − ȳ − S′(ū;u− ū))2

+ 2∂2
yJ(ȳ, ū)(y − ȳ − S′(ū;u− ū), S′(ū;u− ū))

+ 2∂y∂uJ(ȳ, ū)(y − ȳ − S′(ū;u− ū), u− ū).
(4.48)

Due to Assumption 2.1.7 and (3.5) combined with Theorem 3.4 (which imply ‖y −
ȳ‖L2(0,T ;W 1,q

D (Ω)) ≤ c‖u− ū‖L2(Q)) we have

r̂(u)/‖u− ū‖2L2(Q) −→ 0 if u→ ū in Lr(0, T ;L2(Ω)).

Inserting (4.48) in (4.47) and employing Assumption 4.14 as well as the convergence
properties of r(u) and r̂(u) results in

J(S(u), u)− J(ȳ, ū) ≥ −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;u− ū)(t, x)2 d(t, x)

+
1

2
J ′′(ȳ, ū)(S′(ū;u− ū), u− ū)2 + r(u) +

1

2
r̂(u)

≥
(κ

2
− |r(u) + r̂(u)/2|
‖u− ū‖2L2(Q)

)
︸ ︷︷ ︸

≥κ/4

‖u− ū‖2L2(Q)
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for all u ∈ BLr(0,T ;L2(Ω))(ū, R) with R > 0 small enough. The proof is now complete.

We conclude this section by comparing our SSC with the classical SSC in the smooth
case (see e.g. [10]) and the SSC from the contributions [3, 22] (non-smooth case),
respectively.

First, let us see what happens when f : R → R is twice continuously differentiable.
Then, N = ∅ and Qs = Q, and thus, Assumptions 4.6 and 4.9 are automatically
fulfilled. Moreover, (4.22) reads

∂2
(y,u)L(ȳ, ū, p)(Sūh, h)2 > 0 ∀h ∈ L2(Q) \ {0}, (4.49)

where ∂2
(y,u)L(ȳ, ū, p) is the continuous extension of the second derivative on the space

W2
0(W 1,q

D (Ω),W−1,q(Ω)) × L2(Q) of the Lagrangian L : Wr
0(W 1,q

D (Ω),W−1,q(Ω)) ×
Lr(0, T ;L2(Ω))× Lr′(0, T ;W 1,q′

D (Ω))→ R,

L(y, u, p) = g(y) + j(u)− 〈p, ẏ +Ay + f(y)−Bu〉Lr(0,T ;W−1,q(Ω)).

Note that {h ∈ L2(Q) : g′(ȳ)Sūh + j′(ū)h = 0} = L2(Q), by the linearity of Sū and
a density argument. Hence, the result in Theorem 4.13 is true if (4.1) (which in the
smooth case coincides with the classical KKT system), Assumption 4.11.1 and (4.49)
are satisfied. This complies with the assertion in [10, Thm. 4.13], where a concrete
objective and control constraints are considered. Let us point out that the structural
assumption on J is to be expected, since this is essential in infinite dimensions in
order to obtain a contradiction at the end of the proof of Theorem 4.13, see also the
proof of [10, Thm. 4.13]. Due to the reasons explained in Remark 4.12.(ii), we deal
with the two-norm discrepancy, which is also the case in [10, Thm. 4.13]. For the
second version of SSC, the discussion is similar, cf. also Remark 4.15. In conclusion,
if the nonlinearity f : R → R is twice continuously differentiable, then both sets of
SSC derived in this section coincide with the classical ones.

We now turn to the second-order sufficient conditions in the non-smooth case. For
finite dimensional MPECs, these consist of strong stationarity (necessary conditions
for local optimality) and the coercivity/positive-definiteness of the Hessian (w.r.t. the
primal variables) of the Lagrangian on the cone of critical directions, see [30, Thm. 7].
Thus, the SSC from [30] coincide with our SSC in Theorem 4.13 except that we tighten
the sign condition for the adjoint state (Assumption 4.6); recall that, in view of (4.4),
one always knows the sign of p a.e. where ȳ(t, x) is a non-differentiable point of f ,
see Remark 4.5. We underline that this sort of assumption is standard in the context
of deriving SSC for infinite dimensional control problems which feature non-smooth
solution operators. It ensures an additional so-called “safety distance”, cf. [3, Rem.
4.13], see also Remark 4.7.(ii). We emphasize that a corresponding condition to our
Assumption 4.6 is required in [3] (static elastoplasticity) and [22] (elliptic obstacle
problem) as well (the only contributions known to the author which deal with SSC
in the non-smooth case). To be more precise, we refer to [22, Assumption 1.(iii)]
and [3, (4.8g)-(4.8h)], where sign conditions for the adjoint state and the multiplier,
respectively, are required in those (t, x) for which ȳ(t, x) is “too close” to the non-
smooth points. Not only do the SSC in these contributions contain a corresponding
condition to our Assumption 4.6, but they also consist of additional assumptions:
in [22, Assumption 1.(iv)], a sign condition (in the variational sense) is imposed on the
multiplier, while in [3, (4.16)], regularity assumptions on the multipliers and adjoint
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state are made. Therefore, our SSC are comparatively sharp, as they reduce only
to the classical requirements (strong stationarity and the coercivity of the Hessian
of the Lagrangian) and Assumption 4.6. Note that we can provide different settings
where the latter is fulfilled (see Section 5 below). All in all, the sufficient conditions
in Theorem 4.13 can be regarded as a natural extension of their finite dimensional
counterpart. Note that, as already mentioned above, the structural assumption on the
objective (Assumption 4.11.1) is due to the fact that we work in infinite dimensions
and appears in the smooth case as well. It is contained in the SSC from [3,22] too and
can be overcome by requiring the alternative version of SSC presented in Theorem
4.16.

5. Second-order sufficient conditions for a concrete setting. In this sec-
tion, we derive conditions on the given data under which Assumption 4.6.2-3 and
(4.45) are guaranteed. We consider the optimal control problem

min
u∈Lr(0,T ;L2(Ω))

1

2
‖y − yd‖2L2(Q) +

1

2
‖u‖2L2(Q)

s.t. ẏ(t)−4y(t) + f(y(t)) = u(t) a.e. in (0, T ),

y(0) = 0.

 (Pex)

In all what follows, B : L2(Ω) ↪→ (W−1,q(Ω),W 1,q
D (Ω))ς,∞ is the embedding operator,

in which case ς = n/2q − n/4 + 1/2, see [1, Section 3], [16, Thm. 3.5], and [31, Thm.
4.6.1.c)]. Note that B satisfies Assumption 2.1.6, provided that n < q < 2n/(n− 2).
The exponent r is supposed to fulfill (2.1) where q ∈ (n, 2n/(n − 2)] is fixed. In
(Pex), 4 : W 1,q

D (Ω) → W−1,q(Ω) denotes the Laplace operator in the distributional
sense, i.e., A := −4 = −div∇. We assume that Ω is such that Assumptions 2.1.2-3
are satisfied by −4, cf. Remark 2.7, and ∂Ω = ΓD. Recall that A satisfies maximal
parabolic Ls(0, T ;W−1,q(Ω))-regularity for every s ∈ (1,∞). By CΩ > 0 we denote
the Poincaré constant associated with the domain Ω. We suppose that the nonlinearity
satisfies f(0) = 0 and that f is convex around any z ∈ N with radius ρz > 0 (in
addition to Assumptions 2.1.4-5). The desired state yd belongs to Lr(0, T ;L2(Ω)).

For the above-described problem we show that if (5.9) below is satisfied, then p(t, x) ≤
0 a.e. in Q, i.e., Assumption 4.6.2 holds true. Let us define δz := ρz/2 for all z ∈ N in
Assumption 4.6. If, in addition to (5.9) below, f is twice continuously differentiable
on {v ∈ R| |v− z| ≥ ρz/4 ∀ z ∈ N}, and (5.15) below holds, we can also prove (4.45).
Thus, if N is finite, we can provide a setting where all assumptions in Theorems 4.13
and 4.16 are satisfied, see also Remarks 4.12 and 4.15. In this context, (5.1) is not
only necessary but also sufficient for optimality.

Before we begin with the proof, we mention that a nonlinearity f which satisfies
all the above conditions (i.e., Lipschitz continuous on bounded sets, directionally
differentiable, convex around any z ∈ N , monotone increasing with f(0) = 0 and
twice continuously differentiable on a subset of S) is depicted in Figure 5.1. This
could arise in combustion processes where different ignition temperatures are given,
see Remark 2.9.

Throughout this section, (ū, ȳ, p, λ)∈ Lr(0, T ;L2(Ω))×Wr
0(W 1,q

D (Ω),W−1,q(Ω))×
Wr′

T (W 1,q′

D (Ω),W−1,q′(Ω))× Lr′(0, T ;Ls(Ω))(with s = nq
nq−n−q ) is a fixed point that

satisfies the first-order optimality system given by Theorem 4.1. In the setting con-
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y

f(y)

0 θ1 θ2 θ3

Fig. 5.1. An ignition-type nonlinearity with ignition temperatures θ1, θ2, and θ3

sidered here, (4.1) reads

˙̄y −4 ȳ + f(ȳ) = ū, ȳ(0) = 0, (5.1a)
−ṗ−4p+ λ = ȳ − yd, p(T ) = 0, (5.1b)

λ(t, x) ∈ [f ′+(ȳ(t, x)) p(t, x), f ′−(ȳ(t, x)) p(t, x)] a.e. in Q, (5.1c)
p+ ū = 0. (5.1d)

Due to the monotonicity of f (see Assumption 2.1.4) and f(0) = 0, we have f(y)y ≥ 0
and f ′(y;h)h ≥ 0 for all y, h ∈ R. By (5.1c), we find

f(ȳ(t, x))ȳ(t, x) ≥ 0, λ(t, x)p(t, x) ≥ 0, λ(t, x)p+(t, x) ≥ 0 a.e. in Q. (5.2)

where we abbreviate p+ := max{p, 0}.

(I) We first deal with Assumption 4.6.2. We start by showing that ‖p‖L2(Q) ≤ K,
where K > 0 is some constant which depends only on the given parameters (step (i)
below). This will enable us to derive conditions on the data such that ȳ ≤ yd a.e.
in Q holds (step (ii) below). By means of this inequality, we can then conclude that
p ≤ 0 a.e. in Q (step (iii) below).

(i) As a consequence of (5.1d), we have p ∈ Lr(0, T ;L2(Ω)), which gives in turn λ ∈
Lr(0, T ;L2(Ω)), by (5.1c) and (3.2). Thus, t 7→ (ȳ−yd−λ)(T−t) ∈ Lr(0, T ;L2(Ω)) ↪→
Lr(0, T ;W−1,q(Ω)), since q ≤ 2n/(n−2). As−4 satisfies maximal parabolic Lr(0, T ;W−1,q(Ω))-
regularity, we now deduce from (5.1b) that p ∈ Wr

0(W 1,q
D (Ω),W−1,q(Ω)), where we

used the transformation t 7→ T − t. Therefore, we can test the adjoint equation (5.1b)
with p(T − ·), which leads to

1

2
‖p(T − t)‖2L2(Ω) −

1

2
‖p(T )‖2L2(Ω)︸ ︷︷ ︸

=0

+
1

C2
Ω

∫ t

0

‖p(T − s)‖2L2(Ω) ds

≤
∫ t

0

∫
Ω

(ȳ − yd)(T − s, x)p(T − s, x) d(s, x) ∀ t ∈ [0, T ],

(5.3)
in view of the formula of integration by parts, Poincaré-Friedrichs’s inequality and
(5.2). We proceed in the same way regarding the state equation. We test (5.1a) with
y and employ the first inequality in (5.2), as well as Poincaré-Friedrichs’s inequality.
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The resulting estimate combined with (5.1d) is then used on the right-hand side of
(5.3) at t := T , which yields

1

C2
Ω

∫ T

0

‖p(s)‖2L2(Ω) ds ≤ ‖ȳ(0)‖2L2(Ω)︸ ︷︷ ︸
=0

− 1

C2
Ω

∫ T

0

‖ȳ(s)‖2L2(Ω) ds−
∫
Q

yd(s, x)p(s, x) d(s, x).

(5.4)
From (5.4) we have

2‖p‖L2(Q)‖ȳ‖L2(Q) ≤ ‖p‖2L2(Q) + ‖ȳ‖2L2(Q) ≤ C
2
Ω‖yd‖L2(Q)‖p‖L2(Q). (5.5)

Dividing by ‖p‖L2(Q) results in

‖p‖L2(Q) ≤ C2
Ω‖yd‖L2(Q), ‖ȳ‖L2(Q) ≤

C2
Ω‖yd‖L2(Q)

2
. (5.6)

(ii) In order to prove that p ≤ 0, we derive conditions which guarantee that ȳ ≤ yd
a.e. in Q. To this end, we insert (5.5) on the right-hand side in (5.3) and obtain

‖p(T − t)‖2L2(Ω) ≤ (C2
Ω + 2)‖yd‖L2(Q)‖p‖L2(Q) ≤ (C2

Ω + 2)C2
Ω‖yd‖2L2(Q) ∀ t ∈ [0, T ],

(5.7)
where for the last inequality we used (5.6). Via a comparison principle, cf. [28, Lem.
A.1, Prop. 3.3 and 3.4], where one relies on the monotonicity of f , it can be shown
that

|ȳ(t, x)| ≤ ỹ(t, x) ≤ Ce‖(∂t −4)−1‖L(Lr(0,T ;W−1,q(Ω)),Wr
0(W 1,q

D (Ω),W−1,q(Ω)))︸ ︷︷ ︸
=:K1

‖p‖Lr(0,T ;L2(Ω)) a.e. in Q,

(5.8)
where ỹ ∈Wr

0(W 1,q
D (Ω),W−1,q(Ω)) is the unique solution of ˙̃y−4 ỹ = |ū| and Ce > 0

is the product of the embedding constants of Wr
0(W 1,q

D (Ω),W−1,q(Ω)) ↪→ C(Q̄) and
L2(Ω) ↪→W−1,q(Ω), cf. (2.4). Note that for (5.8) we employed again (5.1d). Thus, in
view of (5.7) and (5.8), we deduce that if

K1 T
1/r
√
C2

Ω + 2CΩ‖yd‖L2(Q) ≤ yd a.e. in Q, (5.9)

then ȳ ≤ yd a.e. in Q.

(iii) Now, to see that (5.9) implies the desired result, we test the equation (5.1b) with
p+ ∈ Lr(0, T ;W 1,q

D (Ω)), see [20, Thm. A.1]. We arrive at∫ t

0

〈−ṗ(T − s), p+(T − s)〉W 1,q
D (Ω) ds+

∫ t

0

∫
Ω

∇p(T − s)(x)∇p+(T − s)(x)︸ ︷︷ ︸
≥0

d(s, x)

+

∫ t

0

∫
Ω

λ(T − s, x)p+(T − s, x)︸ ︷︷ ︸
≥0, see (5.2)

d(s, x) =

∫ t

0

∫
Ω

(ȳ − yd)(T − s, x)︸ ︷︷ ︸
≤0

p+(T − s, x) d(s, x) ∀ t ∈ [0, T ].

(5.10)
Thanks to an argument similar to [33, Lemma 3.2] combined with (5.10), we have∫ t

0

〈−ṗ(T − s), p+(T − s)〉W 1,q
D (Ω) ds = 1/2‖p+(T − t)‖2L2(Ω) − 1/2 ‖p+(T )‖2L2(Ω)︸ ︷︷ ︸

=0

≤ 0 for all t ∈ [0, T ],
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which gives in turn p ≤ 0 a.e. in Q.

(II) In order to derive conditions which guarantee (4.45), we first show that there
exists a constant c > 0, dependent only on the given data, so that −p ≤ c a.e. in Q.
To this end, we apply a comparison principle again and assume in the following that
(5.9) holds. Consider the equation

− ˙̃p−4p̃ = ȳ − yd, p̃(T ) = 0. (5.11)

Since −4 satisfies maximal parabolic Lr(0, T ;W−1,q(Ω))-regularity, there exists a
unique p̃ ∈ Wr

T (W 1,q
D (Ω),W−1,q(Ω)) ↪→ C(Q̄) which solves (5.11). To see this, one

uses the transformation t 7→ T − t. Thus,

−p̃(t, x) ≤ ‖p̃‖C(Q̄) ≤ K1‖ȳ − yd‖Lr(0,T ;L2(Ω)) ≤ c for all (t, x) ∈ Q, (5.12)

where K1 denotes the constant from (5.8). Note that a value for c (dependent only
on the given data) can be obtained from (5.7) and (5.8). In view of (5.2) and p ≤ 0,
λ ≤ 0 follows. We “compare” (5.1b) with (5.11) and we see that

− p(t, x) ≤ −p̃(t, x) ≤ c a.e. in Q, (5.13)

as a result of (5.12). Here we relied on [33, Lemma 3.3]. Before we proceed with the
proof, let us recall that we defined δz := ρz/2 for all z ∈ N , which means that

Qs = {(t, x) ∈ Q | |ȳ(t, x)− z| ≥ ρz/2 ∀ z ∈ N}.

Note that (4.45) is automatically satisfied a.e. in {(t, x) ∈ Qs|f ′′(ȳ(t, x)) ≥ 0}, since
p ≤ 0. On the other hand, from (5.13) one has

f ′′(ȳ(t, x))p(t, x) ≤ −cf ′′(ȳ(t, x)) = c|f ′′(ȳ(t, x))|
≤ c sup

v∈M
|f ′′(v)|

<∞ f.a.a. (t, x) ∈ Qs with f ′′(ȳ(t, x)) < 0,

(5.14)

where we abbreviateM := {v ∈ R | |v−z| ≥ ρz/2∀ z ∈ N , |v| ≤ ‖ȳ‖C(Q̄), f
′′(v) < 0}.

The last inequality in (5.14) is true, since f ′′ is continuous on {v ∈ R| |v − z| ≥
ρz/4 ∀ z ∈ N}, by assumption. Thus, if in addition to (5.9),

c sup
v∈M

|f ′′(v)| ≤ 1 (5.15)

holds, then (4.45) is guaranteed. Note that (4.45) is automatically fulfilled if f is
convex on {v ∈ R | |v − z| ≥ ρz/4 ∀ z ∈ N , |v| ≤ ‖ȳ‖C(Q̄) + 1}, since in this case
f ′′(ȳ(t, x)) ≥ 0 for all (t, x) ∈ Qs.

Note that, if N is finite, then the inf-conditions in Assumptions 4.6 and 4.9 are true.
In conclusion, for the setting considered here, (5.9) and (5.15) imply that every strong
stationary point of (P) satisfies all assumptions in Theorems 4.13 and 4.16, and thus,
the necessary optimality condition (5.1) is also sufficient for local optimality.

Appendix A.

Lemma A.1. For every 0 < ς̂ ≤ β < 1 it holds

‖e−tA‖L((W−1,q(Ω),W 1,q
D (Ω))ς̂,1,(W−1,q(Ω),W 1,q

D (Ω))β,∞) ≤ c t
ς̂−β ∀ t ∈ (0, T ]. (A.1)
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For all ς ∈ (0, 1/2) we have

(∫ T

0

‖e−sA‖2L((W−1,q(Ω),W 1,q
D (Ω))ς,∞,L2(Ω))

ds
)1/2

<∞. (A.2)

Moreover, for any γ ∈ (1/2, 1) it holds

‖e−tA‖L(W−1,q(Ω),L2(Ω)) ≤ t−γ ∀ t ∈ (0, T ]. (A.3)

Proof. Let t ∈ (0, T ] and ψ ∈ (W−1,q(Ω),W 1,q
D (Ω))ς̂,1 be arbitrary, but fixed. Then,

by [31, Theorem 1.15.2], and [26, Theorems 2.6.8d), 2.6.13], we have

‖e−tAψ‖(W−1,q(Ω),W 1,q
D (Ω))β,∞

≤ c ‖Aβe−tAψ‖W−1,q(Ω)

≤ c ‖Aβ−ς̂e−tA‖L(W−1,q(Ω),W−1,q(Ω))‖Aς̂ψ‖W−1,q(Ω)

= c ‖Aβ−ς̂e−tA‖L(W−1,q(Ω),W−1,q(Ω))‖ψ‖D(Aς̂)

≤ c tς̂−β‖ψ‖(W−1,q(Ω),W 1,q
D (Ω))ς̂,1

,

(A.4)
where D(Aς̂) is the domain of Aς̂ . This proves (A.1). Next we show (A.2). To
this end, consider ς ∈ (0, 1/2) arbitrary, but fixed. We first observe that there exist
ς̂ , β ∈ (0, 1) such that ς > ς̂ > β − 1/2 > 0. This implies (W−1,q(Ω),W 1,q

D (Ω))ς,∞ ↪→
(W−1,q(Ω),W 1,q

D (Ω))ς̂,1, cf. [1, Section 3], and

(W−1,q(Ω),W 1,q
D (Ω))β,∞ ↪→ [W−1,q(Ω),W 1,q

D (Ω)] 1
2

= Lq(Ω) ↪→ L2(Ω), (A.5)

see [16, Thm. 3.5]. From (A.1) we have

‖e−tA‖L((W−1,q(Ω),W 1,q
D (Ω))ς,∞,L2(Ω)) ≤ c t

ς̂−β ∀ t ∈ (0, T ], (A.6)

with the above choice of ς̂ and β. Due to 2(ς̂ − β) > −1 and (A.6), we can now infer
(A.2). Further, a computation similar to (A.4) shows that

‖e−tA‖L(W−1,q(Ω),(W−1,q(Ω),W 1,q
D (Ω))γ,∞) ≤ c t

−γ ∀ t ∈ (0, T ], ∀ γ ∈ (0, 1).

Together with (A.5), this implies (A.3). The proof is now complete.
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