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SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS FOR
OPTIMAL CONTROL OF NON-SMOOTH, SEMILINEAR

PARABOLIC EQUATIONS

LIVIA BETZ∗

Abstract. This paper is concerned with an optimal control problem governed by a non-smooth,
semilinear parabolic PDE. The nonlinearity in the state equation is only directionally differentiable,
locally Lipschitz continuous, and is allowed to have infinitely many non-differentiable points. By em-
ploying its limited properties, Bouligand-differentiability of the control-to-state map is shown. This
enables us to establish second-order sufficient optimality conditions. We provide concrete settings
where these reduce to the first-order necessary optimality condition.

Key words. Optimal control of PDEs, non-smooth optimization, second-order sufficient condi-
tions

AMS subject classifications. 49J20, 35K58, 49K99

1. Introduction. In this paper we establish second-order sufficient conditions
for the following optimal control problem:

min
u∈Lr(0,T ;L2(Ω))

J(y, u)

s.t. ẏ(t) +Ay(t) + f(y(t)) = B u(t) a.e. in (0, T )

y(0) = 0,

 (P)

where Ω ⊂ Rn, n = 2, 3, is a bounded Lipschitz domain, J is a smooth function,
A is a linear unbounded operator and f is a non-smooth mapping. The precise
statements will be given at the end of this section and in Assumption 2.1 below. The
essential feature of (P) is that the nonlinearity f appearing in the state equation is
only directionally differentiable. Thus, the second-order analysis cannot be performed
by classical techniques for smooth optimization problems in Banach spaces.

Optimal control problems subject to non-smooth constraints are challenging even
in the finite dimensional case, see e.g. [29] and the references therein. Difficulties
arise from the non-smoothness of the control-to-state mapping, which does not allow
to apply the standard Karush-Kuhn-Tucker (KKT) theory. For this reason, various
optimality conditions of different strength have been introduced, such as e.g. Clarke
(C), Bouligand (B), and strong stationarity. In the spirit thereof, stationarity concepts
for the infinite dimensional case are defined in [18]. The most rigorous stationarity
concept is strong stationarity. In a previous work [23], necessary optimality conditions
of this type were established, from which we will benefit in the present paper.

While second-order sufficient optimality conditions (SSC) for the optimal control of
smooth PDEs have been intensively investigated, see e.g. [4, 5, 7–9, 11, 14, 26, 28] and
the references therein, the literature on SSC for the optimal control of non-smooth
problems is rather rare. To the best of our knowledge, the only contributions in this
field deal with elliptic VIs. These were addressed in [21] (obstacle problem) and [3]
(static elastoplasticity). In [24] it was proven that the obstacle control problem is
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convex if the desired state is behind the obstacle. This result was extended in [21],
where sufficient conditions for the optimal control of the obstacle problem in the
general case were presented. To the best of the author’s knowledge, the investigation of
second-order sufficient conditions for optimization problems governed by non-smooth
parabolic PDEs is an open research topic.
What distinguishes the problem (P) from the ones analyzed in [3] and [21] is not
only the parabolic component but also the very general non-smooth mapping f . For
example, we allow the set of non-differentiable points of f to be at most countable.
We require (in addition to strong stationarity, positive-definiteness/coercivity of the
Hessian of the “Lagrangian”) only a sign condition on the adjoint state and we can
provide settings where this is fulfilled. By comparison, in [21] sign conditions are
imposed not only on the adjoint state but also on the multiplier, while in [3] regularity
assumptions on the adjoint state and multipliers are made. If the nonlinearity f is
twice continuously differentiable, then the SSC derived in the present work coincide
with the classical second-order sufficient optimality conditions, see Remark 4.19 below.
The paper is organized as follows. In Section 2 we state the precise assumptions on
the data and lay the foundations for our analysis, by recalling some crucial results
from [23]. Section 3 is mainly devoted to proving the Bouligand-differentiability of
the control-to-state operator in appropriate spaces. This is the first essential step
towards the investigation of SSC, which will be performed in Section 4. The latter
contains our main results, namely two sets of second-order sufficient conditions for
the optimal control of (P) (Theorems 4.15 and 4.18 below). In Section 5 we present
a setting where the necessary optimality condition alone is sufficient for optimality.

Notation. Throughout the paper, C and c denote generic positive constants. If
X and Y are two linear normed spaces, the space of linear and bounded operators
from X to Y is denoted by L(X,Y ). For the open ball in X around x ∈ X with
radius R we write BX(x,R). The symbol X∗ stands for the dual space of X, while
〈., .〉X stands for the dual pairing between X and X∗. If X is compactly embedded

in Y , we write X ↪→↪→ Y , and X
d
↪→ Y means that X is dense in Y . If X and Y

are Banach spaces, we use the notation [X,Y ]θ for the complex and (X,Y )θ,ω for the
real interpolation space, respectively, where θ ∈ (0, 1) and ω ∈ [1,∞], see e.g. [30].
If a linear operator A is the infinitesimal generator of a semigroup, the latter will be
denoted by {etA}t≥0, see also [25, Chp. 2.5]. In all what follows, T > 0 is a fixed final
time and Ω ⊂ Rn, n = 2, 3, is a bounded Lipschitz domain in the sense of [22, Chp.
1.1.9]. For simplicity, we abbreviate Q := (0, T )× Ω. The boundary of Ω consists of
two disjoint measurable parts ΓD and ΓN . By W 1,q

D (Ω) we denote the closure of the
set {ψ|Ω : ψ ∈ C∞0 (Rn), supp(ψ) ∩ ΓD = ∅} with respect to the W 1,q-norm, where
q ∈ (1,∞). For the dual space associated withW 1,q′

D (Ω) we use the symbolW−1,q(Ω),
where q′ stands for the conjugate exponent. Moreover, we abbreviate

Wr
0(W 1,q

D (Ω),W−1,q(Ω)) := {v ∈W 1,r(0, T ;W−1,q(Ω)) ∩ Lr(0, T ;W 1,q
D (Ω)) : v(0) = 0},

Wr′

T (W 1,q′

D (Ω),W−1,q′(Ω)) := {v ∈W 1,r′(0, T ;W−1,q′(Ω)) ∩ Lr
′
(0, T ;W 1,q′

D (Ω)) : v(T ) = 0},

where r ∈ (1,∞).

2. Standing assumptions and known results. This section is devoted to
collecting the assumptions on the data as well as crucial results from [23] concerning
the state equation.
Assumption 2.1. For the quantities in (P) we require the following:
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1. Let

n < q <∞ and
2q

q − n
< r <∞ (2.1)

be fixed.
2. The operator A : W−1,q(Ω) → W−1,q(Ω) is linear, unbounded, and closed.

Its domain of definition is given by W 1,q
D (Ω). In addition, 0 /∈ σ(A), where

σ(A) denotes the spectrum of A.
3. Moreover, A satisfies maximal parabolic Lr(0, T ;W−1,q(Ω))-regularity, i.e.,

for every g ∈ Lr(0, T ;W−1,q(Ω)), the equation ẇ + Aw = g admits a unique
solution w ∈Wr

0(W 1,q
D (Ω),W−1,q(Ω)).

4. The nonlinearity f : R→ R is assumed to be monotone increasing. Moreover,
it is Lipschitz continuous on bounded sets, i.e., for all M > 0, there exists a
constant LM > 0 such that

|f(z1)− f(z2)| ≤ LM |z1 − z2| ∀ z1, z2 ∈ [−M,M ].

5. The function f is directionally differentiable at every point, i.e.,∣∣∣f(x+ τ h)− f(x)

τ
− f ′(x;h)

∣∣∣ τ↘0−→ 0 ∀x, h ∈ R.

Moreover, the set of non-differentiable points of f is at most countable.
6. The operator B : L2(Ω)→W−1,q(Ω) is linear and bounded.
7. The objective J : Lr(0, T ;W 1,q

D (Ω)) × Lr(0, T ;L2(Ω)) → R is twice continu-
ously Fréchet-differentiable.

Remark 2.2. With a little abuse of notation, the Nemytskii-operators associated with
f and B, considered with different ranges, will be denoted by the same symbol.
Comments regarding the above assumptions are provided at the end of this section.
From now on, Assumption 2.1 is tacitly assumed in the following without mentioning
it every time. We point out that this fits in the general setting of [23, Assumptions
2.1 and 2.5], as explained in the following. With the notations from the preceding
contribution [23] we have

X = W−1,q(Ω), D = W 1,q
D (Ω), U = L2(Ω), Y = L∞(Ω).

Note that the maximal parabolic regularity assumption on A implies that A generates
an analytic semigroup, see [2, Section 3]. The Nemytskii operator f : L∞(Ω) →
L∞(Ω) is well-defined and Lipschitz continuous on bounded sets, i.e., for everyM > 0,
there exists LM > 0 so that

‖f(y1)− f(y2)‖L∞(Ω) ≤ LM ‖y1 − y2‖L∞(Ω) ∀ y1, y2 ∈ BL∞(Ω)(0,M). (2.2)

When considered with domain L∞(Ω) and range Lβ(Ω), β < ∞, f is directionally
differentiable, see proof of [23, Lemma 6.4] for details. Therein, Assumption 2.1.1
on r and q is justified as well. The condition q > n guarantees that there exists
θ ∈ (0, 1) such that (W−1,q(Ω),W 1,q

D (Ω))θ,∞ ↪→ L∞(Ω), see [23, (6.4)], while the
relation between r and q in (2.1) ensures that r(1 − θ) > 1, i.e., [23, (2.4)]. These
turn out to be essential not only for the existence of solutions of the state equation,
see [23], but also for the upcoming second-order analysis, see Remark 2.6 below. Note
that, in view of [30, Thm. 1.15.2 (d), p.101] and [25, Thm. 2.6.13, p.74], it holds

‖e−tA‖L(W−1,q(Ω),L∞(Ω)) ≤ c t−θ ∀ t ∈ (0, T ], (2.3)
3



which will be crucial in the proof of Theorem 3.2 below. Let us mention that we
dropped the density assumption on B and the convexity assumption on J , as they were
needed in [23] just for deriving (strong stationary) necessary optimality conditions and
for proving the existence of global minimizers, respectively, which is not the case in
this paper.

The following embedding will be crucial in the next sections and is a consequence
of [1, Thm. 3] combined with W 1,q

D (Ω) ↪→↪→ W−1,q(Ω), (W−1,q(Ω),W 1,q
D (Ω))θ,1 ↪→

(W−1,q(Ω),W 1,q
D (Ω))θ,∞ ↪→ L∞(Ω), see [1, Section 3]:

Wr
0(W 1,q

D (Ω),W−1,q(Ω)) ↪→↪→ C([0, T ];L∞(Ω)). (2.4)

Since the setting in Assumption 2.1 is just a special case of [23, Assumption 2.1], we
can apply the general results in [23, Sections 2-3] on our state equation. We begin by
introducing the control-to-state mapping.

Definition 2.3. The solution operator of

ẏ(t) +Ay(t) + f(y(t)) = B u(t) a.e. in (0, T ),

y(0) = 0
(2.5)

is denoted by S : Lr(0, T ;L2(Ω)) 3 u 7→ y ∈ Wr
0(W 1,q

D (Ω),W−1,q(Ω)). Note that, in
view of [23, Proposition 2.11], this is well-defined.

Proposition 2.4. [23, Proposition 2.11] The control-to-state mapping S is Lipschitz
continuous on bounded sets, i.e., for every R > 0, there exists a constant LR > 0 such
that, for all u1, u2 ∈ BLr(0,T ;L2(Ω))(0, R), it holds

‖S(u1)− S(u2)‖Wr
0(W 1,q

D (Ω),W−1,q(Ω)) ≤ LR‖u1 − u2‖Lr(0,T ;L2(Ω)). (2.6)

Theorem 2.5. [23, Lemma 3.3, Theorem 3.4] The solution operator S : Lr(0, T ;L2(Ω))→
Wr

0(W 1,q
D (Ω),W−1,q(Ω)) is directionally differentiable and its directional derivative

η = S′(u;h) at u ∈ Lr(0, T ;L2(Ω)) in direction h ∈ Lr(0, T ;L2(Ω)) is given by the
unique solution of

η̇(t) +Aη(t) + f ′(y(t); η(t)) = B h(t) a.e. in (0, T )

η(0) = 0,
(2.7)

with y = S(u). The solution operator of (2.7), namely S′(u; ·) : Lr(0, T ;L2(Ω)) 3
h 7→ η ∈Wr

0(W 1,q
D (Ω),W−1,q(Ω)) is globally Lipschitz continuous.

Some remarks concerning Assumption 2.1 are in order:

Remark 2.6. Note that Assumption 2.1.1 does not allow us to consider the L2(Q)-
Hilbert space for the control, since r > 2 even in two dimensions. We deliberately
choose to work with such a setting, although additional assumptions on the nonlin-
earity f would enable us to set r = 2, cf. [23, Remark 6.5]. We proceed in this
way due to the following reason. The condition (2.1) guarantees that the control-to-
state mapping is (locally) Lipschitz continuous with range in L∞(Q) (see the proof
of [23, Lemma 6.4]). This will be indispensable for the derivation of SSC: given a
point y in a neighborhood of the state ȳ, we have to be able to make assertions about
the distance between y(t, x) and ȳ(t, x) (in the “a.e.” sense), see proofs of Lemmas 4.9
and 4.12 below. Further, we observe that r becomes large if q approaches n. We could
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weaken Assumption 2.1.1 as in [23, Remark 6.5] if e.g. RgB = L2(Ω). However, one
still obtains r > 2, so that the L2(Q)-Hilbert space setting for the control is excluded.
As mentioned above, extra conditions on f allow for r = 2. Let us point out that in
this case one cannot expect L∞(Q)-regularity for the state, see [31, Chp. 5].
In the elliptic case, the local Lipschitz continuity of the control-to-state operator with
range in the space of essentially bounded functions is crucial too. Thanks to the Stam-
pacchia method, see [31], one can choose L2(Ω) as space for the control to guarantee
this. Let us emphasize that the entire second-order analysis for the elliptic version of
(P) can be performed in the same way as in the parabolic setting.
Remark 2.7. In two dimensions, Assumptions 2.1.2-3 are satisfied by the operator
A = − div κ∇ defined as

A : W 1,q
D (Ω) 3 y 7→

∫
Ω

κ∇y∇ · dx ∈W−1,q(Ω),

if Ω ∪ ΓN is regular in the sense of Gröger, cf. [15], and the coefficient function
κ ∈ L∞(Ω;Rn×n) is uniformly elliptic and symmetric. The papers [20, Appendix]
and [12] provide many settings such that −div κ∇ fulfills Assumptions 2.1.2-3 in
three dimensions too, e.g., if ΓN = ∅, κ is uniformly continuous and may jump across
a C1-interface, and Ω is a strong Lipschitz domain in the sense of [22, Chp. 1.1.9].
For more details, see [23, Remark 6.3]. Note further that A satisfies maximal parabolic
Ls(0, T ;W−1,q(Ω))-regularity for every s ∈ (1,∞), cf. [13].
Remark 2.8. The monotony property of f in Assumption 2.1.4 can be replaced by the
more general [23, Assumption 2.5], see the proof of [23, Lemma 6.6]. Alternatively,
one could require that f satisfies certain growth conditions, cf. [23, Remark 2.6].
Remark 2.9. Semilinear parabolic PDEs with non-smooth nonlinearities f of the type
(2.5) arise for instance in the modeling of combustion processes, see e.g. [33]. In this
case, the combustion nonlinearity f features a so-called ignition-temperature Θ > 0.
For example, f could be identically zero on the interval (−∞,Θ], i.e., there is no
reaction below the ignition-temperature. Once Θ is reached, ignition and combustion
suddenly occur (so that Θ is a kink point of f). This leads to an abrupt change in
the physical regime modeled by the non-smooth function f . For more details, we refer
to [33, Chp. 1.2]. In Figure 5.1 below we depict an ignition-type nonlinearity with
three ignition temperatures.

3. Bouligand-differentiability of the control-to-state operator. This sec-
tion addresses an essential property of the operator S that will be needed in the proof
of the main result, namely its Bouligand-differentiability. To show the latter, we need
the following
Proposition 3.1. The function f is Bouligand-differentiable from L∞(Q) to Lβ(Q)
for every β <∞, i.e.,

‖f(y + h)− f(y)− f ′(y;h)‖Lβ(Q) = o(‖h‖L∞(Q)) ∀ y ∈ L∞(Q).

In particular, f is directionally differentiable from L∞(Q) to Lβ(Q) for every β <∞.
Furthermore, f ′(y;h) ∈ L∞(Q) ∀ y, h ∈ L∞(Q).
Proof. From Assumptions 2.1.4 and 2.1.5 it follows that f : R → R is Bouligand-
differentiable at any z ∈ R, i.e.,

|f(z + vn)− f(z)− f ′(z; vn)|
|vn|

→ 0 as vn → 0. (3.1)
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Note that, for all M > 0, it holds

|f ′(z; v)| ≤ LM+1 |v| ∀ v ∈ R, z ∈ [−M,M ], (3.2)

where LM+1 > 0 is given by Assumption 2.1.4. This is due to the definition of the
directional derivative and its positive homogeneity w.r.t. direction, see also the proof
of [23, Lemma 3.1]. Let now {hn} ⊂ L∞(Q) be an arbitrary sequence with hn → 0
in L∞(Q) as n→∞. Hence, hn(t, x)→ 0 a.e. in Q. As a result of (3.1), we have the
following convergence

gn(t, x) :=
|f(y(t, x) + hn(t, x))− f(y(t, x))− f ′(y(t, x);hn(t, x))|

‖hn‖L∞(Q)

≤ |f(y(t, x) + hn(t, x))− f(y(t, x))− f ′(y(t, x);hn(t, x))|
|hn(t, x)|

→ 0 as n→∞

a.e. in Q. Moreover, for n large enough, we have |gn(t, x)| ≤ 2L‖y‖L∞(Q)+1 a.e. in Q,
in view of Assumption 2.1.4 and (3.2). Thus, by Lebesgue’s dominated convergence
theorem, we obtain

gn → 0 in Lβ(Q) as n→∞,

for any β < ∞, which is the desired assertion. Note that f ′(y;h) ∈ L∞(Q) for all
y, h ∈ L∞(Q), in light of (3.2).

Theorem 3.2. The control-to-state mapping S : Lr(0, T ;L2(Ω))→Wr
0(W 1,q

D (Ω),W−1,q(Ω))
is Bouligand-differentiable, i.e.,

‖S(u+ h)− S(u)− S′(u;h)‖Wr
0(W 1,q

D (Ω),W−1,q(Ω)) = o(‖h‖Lr(0,T ;L2(Ω)))

for all u ∈ Lr(0, T ;L2(Ω)).

Proof. Let u, h ∈ Lr(0, T ;L2(Ω)) be arbitrary, but fixed and set y := S(u), yh :=
S(u+h) and η := S′(u;h). By subtracting (2.5) and (2.7) from (2.5) with right-hand
side u+ h we have

d

dt
(yh − y − η) +A(yh − y − η) = −f(yh) + f(y) + f ′(y; η),

(yh − y − η)(0) = 0.
(3.3)

The associated integral equation reads

(yh − y − η)(t) =

∫ t

0

e−(t−s)A(− f(yh(s)) + f(y(s)) + f ′(y(s); η(s))
)
ds,

see e.g. [17]. Consequently, one obtains

‖(yh − y − η)(t)‖L∞(Ω)

≤
∫ t

0

‖e−(t−s)A‖L(W−1,q(Ω),L∞(Ω))

( =:Âh(s)︷ ︸︸ ︷
‖f
(
yh(s)

)
− f(y(s) + η(s))‖W−1,q(Ω)

+ ‖f(y(s) + η(s))− f(y(s))− f ′(y(s); η(s))‖W−1,q(Ω)︸ ︷︷ ︸
=:B̂h(s)

)
ds

(3.4)
6



for all t ∈ [0, T ]. We assume that ‖h‖Lr(0,T ;L2(Ω)) ≤ 1, since h → 0 later anyway.
Proceeding exactly as in the proof of [23, Lemma 6.6], we find

‖yh‖C([0,T ];L∞(Ω)) ≤ C(1 + ‖u+ h‖Lr(0,T ;L2(Ω))) ≤ C(2 + ‖u‖Lr(0,T ;L2(Ω))) =: ρ1,

‖y + η‖C([0,T ];L∞(Ω)) ≤ C(1 + ‖u‖Lr(0,T ;L2(Ω)) + Lu) =: ρ2,

where for the last estimate we used Theorem 2.5 combined with (2.4). Now, applying
(2.2) with M := max{ρ1, ρ2} yields

Âh(t) ≤ LM ‖(yh − y − η)(t)‖L∞(Ω) ∀ t ∈ [0, T ], (3.5)

in view of L∞(Ω) ↪→ W−1,q(Ω). To estimate B̂h, let us first fix ζ > 1 so that
W 1,q′

D (Ω) ↪→ Lζ(Ω), say ζ = 3/2 and ζ = 2 in the three and two dimensional case,
respectively. Then, Lζ

′
(Ω) ↪→ W−1,q(Ω) follows, and by employing the Lipschitz

continuity of S′(u; ·) : Lr(0, T ;L2(Ω)) → Wr
0(W 1,q

D (Ω),W−1,q(Ω)), see Theorem 2.5,
we have

‖B̂h‖Lr(0,T ) ≤ C
‖f(y + η)− f(y)− f ′(y; η)‖Lr(0,T ;Lζ′ (Ω))

‖η‖L∞(Q)
‖η‖L∞(Q)

≤ C
‖f(y + η)− f(y)− f ′(y; η)‖Lmax{r,ζ′}(Q)

‖η‖L∞(Q)
Lu‖h‖Lr(0,T ;L2(Ω)),

provided that η 6= 0. Note that for the second inequality we used again (2.4). In case
that η = 0, we deduce B̂h = 0, by the definition of B̂h. Further, we observe that
‖h‖Lr(0,T ;L2(Ω)) → 0 implies S′(u;h)→ 0 in L∞(Q), as a consequence of Theorem 2.5
combined with (2.4). Thanks to ζ > 1, we have max{r, ζ ′} <∞, and Proposition 3.1
gives in turn

‖B̂h‖Lr(0,T )

‖h‖Lr(0,T ;L2(Ω))
≤ C
‖f(y + η)− f(y)− f ′(y; η)‖Lmax{r,ζ′}(Q)

‖η‖L∞(Q)
→ 0, (3.6)

if ‖h‖Lr(0,T ;L2(Ω)) → 0. Now we return to (3.4), where inserting (3.5) results in

‖(yh − y − η)(t)‖L∞(Ω)

≤ LM
∫ t

0

‖e−(t−s)A‖L(W−1,q(Ω),L∞(Ω))‖(yh − y − η)(s)‖L∞(Ω) ds

+

∫ t

0

‖e−(t−s)A‖L(W−1,q(Ω),L∞(Ω))B̂h(s) ds

≤ LM
∫ t

0

c (t− s)−θ‖(yh − y − η)(s)‖L∞(Ω) ds

+ ‖e−·A‖Lr′ (0,T ;L(W−1,q(Ω),L∞(Ω)))‖B̂h‖Lr(0,T ) ∀ t ∈ [0, T ].

Here, θ ∈ (0, 1) denotes the exponent in (2.3). In view of the latter, the mapping
t 7→ e−tA belongs indeed to Lr

′
(0, T ;L(W−1,q(Ω), L∞(Ω))), since r′θ < 1. By means

of a generalized Gronwall’s inequality, cf. [17, Lemma 7.1.1, p. 188], we have

‖(yh − y − η)(t)‖L∞(Ω) ≤ C‖B̂h‖Lr(0,T ) ∀ t ∈ [0, T ].

Then, by (3.6), the estimate

‖yh − y − η‖C([0,T ];L∞(Ω))

‖h‖Lr(0,T ;L2(Ω))
≤ C

‖B̂h‖Lr(0,T )

‖h‖Lr(0,T ;L2(Ω))
→ 0 if ‖h‖Lr(0,T ;L2(Ω)) → 0 (3.7)
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follows. Since A satisfies maximal parabolic Lr(0, T ;W−1,q(Ω))-regularity, see As-
sumption 2.1.3, we finally arrive at

‖yh − y − η‖Wr
0(W 1,q

D (Ω),W−1,q(Ω))

≤ ‖(∂t +A)−1‖L(Lr(0,T ;W−1,q(Ω)),Wr
0(W 1,q

D (Ω),W−1,q(Ω)))‖ − f(yh) + f(y) + f ′(y; η)‖Lr(0,T ;W−1,q(Ω))

≤ c (‖Âh‖Lr(0,T ) + ‖B̂h‖Lr(0,T ))

≤ c (‖yh − y − η‖C([0,T ];L∞(Ω)) + ‖B̂h‖Lr(0,T ))

= o(‖h‖Lr(0,T ;L2(Ω))),

where we used (3.3), (3.5), (3.7), and (3.6). The proof is now complete.

4. Second-order sufficient optimality conditions. This section is devoted to
establishing second-order sufficient conditions (SSC) which guarantee local optimality
for (P). Recall that this reads as follows:

min
u∈Lr(0,T ;L2(Ω))

J(y, u)

s.t. ẏ(t) +Ay(t) + f(y(t)) = B u(t) a.e. in (0, T )

y(0) = 0.

 (P)

The upcoming second-order analysis relies on the Bouligand-differentiability and the
(local) Lipschitz continuity of S with range in L∞(Q). The main results are stated
in Theorems 4.15 and 4.18 below. Similarly to [3], we present two versions of second-
order sufficient optimality conditions. The first set of conditions involves the positive-
definiteness of the Hessian of a “Lagrangian” on the cone of critical directions and
applies only to objectives with a particular structure, see Assumption 4.13 below.
The second set of SSC allows for general (smooth) objectives. In this case, the Hes-
sian of the “Lagrangian” is supposed to be coercive on a larger cone, cf. Assumption
4.16 below. Moreover, Theorems 4.15 and 4.18 below are based on the strong sta-
tionarity result from [23] and the premise that the adjoint state fulfills a suitable sign
condition (on a certain subset of Q). Let us point out that if f is twice continuously
differentiable, then both versions of SSC derived in this section coincide with the
classical SSC, see Remark 4.19 below.

We begin by recalling the necessary optimality condition for (P) (in form of strong
stationarity) established in [23].

Theorem 4.1. [23, Thm. 5.3, Thm. 6.7] Suppose that the range of B is dense
in W−1,q(Ω). Let ū ∈ Lr(0, T ;L2(Ω)) be locally optimal for (P) with associated
state ȳ = S(ū) ∈ Wr

0(W 1,q
D (Ω),W−1,q(Ω)). Then there exists a unique adjoint state

p ∈ Wr′

T (W 1,q′

D (Ω),W−1,q′(Ω)) and a unique multiplier λ ∈ Lr
′
(0, T ;Ls(Ω)) with

s = nq
nq−n−q such that

˙̄y +A ȳ + f(ȳ) = B ū, ȳ(0) = 0, (4.1a)
−ṗ+A∗p+ λ = ∂yJ(ȳ, ū), p(T ) = 0, (4.1b)

λ(t, x) ∈ [f ′+(ȳ(t, x)) p(t, x), f ′−(ȳ(t, x)) p(t, x)] a.e. in Q, (4.1c)
B∗p+ ∂uJ(ȳ, ū) = 0, (4.1d)

where, for an arbitrary z ∈ R, the right- and left-sided derivative of f : R → R are
defined through f ′+(z) := f ′(z; 1) and f ′−(z) := −f ′(z;−1), respectively.
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In the remaining of the section, let (ū, ȳ, λ, p) be a fixed point which satisfies the
system (4.1) and possesses the same regularity as in Theorem 4.1.
Lemma 4.2. For any u ∈ Lr(0, T ;L2(Ω)), there exists γ ∈ [0, 1] such that

J(y, u)− J(ȳ, ū) ≥
∫
Q

p(t, x)
(
f(ȳ)− f(y) + f ′(ȳ; y − ȳ)

)
(t, x) d(t, x)

+
1

2
J ′′(yγ , uγ)(y − ȳ, u− ū)2,

(4.2)

where we abbreviate y := S(u) and (yγ , uγ) := (ȳ, ū) + γ((y, u)− (ȳ, ū)).

Proof. Let u ∈ Lr(0, T ;L2(Ω)) be arbitrary, but fixed. Using the optimality system,
we find

∂yJ(ȳ, ū)(y − ȳ) + ∂uJ(ȳ, ū)(u− ū)

= 〈−ṗ+A∗p+ λ, y − ȳ〉Lr(0,T ;W 1,q
D (Ω)) − 〈B

∗p, u− ū〉Lr(0,T ;L2(Ω))

= 〈p, ẏ − ˙̄y +A(y − ȳ)−B(u− ū)〉Lr(0,T ;W−1,q(Ω)) + 〈λ, y − ȳ〉Lr(0,T ;W 1,q
D (Ω))

≥ 〈p, f(ȳ)− f(y)〉Lr(0,T ;W−1,q(Ω)) +

∫
Q

p(t, x)f ′(ȳ; y − ȳ)(t, x) d(t, x).

For the last equality, we applied the formula of integration by parts from [2, Proposi-
tion 5.1] in combination with the initial and final time conditions in (2.5) and (4.1b),
respectively. The above inequality can be deduced from the state equation (2.5)
and (4.1c) together with the positive homogeneity of the directional derivative. The
desired assertion follows now from the continuous Fréchet-differentiability of J , cf.
Assumption 2.1.7.
The key idea in the proofs of Theorems 4.15 and 4.18 below is to write the integral in
(4.2) as the sum of a nonnegative term, −1/2

∫
M p(t, x)f ′′(ȳ(t, x))S′(ū;u− ū)(t, x)2 d(t, x),

and o(‖u− ū‖2Lr(0,T ;L2(Ω))), whereM is a suitable subset of Q. In preparation there-
for, we discuss the first term on the right-hand side in (4.2) on three different subsets
of Q, by mainly distinguishing between those (t, x) for which f is differentiable or not
at ȳ(t, x), see (4.3), (4.7), and (4.10) below.
We identify the non-smooth and smooth points of the function f by means of the
following sets:

N := {z ∈ R | f is not differentiable at z},
S := {z ∈ R | f is differentiable at z}.

Recall that N is at most countable, cf. Assumption 2.1.5. This ensures that the sets
in (4.3), (4.7), and (4.10) below are measurable.
Next, we introduce the notion of local convexity/concavity for the nonlinearity f .
This will play a crucial role in the next two lemmas.
Definition 4.3. We say that the function f is convex around y ∈ R if there exists
ρ > 0 so that f is convex on the interval (y − ρ, y + ρ). Analogously, we say that
f is concave around y ∈ R if there exists ρ > 0 so that f is concave on the interval
(y − ρ, y + ρ).

We also define (up to sets of measure zero) the following subset of Q:

Qn := {(t, x) ∈ Q | ∃ z ∈ N so that ȳ(t, x) = z}. (4.3)
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Lemma 4.4. Suppose that at any z ∈ N , the function f is either convex or concave
around z with radius ρz > 0. If infz∈N ρz > 0, then there exists ε > 0 so that, for
any y ∈ L∞(Q) with ‖y − ȳ‖L∞(Q) < ε, there holds

p(t, x)
(
f(ȳ)− f(y) + f ′(ȳ; y − ȳ)

)
(t, x) ≥ 0 a.e. in Qn.

Proof. Let z ∈ N be a non-smooth point of f for which the set mz := {(t, x) ∈
Q | ȳ(t, x) = z} has positive measure. If f is convex around z, then straightforward
computation shows that f ′+(z) > f ′−(z), since z is a non-differentiable point. Thus,
f ′+(ȳ(t, x)) > f ′−(ȳ(t, x)) a.e. in mz. On the other hand, from (4.1c) we deduce that the
interval [f ′+(ȳ(t, x)) p(t, x), f ′−(ȳ(t, x)) p(t, x)] is nonempty for a.a. (t, x) ∈ Q. Thus,

p(t, x) ≤ 0 a.e. in mz. (4.4)

Since f is convex on (z − ρz, z + ρz), it holds

f(v)− f(z) ≥ f ′(z; v − z) for all v ∈ (z − ρz, z + ρz). (4.5)

Now, we define ε := infz∈N ρz > 0. Let y ∈ L∞(Q) with ‖y − ȳ‖L∞(Q) < ε be
arbitrary, but fixed. Then, y(t, x) ∈ (z − ρz, z + ρz) a.e. in mz, and from (4.5)
combined with (4.4) we deduce

p(t, x)
(
f(ȳ)− f(y) + f ′(ȳ; y − ȳ)

)
(t, x) ≥ 0 a.e. in mz. (4.6)

Analogously, if f is concave around z, one has p(t, x) ≥ 0 a.e. in mz, and (4.6) follows
in the same way as above. Since Qn = ∪z∈Nmz by definition, the proof is now
complete.

Remark 4.5. In view of (4.4), one always knows the sign of the adjoint state p a.e.
where ȳ(t, x) is a non-differentiable point of f . Unfortunately, this is no longer the
case in the smooth points. No matter how close ȳ(t, x) ∈ S is to some z ∈ N , a sign
for p(t, x) could not be provided. This turns out to be a problem precisely for those
(t, x) for which ȳ(t, x) is “too close” to the non-smooth points, as explained in Remark
4.8.(iii) below. This is why we need to assume a certain sign condition for p on this
critical subset of Q, below also known as Qs,δ.

Assumption 4.6. Suppose that, at any z ∈ N , the function f is either convex or
concave around z with radius ρz > 0. Moreover, assume that, for any z ∈ N , there
exists δz ∈ (0, ρz) so that the following conditions are fulfilled:

1. infz∈N ρz − δz > 0,
2. if f is convex around z: p(t, x) ≤ 0 a.e. where ȳ(t, x) ∈ (z − δz, z + δz) \ {z},
3. if f is concave around z: p(t, x) ≥ 0 a.e. where ȳ(t, x) ∈ (z− δz, z+ δz) \ {z}.

Remark 4.7. Given three successive points in N , say z0, z1, and z2, the value ρz1 > 0
should be chosen in all what follows so that z0 < z1− ρz1 < z1 < z1 + ρz1 < z2 holds.

From now on, {δz}z∈N is supposed to be a fixed set of strict positive, as small as
possible values that satisfy Assumption 4.6. By means thereof, we define (up to sets
of measure zero):

Qs,δ := {(t, x) ∈ Q | ȳ(t, x) ∈ ∪z∈N (z − δz, z + δz) \ {z}}. (4.7)
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Remark 4.8. (i) For each z ∈ N , it is desirable to choose δz > 0 so (small) that
{(t, x) ∈ Q | ȳ(t, x) ∈ (z− δz, z+ δz) \ {z}} has measure zero, if possible. In this case,
Assumption 4.6.2-3 is automatically fulfilled at z ∈ N .

(ii) The assumption on the sign of p corresponds to an assumption from [21], which
was made in the context of deriving SSC for the elliptic obstacle problem. We refer
here to [21, Assumption 1.(iii)] and the proof of [21, (2.26)]. In Section 5 below we
will provide settings for which Assumption 4.6.2-3 is guaranteed.

(iii) On the set Q \ (Qn ∪ Qs,δ) we do not need any (sign) conditions. Here we can
evaluate the term (f(ȳ)− f(y) + f ′(ȳ; y− ȳ)(t, x) by means of a Taylor expansion for
any y ∈ BL∞(Q)(ȳ, ε), where ε > 0 is chosen appropriately, see (4.13) in the proof of
Lemma 4.12 below. Unfortunately, this cannot be done on the critical set Qs,δ: it is
not clear if an L∞(Q)-neighborhood of ȳ exists so that, for all y in this neighborhood,
it holds [ȳ(t, x), y(t, x)] ⊂ S a.e. in Qs,δ.
(iv) Let us point out that if there exists δ > 0 so that |ȳ(t, x)− z| ≥ δ a.e. in Q \Qn

for all z ∈ N , then Assumption 4.6 is no longer needed, and Lemma 4.9 below can
be omitted. In this case, we can find a neighborhood as depicted above. Then we can
argue as in the proof of Lemma 4.12 below and obtain the therein showed result for
the entire set Q \Qn.

Lemma 4.9. Let Assumption 4.6 hold true. Then, there exists ε > 0 so that, for all
y ∈ L∞(Q) with ‖y − ȳ‖L∞(Q) < ε, it holds

p(t, x)
(
f(ȳ)− f(y) + f ′(ȳ; y − ȳ)

)
(t, x) ≥ 0 a.e. in Qs,δ.

Proof. We define ε := infz∈N ρz−δz > 0 and consider y ∈ L∞(Q) with ‖y−ȳ‖L∞(Q) <
ε arbitrary, but fixed. Let z ∈ N and denote by qz the set {(t, x) ∈ Q | ȳ(t, x) ∈ (z −
δz, z+δz)\{z}} (up to sets of measure zero). Then, due to |y(t, x)−z|−|ȳ(t, x)−z| ≤
‖y − ȳ‖L∞(Q) < ρz − δz a.e. in Q, we have

|y(t, x)− z| < ρz a.e. in qz. (4.8)

If f is convex around z, the inequality f(v) − f(w) ≥ f ′(w; v − w) is true for all
v, w ∈ (z − ρz, z + ρz). Since ρz > δz by assumption, the definition of qz together
with (4.8) and the sign assumption on p, cf. Assumption 4.6.2, now yield

p(t, x)
(
f(ȳ)− f(y) + f ′(ȳ; y − ȳ)

)
(t, x) ≥ 0 a.e. in qz. (4.9)

In case that f is concave around z, one arrives at (4.9) in the same way as in the
convex case, by making use of Assumption 4.6.3. Since z ∈ N was arbitrary and
Qs,δ = ∪z∈N qz, the desired assertion follows now from (4.9).

Given the set of strict positive values {δz}z∈N from Assumption 4.6, we define (up to
sets of measure zero):

Qs := {(t, x) ∈ Q | |ȳ(t, x)− z| ≥ δz ∀ z ∈ N}. (4.10)

Assumption 4.10. From now on, we assume that, in addition to Assumption 4.6,
ε̂ := infz∈N δz/2 > 0 holds, and that the nonlinearity f is twice continuously differ-
entiable on {v ∈ R| |v − z| ≥ δz/2 ∀ z ∈ N}. Furthermore, suppose that there exists
L > 0 such that

|f ′(w)− f ′(ȳ(t, x))| ≤ L |w − ȳ(t, x)| ∀w ∈ (ȳ(t, x)− ε̂, ȳ(t, x) + ε̂) (4.11)
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f.a.a. (t, x) ∈ Qs.

As a direct consequence of (4.11), we have

|f ′′(ȳ(t, x))| = lim
τ→0

|f ′(ȳ(t, x) + τ)− f ′(ȳ(t, x))|
|τ |

≤ L f.a.a. (t, x) ∈ Qs. (4.12)

Hence, the mapping (t, x) ∈ Qs 7→ f ′′(ȳ(t, x)) ∈ R belongs to L∞(Qs).

Remark 4.11. We point out that the inequality (4.11) is satisfied if N∩(−‖ȳ‖L∞(Q), ‖ȳ‖L∞(Q))
is finite. To see this, we define

D := [−‖ȳ‖L∞(Q), z1 −
δ1
2

]
∪
[
z1 +

δ1
2
, z2 −

δ2
2

]
∪ ...

[
zi +

δi
2
, zi+1 −

δi+1

2

]
... ∪

[
zm−1 +

δm−1

2
, zm −

δm
2

]
∪
[
zm +

δm
2
, ‖ȳ‖L∞(Q)],

where zi is the i-th non-smooth point in N ∩ (−‖ȳ‖L∞(Q), ‖ȳ‖L∞(Q)) (in increasing
order) and δi := δzi . Since f ′′ is continuous on D by assumption, f ′ is Lipschitz
continuous on each of the intervals in D, and (4.11) follows from Qs ⊂ {(t, x) ∈
Q | ȳ(t, x) ∈ D} and the definition of ε̂. Note that if N is finite, the entire Assumption
4.10 is fulfilled, excepting the continuous differentiability of f .

The next lemma is the last essential step before proving the main result.

Lemma 4.12. Let Assumption 4.10 be satisfied. Then it holds∫
Qs

p(t, x)
(
f(ȳ)− f(S(u)) + f ′(ȳ;S(u)− ȳ)

)
(t, x) d(t, x)

= −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;u− ū)(t, x)2 d(t, x) + o(‖u− ū‖2Lr(0,T ;L2(Ω))).

Proof. Let y ∈ L∞(Q) with ‖y − ȳ‖L∞(Q) < ε̂ be arbitrary, but fixed. Note that
ε̂ = infz∈N δz/2 > 0, cf. Assumption 4.10. From

|ȳ(t, x)− z| − |y(t, x)− z| ≤ ‖y − ȳ‖L∞(Q) < δz/2 a.e. in Q, ∀ z ∈ N

we deduce that |y(t, x) − z| > δz/2 a.e. in Qs,∀ z ∈ N . Since for all z ∈ N it holds
|ȳ(t, x)− z| ≥ δz and |y(t, x)− ȳ(t, x)| < δz/2 a.e. in Qs, every point between ȳ(t, x)
and y(t, x) belongs to {v ∈ R| |v − z| > δz/2∀ z ∈ N} f.a.a. (t, x) ∈ Qs. Thus, f
is twice continuously differentiable on [ȳ(t, x), y(t, x)] f.a.a. (t, x) ∈ Qs, in view of
Assumption 4.10. This allows us to write the Taylor formula

f(y(t, x)) = f(ȳ(t, x)) + f ′(ȳ(t, x))(y(t, x)− ȳ(t, x)) + 1/2f ′′(ȳ(t, x))(y(t, x)− ȳ(t, x))2

+ o((y(t, x)− ȳ(t, x))2) a.e. in Qs.
(4.13)

Further, from (2.6) and (2.4) we know that there exists a constant C = C(ū) > 0
such that

‖S(v)− ȳ‖L∞(Q) ≤ C‖v − ū‖Lr(0,T ;L2(Ω)) (4.14)

for all v ∈ BLr(0,T ;L2(Ω))(ū, 1). Let now ε := min{ε̂/2C, 1} > 0 and u ∈ BLr(0,T ;L2(Ω))(ū, ε),
u 6= ū, be arbitrary, but fixed. Then, due to (4.14), we have ‖S(u)− ȳ‖L∞(Q) < ε̂ and
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as a result of (4.13), it holds

f(S(u)(t, x)) = f(ȳ(t, x)) + f ′(ȳ(t, x))(S(u)(t, x)− ȳ(t, x)) + 1/2f ′′(ȳ(t, x))(S(u)(t, x)− ȳ(t, x))2

+ o((S(u)(t, x)− ȳ(t, x))2)︸ ︷︷ ︸
=:hu(t,x)

a.e. in Qs.

(4.15)
Hence,∫
Qs

p(t, x)
(
f(ȳ)− f(S(u)) + f ′(ȳ;S(u)− ȳ)

)
(t, x) d(t, x)

= −1

2

∫
Qs

p(t, x) f ′′(ȳ(t, x))
(
S(u)(t, x)− ȳ(t, x)

)2
d(t, x)︸ ︷︷ ︸

Âu

−
∫
Qs

p(t, x)hu(t, x) d(t, x)︸ ︷︷ ︸
B̂u

.

(4.16)
In the following, we discuss the terms Âu and B̂u separately. We begin with the first
term on the right-hand side of (4.16). For convenience, we abbreviate

F (u) := S(u)− S(ū)− S′(ū;u− ū).

In view of Theorem 3.2, it holds

‖F (u)‖L∞(Q) = o(‖u− ū‖Lr(0,T ;L2(Ω))), (4.17)

where we again employed (2.4). Now we write Âu as

Âu =

∫
Qs

p(t, x) f ′′(ȳ(t, x))S′(ū;u− ū)(t, x)2 d(t, x)

+

∫
Qs

p(t, x) f ′′(ȳ(t, x))F (u)(t, x)
(
F (u)(t, x) + 2S′(ū;u− ū)(t, x)

)
d(t, x)︸ ︷︷ ︸

Du

.

(4.18)
In light of the global Lipschitz continuity of S′(ū; ·), see Theorem 2.5, in combination
with the embedding (2.4), we obtain

|Du|
‖u− ū‖2

≤ ‖p‖L1(Q)‖f ′′(ȳ(·))‖L∞(Qs)

‖F (u)‖L∞(Q)

‖u− ū‖
(‖F (u)‖L∞(Q) + 2‖S′(ū;u− ū)‖L∞(Q))

‖u− ū‖
−→ 0 if ‖u− ū‖Lr(0,T ;L2(Ω)) → 0,

(4.19)
as a result of (4.17). Next, we address the term B̂u. From (4.15) we read that
hu(t, x) = 0 a.e. where S(u)(t, x) = ȳ(t, x) in Qs. F.a.a. (t, x) ∈ Qs for which
S(u)(t, x) 6= ȳ(t, x), we have

|hu(t, x)|
‖u− ū‖2

≤ C2 |hu(t, x)|
(S(u)(t, x)− ȳ(t, x))2

,

in view of (4.14). Since ‖u − ū‖Lr(0,T ;L2(Ω)) → 0 implies S(u)(t, x) → ȳ(t, x) a.e. in
Q, the definition of hu gives

hu(t, x) = o(‖u− ū‖2Lr(0,T ;L2(Ω))) f.a.a. (t, x) ∈ Qs. (4.20)
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Further, from (4.15) and (4.12) we infer, by applying the mean value theorem, that

|hu(t, x)| ≤ |f(S(u)(t, x))− f(ȳ(t, x))− f ′(ȳ(t, x))(S(u)(t, x)− ȳ(t, x))|
+ L/2(S(u)(t, x)− ȳ(t, x))2

= |
(
f ′(ỹu(t, x))− f ′(ȳ(t, x))

)
(S(u)(t, x)− ȳ(t, x))|

+ L/2(S(u)(t, x)− ȳ(t, x))2 a.e. in Qs,

where ỹu(t, x) := γu(t, x)(S(u)(t, x) − ȳ(t, x)) + ȳ(t, x), with some γu(t, x) ∈ (0, 1).
Due to ‖S(u)− ȳ‖L∞(Q) < ε̂, we have

|ỹu(t, x)− ȳ(t, x)| = |γu(t, x)(S(u)(t, x)− ȳ(t, x))| < ε̂ f.a.a. (t, x) ∈ Qs,

whence, by (4.11),

|hu(t, x)| ≤ L|ỹu(t, x)− ȳ(t, x)||S(u)(t, x)− ȳ(t, x)|+ L/2(S(u)(t, x)− ȳ(t, x))2

≤ 3L/2 ‖S(u)− ȳ‖2L∞(Q) f.a.a. (t, x) ∈ Qs

follows. Now, (4.14) ensures that

|hu(t, x)|
‖u− ū‖2

≤ 3LC2/2 a.e. in Qs. (4.21)

By means of Lebesgue’s dominated convergence theorem, we deduce

‖hu‖Lβ(Qs)

‖u− ū‖2
−→ 0 if ‖u− ū‖Lr(0,T ;L2(Ω)) → 0 (4.22)

for any β < ∞, in view of (4.20) and (4.21). Since r, q < ∞, cf. Assumption 2.1.1,
we can fix β < ∞ such that β′ = min{r′, q′} > 1. Then, p ∈ Lr′(0, T ;W 1,q′

D (Ω)) ↪→
Lβ
′
(Q), by Theorem 4.1. With (4.22) we can thus infer that

|B̂u|
‖u− ū‖2

≤ ‖p‖Lβ′ (Q)

‖hu‖Lβ(Qs)

‖u− ū‖2
−→ 0 if ‖u− ū‖Lr(0,T ;L2(Ω)) → 0. (4.23)

By inserting (4.18), (4.19) and (4.23) in (4.16), we finally arrive at the desired result.

We are now in the position to establish the first version of second-order sufficient
optimality conditions for (P). Besides Assumptions 4.6 and 4.10, the SSC contain
structural assumptions on J and a positive-definiteness condition for the Hessian of
a functional which corresponds to the classical Lagrange-functional, see Remark 4.19
below.
Assumption 4.13. In addition to Assumptions 4.6 and 4.10, we require that

1. The objective J : Lr(0, T ;L∞(Ω))×Lr(0, T ;L2(Ω))→ R is given by J(y, u) =
g(y) + j(u), where g : Lr(0, T ;L∞(Ω))→ R and j : Lr(0, T ;L2(Ω))→ R are
both twice continuously Fréchet-differentiable. There exists ν > 0 with

j′′(ū)(h, h) ≥ ν‖h‖2Lr(0,T ;L2(Ω)) ∀h ∈ Lr(0, T ;L2(Ω)). (4.24)

2. For all h ∈ Lr(0, T ;L2(Ω)) \ {0} and η = S′(ū;h) with g′(ȳ)η + j′(ū)h = 0,
it holds

g′′(ȳ)(η, η) + j′′(ū)(h, h)−
∫
Qs

p(t, x)f ′′(ȳ(t, x))η(t, x)2 d(t, x) > 0, (4.25)

where Qs is the set associated with {δz}z∈N given by (4.10).
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Remark 4.14. (i) The coercivity condition (4.24) in Assumption 4.13.1 is satisfied by
the quadratic functional Ĵ(y, u) := 1

2‖y−yd‖
2
L2(Q) + ν

2‖u−ud‖
2
H1(0,T ;L2(Ω)), where ν >

0, yd ∈ L2(Q), and ud ∈ H1(0, T ;L2(Ω)), due to the embedding H1(0, T ;L2(Ω)) ↪→
L∞(0, T ;L2(Ω)). In this case, we need to consider the control space H1(0, T ;L2(Ω))
instead of Lr(0, T ;L2(Ω)). Note that, for any q ∈ (n,∞), one can always find r
satisfying (2.1) so that H1(0, T ;L2(Ω)) ↪→ Lr(0, T ;L2(Ω)) holds. Thus, the entire
analysis, including the second-order analysis, remains the same with one exception:
the result in Theorem 4.15 below is true, provided that we replace (4.27) below by

Ĵ(ȳ, ū) + α‖u− ū‖2H1(0,T ;L2(Ω)) ≤ Ĵ(S(u), u) ∀u ∈ BH1(0,T ;L2(Ω))(ū, R). (4.26)

(ii) If B is injective and J = Ĵ , it can be shown, by following the lines of the proof
of [10, Corollary 4.14], that ū is a strong local solution, cf. [10], i.e., there exist α′ > 0
and R′ > 0 so that

Ĵ(ȳ, ū) + α′‖u− ū‖2H1(0,T ;L2(Ω)) ≤ Ĵ(S(u), u) ∀u ∈ H1(0, T ;L2(Ω))

with ‖S(u)− ȳ‖L2(Q) < R′.

(provided that the corresponding assumptions in Theorem 4.15 below are satisfied).
We point out that this assertion is sharper than the quadratic growth condition (4.26)
or than those in [3] and [21].

Theorem 4.15. Let (ū, ȳ, λ, p) satisfy the first-order optimality system (4.1) given by
Theorem 4.1. If Assumptions 4.6, 4.10 and 4.13 are fulfilled, then there exist α > 0
and R > 0 such that

J(ȳ, ū) + α‖u− ū‖2Lr(0,T ;L2(Ω)) ≤ J(S(u), u) ∀u ∈ BLr(0,T ;L2(Ω))(ū, R). (4.27)

In particular, ū is locally optimal for (P).

Proof. The proof is inspired by the proof of [21, Thm. 2.12], see also the proof
of [3, Thm. 4.12]. We assume that (4.27) is not satisfied. Thus, there exists a
sequence {uk}k ⊂ Lr(0, T ;L2(Ω)) with uk → ū in Lr(0, T ;L2(Ω)) and

J(ȳ, ū) +
1

k
‖uk − ū‖2Lr(0,T ;L2(Ω)) > J(yk, uk) ∀ k ∈ N,

where yk := S(uk) for the rest of the proof. For simplicity, we define σk := ‖uk −
ū‖Lr(0,T ;L2(Ω)) and hk := uk−ū

σk
. Then, the above inequality reads

J(ȳ, ū) +
1

k
σ2
k > J(yk, uk) ∀ k ∈ N. (4.28)

Since ‖hk‖Lr(0,T ;L2(Ω)) = 1 and Lr(0, T ;L2(Ω)) is reflexive, see (2.1), we can extract
a subsequence, denoted by the same symbol, so that

hk ⇀ h in Lr(0, T ;L2(Ω)) as k →∞. (4.29)

By arguing in the same way as in the proof of [23, Lemma 2.13], one can prove the
weak continuity of the operator S′(ū; ·) : Lr(0, T ;L2(Ω))→Wr

0(W 1,q
D (Ω),W−1,q(Ω)).

This implies

S′(ū;hk)→ S′(ū;h) in C([0, T ];L∞(Ω)) as k →∞, (4.30)
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as a consequence of (4.29) and (2.4). Moreover, according to Theorem 3.2, S is
Bouligand-differentiable, and thus,

S(uk)− S(ū)− S′(ū;uk − ū)

σk
→ 0 in L∞(Q) as k →∞.

Hence, by the positive homogeneity of the directional derivative, we have

S(uk)− S(ū)

σk
→ S′(ū;h) in L∞(Q) as k →∞. (4.31)

Next, we show that (h, S′(ū;h)) is a ‘critical direction’. As a result of (4.28), it holds

g′(ȳ)(yk − ȳ) + j′(ū)(uk − ū) <
σ2
k

k
− 1

2
g′′(ỹk)(yk − ȳ)2 − 1

2
j′′(ũk)(uk − ū)2 for all k,

(4.32)
where we abbreviate (ỹk, ũk) = (ȳ, ū) + γk((yk, uk) − (ȳ, ū)) with some γk ∈ [0, 1].
Due to uk → ū in Lr(0, T ;L2(Ω)), we have yk → ȳ in L∞(Q), see Proposition 2.4 and
(2.4). Since g and j are twice continuously Fréchet-differentiable, we obtain

(g′′(ỹk)− g′′(ȳ))
(yk − ȳ

σk

)2

+ g′′(ȳ)
(yk − ȳ

σk

)2

→ g′′(ȳ)
(
S′(ū;h), S′(ū;h)

)
as k →∞,

(4.33)
in view of (4.31), and

lim inf
k→∞

(j′′(ũk)− j′′(ū))
(uk − ū

σk

)2

+ j′′(ū)
(uk − ū

σk

)2

≥ j′′(ū)(h, h) as k →∞,
(4.34)

in light of (4.29) and (4.24). Note that the latter one implies that j′′(ū) induces a
norm. Dividing by σk in (4.32) and passing to the limit therein then yields

lim
k→∞

g′(ȳ)
(yk − ȳ

σk

)
+ j′(ū)

(uk − ū
σk

)
≤ lim

k→∞

σk

k
− lim

k→∞

σk

2
g′′(ỹk)

(yk − ȳ
σk

)2

+ lim sup
k→∞

−σk

2
j′′(ũk)

(uk − ū
σk

)2

= 0,
(4.35)

in view of (4.33) and (4.34). On the other hand, (4.31) and (4.29) lead to

lim
k→∞

g′(ȳ)
(yk − ȳ

σk

)
+ j′(ū)

(uk − ū
σk

)
= g′(ȳ)S′(ū;h) + j′(ū)h ≥ 0, (4.36)

where the last inequality is due to (4.1) and the proofs of [23, Thm. 5.7 and Thm.
6.10]. Note that the density of the range of B in W−1,q(Ω) is not needed here. Thus,
by (4.35) and (4.36), we have

g′(ȳ)S′(ū;h) + j′(ū)h = 0. (4.37)

Now, we discuss the difference of the values of the objective J . From Lemma 4.2
combined with (4.28) we know that

J(yk, uk)− J(ȳ, ū) ≥
∫
Q

p(t, x)
(
f(ȳ)− f(yk) + f ′(ȳ; yk − ȳ)

)
(t, x) d(t, x)

+
1

2
g′′(ỹk)(yk − ȳ)2 +

1

2
j′′(ũk)(uk − ū)2 for all k.

(4.38)
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We begin by estimating the first term on the right-hand side in (4.38). To this end,
we want to employ Lemmas 4.4, 4.9 and 4.12. Note that infz∈N ρz ≥ infz∈N (ρz −
δz) + infz∈N δz > 0, by Assumptions 4.6 and 4.10, so that all these three lemmas are
applicable. Let now ε1 > 0 and ε2 > 0 be given by Lemmas 4.4 and 4.9, respectively.
From (2.6) and (2.4) we know that there exists a constant C = C(ū) > 0 such that

‖S(v)− ȳ‖L∞(Q) ≤ C‖v − ū‖Lr(0,T ;L2(Ω)) (4.39)

for all v ∈ BLr(0,T ;L2(Ω))(ū, 1). We set ε := min{ε1/2C, ε2/2C, 1} > 0 and choose k̄
large enough such that uk ∈ BLr(0,T ;L2(Ω))(ū, ε) for all k ≥ k̄. Then, by (4.39), we
have ‖S(uk) − ȳ‖L∞(Q) < min{ε1, ε2} for all k ≥ k̄. We are now in the position to
apply Lemmas 4.4, 4.9 and 4.12, by means of which (4.38) can be continued as

J(yk, uk)− J(ȳ, ū) ≥ −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;uk − ū)(t, x)2 d(t, x) + o(σ2
k)

+
1

2
g′′(ỹk)(yk − ȳ)2 +

1

2
j′′(ũk)(uk − ū)2 for all k ≥ k̄.

(4.40)
Note that (4.40) is a result of Q = Qn ∪ Qs,δ ∪ Qs, see definitions (4.3), (4.7) and
(4.10). In view of (4.28) and (4.40), it further holds

1/k > −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′
(
ū;
uk − ū
σk

)
(t, x)2 d(t, x) +

o(σ2
k)

σ2
k

+
1

2
g′′(ỹk)

(yk − ȳ
σk

)2

+
1

2
j′′(ũk)

(uk − ū
σk

)2

for all k ≥ k̄,
(4.41)

where we employed the positive homogeneity of the directional derivative. We build
lim infk→∞ in (4.41), which by (4.30), (4.33) and (4.34), gives in turn

0 ≥ −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;h)(t, x)2 d(t, x)

+
1

2
g′′(ȳ)

(
S′(ū;h), S′(ū;h)

)
+

1

2
j′′(ū)(h, h).

(4.42)

By Assumption 4.13.2, which can be applied in view of (4.37), we deduce from (4.42)
that h = 0. This leads to S′(ū;h) = 0, due to the definition of the directional
derivative. As a result thereof, (4.30) and (4.33) now read

S′(ū;hk)→ 0 in C([0, T ];L∞(Ω)) as k →∞,

(g′′(ỹk)− g′′(ȳ))
(yk − ȳ

σk

)2

+ g′′(ȳ)
(yk − ȳ

σk

)2

→ 0 as k →∞.
(4.43)

Thanks to ‖hk‖Lr(0,T ;L2(Ω)) = 1, the coercivity condition (4.24), and (4.41), we obtain

1/k > −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′
(
ū;
uk − ū
σk

)
(t, x)2 d(t, x) +

o(σ2
k)

σ2
k

+
1

2
(g′′(ỹk)− g′′(ȳ))

(yk − ȳ
σk

)2

+
1

2
g′′(ȳ)

(yk − ȳ
σk

)2

+
1

2
(j′′(ũk)− j′′(ū))

(uk − ū
σk

)2

+
ν

2

∥∥∥uk − ū
σk

∥∥∥2

Lr(0,T ;L2(Ω))︸ ︷︷ ︸
=1

for all k ≥ k̄.
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We pass again to the limit k → ∞ on both sides, which in view of (4.43), and the
continuity of j′′, results in 0 ≥ ν/2 > 0. This finally gives the contradiction and
completes the proof.

Next, we establish second-order sufficient optimality conditions for (P) which allow
for an arbitrary (twice continuously Fréchet-differentiable) objective. Besides As-
sumptions 4.6 and 4.10, the SSC consist of a coercivity condition for the Hessian of
a functional which corresponds to the classical Lagrange-functional, see Remark 4.19
below.

Assumption 4.16. In addition to Assumptions 4.6 and 4.10, we assume that there
exists κ > 0 such that

J ′′(ȳ, ū)(η, h)2 −
∫
Qs

p(t, x)f ′′(ȳ(t, x))η(t, x)2 d(t, x) ≥ κ‖h‖2Lr(0,T ;L2(Ω)) (4.44)

for all h ∈ Lr(0, T ;L2(Ω)) and η = S′(ū;h). Here Qs denotes again the set associated
with {δz}z∈N given by (4.10).

Remark 4.17. According to Assumption 4.16, the price for allowing an arbitrary
objective J is the more restrictive condition (4.44). Unlike in Assumption 4.13.2,
we now deal with a coercivity condition which has to be satisfied for the set of all
directions, instead of the cone of critical directions. Note that, in contrast to finite
dimensions, (4.44) is not necessarily equivalent to

J ′′(ȳ, ū)(η, h)2 −
∫
Qs

p(t, x)f ′′(ȳ(t, x))η(t, x)2 d(t, x) > 0

for all h ∈ Lr(0, T ;L2(Ω)) \ {0} and η = S′(ū;h), see [10, Section 3.2]. However,
when considering the objective Ĵ(y, u) = 1

2‖y − yd‖2L2(Q) + ν
2‖u − ud‖2H1(0,T ;L2(Ω))

and the control space as in Remark 4.14.(i), this equivalence holds. To see this,
one employs the same arguments as in the finite dimensional case combined with the
compact embedding (2.4). We refer here also to the proof of [10, Thm 4.11]. If J = Ĵ ,
(4.44) is satisfied when

p(t, x)f ′′(ȳ(t, x)) ≤ 1 a.e. in Qs, (4.45)

thanks to the embedding H1(0, T ;L2(Ω)) ↪→ L∞(0, T ;L2(Ω)). In the next section, we
provide conditions on the given data which ensure (4.45).

Theorem 4.18. Let (ū, ȳ, λ, p) satisfy the first-order optimality system (4.1) given by
Theorem 4.1. If Assumptions 4.6, 4.10 and 4.16 are fulfilled, then there exist α > 0
and R > 0 such that

J(ȳ, ū) + α‖u− ū‖2Lr(0,T ;L2(Ω)) ≤ J(S(u), u) ∀u ∈ BLr(0,T ;L2(Ω))(ū, R). (4.46)

In particular, ū is locally optimal for (P).

Proof. In the proof of Theorem 4.15 we already checked that, under Assumptions 4.6
and 4.10, Lemma 4.4 is applicable (in addition to Lemmas 4.9 and 4.12). We define
again ε := min{ε1/2C, ε2/2C, 1} > 0 and fix u ∈ BLr(0,T ;L2(Ω))(ū, ε), u 6= ū, where
ε1 > 0 and ε2 > 0 are given by Lemmas 4.4 and 4.9, respectively, and C = C(ū) > 0
is a constant so that (4.39) holds. Then, one has ‖y− ȳ‖L∞(Q) < min{ε1, ε2}, see the
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proof of Theorem 4.15, where y := S(u) from now on. From Lemma 4.2 combined
with Lemmas 4.4, 4.9, and 4.12 we have

J(y, u)− J(ȳ, ū) ≥ −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;u− ū)(t, x)2 d(t, x) + o(‖u− ū‖2Lr(0,T ;L2(Ω)))

+
1

2
J ′′(yγu , uγu)(y − ȳ, u− ū)2,

(4.47)
where (yγu , uγu) = (ȳ, ū)+γu((y, u)− (ȳ, ū)) with some γu ∈ [0, 1]. Further, by means
of some algebraic manipulations, see the proof of [3, Thm. 4.6], we can write

J ′′(yγu , uγu)(y − ȳ, u− ū)2 − J ′′(ȳ, ū)(S′(ū;u− ū), u− ū)2

=
(
J ′′(yγu , uγu)− J ′′(ȳ, ū)

)
(y − ȳ, u− ū)2 + ∂2

yJ(ȳ, ū)(y − ȳ − S′(ū;u− ū))2

+ 2∂2
yJ(ȳ, ū)(y − ȳ − S′(ū;u− ū), S′(ū;u− ū))

+ 2∂y∂uJ(ȳ, ū)(y − ȳ − S′(ū;u− ū), u− ū)

= o(‖u− ū‖2Lr(0,T ;L2(Ω))).

(4.48)
The last equality is due to Assumption 2.1.7 combined with Proposition 2.4, the
Bouligand-differentiability of S, cf. Theorem 3.2, and Theorem 2.5 (which tells us
that ‖S′(ū;u − ū)‖Lr(0,T ;W 1,q

D (Ω)) ≤ c‖u − ū‖Lr(0,T ;L2(Ω))). Inserting (4.48) in (4.47)
and employing Assumption 4.16 results in

J(S(u), u)− J(ȳ, ū) ≥ −1

2

∫
Qs

p(t, x)f ′′(ȳ(t, x))S′(ū;u− ū)(t, x)2 d(t, x)

+
1

2
J ′′(ȳ, ū)(S′(ū;u− ū), u− ū)2 + o(‖u− ū‖2Lr(0,T ;L2(Ω)))

≥
(κ

2
− |o(‖u− ū‖2)|
‖u− ū‖2Lr(0,T ;L2(Ω))

)
‖u− ū‖2Lr(0,T ;L2(Ω))

for all u ∈ BLr(0,T ;L2(Ω))(ū, ε) with u 6= ū. The proof is now complete.
Remark 4.19. If the nonlinearity f : R → R is twice continuously differentiable,
then both sets of SSC derived in this section coincide with the classical second-order
sufficient optimality conditions, as explained in what follows. In finite dimensions, it
is well known that the SSC consist of strong stationarity (necessary conditions for local
optimality) and the coercivity/positive-definiteness of the Hessian (w.r.t. the primal
variables) of the Lagrangian on the cone of critical directions, see e.g. [29]. For the
treatment of SSC in infinite dimensions, we refer to [10]. Let us see what happens
when f : R→ R is twice continuously differentiable in our case too. Then, N = ∅ and
Qs = Q, and thus, Assumptions 4.6 and 4.10 are automatically fulfilled. In particular,
f does not have to be local convex nor local concave and the sign of p is no longer an
issue. Moreover, (4.25) reads

g′′(ȳ)(η, η) + j′′(ū)(h, h)−
∫
Q

p(t, x)f ′′(ȳ(t, x))η(t, x)2 d(t, x) > 0 (4.49)

for all h ∈ Lr(0, T ;L2(Ω)) \ {0} and η = S′(ū;h) with g′(ȳ)η + j′(ū)h = 0, i.e.,
∂2

(y,u)L(ȳ, ū, p)(η, h)2 > 0, where the Lagrangian L : Wr
0(W 1,q

D (Ω),W−1,q(Ω))×Lr(0, T ;L2(Ω))×
Wr′

T (W 1,q′

D (Ω),W−1,q′(Ω))→ R is given by

L(y, u, p) = J(y, u)− 〈p, ẏ +Ay + f(y)−Bu〉Lr(0,T ;W−1,q(Ω)).
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In conclusion, for Theorem 4.15 to hold, one only needs strong stationarity, Assump-
tion 4.13.1 and (4.49). Let us point out that the structural assumption on J is to be
expected, since this is essential in infinite dimensions in order to obtain a contradic-
tion at the end of the proof of Theorem 4.15, see also [10] (smooth case with control
constraints) and [3, 21] (non-smooth case). If f is twice continuously differentiable,
the assertion in Theorem 4.18 corresponds entirely to the finite case: if (ū, ȳ, λ, p) is
strong stationary and if the coercivity condition

∂2
(y,u)L(ȳ, ū, p)(η, h)2 ≥ κ‖h‖2Lr(0,T ;L2(Ω))

holds for all h ∈ Lr(0, T ;L2(Ω)) and η = S′(ū;h), then ū is a strict local optimum
which fulfills (4.46). This coincides with the assertion in [6, Thm. 8.3.3], which deals
with the smooth case in infinite dimensions.

5. Second-order sufficient conditions for a concrete setting. In this sec-
tion, we derive conditions on the given data under which Assumption 4.6.2-3 and
(4.45) are guaranteed. To this end, we consider the optimal control problem

min
u∈H1(0,T ;L2(Ω))

1

2
‖y − yd‖2L2(Q) +

1

2
‖u‖2H1(0,T ;L2(Ω))

s.t. ẏ(t)−4y(t) + f(y(t)) = u(t) a.e. in (0, T ),

y(0) = 0.

 (Pex)

The fact that we choose H1(0, T ;L2(Ω)) as the control space does not affect the
previous results, see Remark 4.14.(i). In all what follows, B := L2(Ω) ↪→ W−1,q(Ω)
is the embedding operator. This is well-defined, provided that q ≤ 2n/(n − 2). In
(Pex), −4 : W 1,q

D (Ω)→W−1,q(Ω) denotes the Laplace operator in the distributional
sense, i.e., −4 = − div∇. We assume that Ω is smooth enough and ∂Ω = ΓD, so that
Assumptions 2.1.2-3 are satisfied by −4, cf. Remark 2.7. Note that Ω is regular in
the sense of Gröger, in view of [16, Thm. 5.2 and 5.4]. The desired state yd belongs to
Lr(0, T ;L2(Ω)), while r is supposed to fulfill (2.1) where q ∈ (n, 2n/(n− 2)] is fixed.
In the following, we abbreviate

p+ := max{p, 0} and p− := min{p, 0}.

By CΩ we denote the Poincaré constant associated with the domain Ω.

Throughout this section, (ū, ȳ, λ, p) is a fixed point that satisfies the first-order op-
timality system given by Theorem 4.1. In the setting considered here, (4.1) reads

˙̄y −4 ȳ + f(ȳ) = ū, ȳ(0) = 0, (5.1a)
−ṗ−4p+ λ = ȳ − yd, p(T ) = 0, (5.1b)

λ(t, x) ∈ [f ′+(ȳ(t, x)) p(t, x), f ′−(ȳ(t, x)) p(t, x)] a.e. in Q, (5.1c)
p+ ū = 0. (5.1d)

We suppose that the nonlinearity satisfies f(0) = 0 and that f is convex around any
z ∈ N with radius ρz > 0 (in addition to Assumptions 2.1.4-5). Then, f(y)y ≥ 0 and
f ′(y;h)h ≥ 0 for all y, h ∈ R. Thus, by (5.1c), we find

f(ȳ(t, x))ȳ(t, x) ≥ 0, λ(t, x)p(t, x) ≥ 0, λ(t, x)p+(t, x) ≥ 0 a.e. in Q. (5.2)
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Fig. 5.1. An ignition-type nonlinearity with ignition temperatures θ1, θ2, and θ3

For the above-described problem we show that if (5.9) below is satisfied, then p(t, x) ≤
0 a.e. in Q, i.e., Assumption 4.6.2 holds true. Let us define δz := ρz/2 for all z ∈ N
in Assumption 4.6. If, in addition to (5.9) below, N is finite, f is twice continuously
differentiable on {v ∈ R| |v−z| ≥ ρz/4 ∀ z ∈ N}, and (5.15) below holds, we can also
prove (4.45). Thus, we provide a setting for which all assumptions in Theorems 4.15
and 4.18 are satisfied, see also Remarks 4.11, 4.14, and 4.17. In this context, (5.1) is
not only necessary but also sufficient for optimality.

Before we begin with the proof, we mention that a nonlinearity which satisfies all the
above conditions (i.e., Lipschitz continuous on bounded sets, directionally differen-
tiable with N finite, convex around any z ∈ N , monotone increasing with f(0) = 0
and twice continuously differentiable on a subset of S) is depicted in Figure 5.1. This
could arise in combustion processes where different ignition temperatures are given,
see Remark 2.9.

(I) We first deal with Assumption 4.6.2. We start by showing that ‖p‖L2(Q) ≤ K,
where K > 0 is some constant which depends only on the given data (step (i) below).
This will enable us to derive conditions on the data such that ȳ ≤ yd a.e. in Q holds
(step (ii) below). By means of this inequality, we can then conclude that p ≤ 0 a.e.
in Q (step (iii) below).

(i) As a consequence of (5.1d), we have p ∈ H1(0, T ;L2(Ω)), which gives in turn λ ∈
L∞(0, T ;L2(Ω)), by (5.1c) and (3.2). Thus, t 7→ (ȳ−yd−λ)(T−t) ∈ Lr(0, T ;L2(Ω)) ↪→
Lr(0, T ;W−1,q(Ω)), since q ≤ 2n/(n − 2). Since −4 satisfies maximal parabolic
Lr(0, T ;W−1,q(Ω))-regularity, we now deduce from (5.1b) that p ∈Wr

0(W 1,q
D (Ω),W−1,q(Ω)),

where we used the transformation t 7→ T − t. Therefore, we can test the adjoint equa-
tion (5.1b) with p(T − ·), which leads to

1

2
‖p(T − t)‖2L2(Ω) −

1

2
‖p(T )‖2L2(Ω)︸ ︷︷ ︸

=0

+
1

C2
Ω

∫ t

0

‖p(T − s)‖2L2(Ω) ds

≤
∫ t

0

∫
Ω

(ȳ − yd)(T − s, x)p(T − s, x) d(s, x) ∀ t ∈ [0, T ],

(5.3)
in view of the formula of integration by parts, Poincaré-Friedrichs’s inequality and
(5.2). We proceed in the same way regarding the state equation. We test (5.1a) with
y and employ the first inequality in (5.2), as well as Poincaré-Friedrichs’s inequality.
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The resulting estimate combined with (5.1d) is then used on the right-hand side of
(5.3) at t := T , which leads to

1

C2
Ω

∫ T

0

‖p(s)‖2L2(Ω) ds ≤ ‖ȳ(0)‖2L2(Ω)︸ ︷︷ ︸
=0

− 1

C2
Ω

∫ T

0

‖ȳ(s)‖2L2(Ω) ds−
∫
Q

yd(s, x)p(s, x) d(s, x).

(5.4)
From (5.4) we deduce

2‖p‖L2(Q)‖ȳ‖L2(Q) ≤ ‖p‖2L2(Q) + ‖ȳ‖2L2(Q) ≤ C
2
Ω‖yd‖L2(Q)‖p‖L2(Q). (5.5)

Dividing by ‖p‖L2(Q) results in

‖p‖L2(Q) ≤ C2
Ω‖yd‖L2(Q), ‖ȳ‖L2(Q) ≤

C2
Ω‖yd‖L2(Q)

2
. (5.6)

(ii) In order to prove that p ≤ 0, we derive conditions which guarantee that ȳ ≤ yd
a.e. in Q. To this end, we insert (5.5) on the right-hand side in (5.3) and obtain

‖p(T − t)‖2L2(Ω) ≤ (C2
Ω + 2)‖yd‖L2(Q)‖p‖L2(Q) ≤ (C2

Ω + 2)C2
Ω‖yd‖2L2(Q) ∀ t ∈ [0, T ],

(5.7)
where for the last inequality we used (5.6). Via a comparison principle, cf. [27, Lem.
A.1, Prop. 3.3 and 3.4], where one relies on the monotonicity of f , one can show that

|ȳ(t, x)| ≤ ỹ(t, x) ≤ Ce‖(∂t −4)−1‖L(Lr(0,T ;W−1,q(Ω)),Wr
0(W 1,q

D (Ω),W−1,q(Ω)))︸ ︷︷ ︸
=:K1

‖p‖Lr(0,T ;L2(Ω)) a.e. in Q,

(5.8)
where ỹ ∈Wr

0(W 1,q
D (Ω),W−1,q(Ω)) is the unique solution of ˙̃y−4 ỹ = |ū| and Ce > 0

is the product of the embedding constants of Wr
0(W 1,q

D (Ω),W−1,q(Ω)) ↪→ L∞(Q) and
L2(Ω) ↪→W−1,q(Ω), cf. (2.4). Note that for (5.8) we employed again (5.1d). Thus, in
view of (5.7) and (5.8), we deduce that if

K1 T
1/r
√
C2

Ω + 2CΩ‖yd‖L2(Q) ≤ yd a.e. in Q, (5.9)

then ȳ ≤ yd a.e. in Q.

(iii) Now, to see that (5.9) implies the desired result, we test the equation (5.1b) with
p+ ∈ Lr(0, T ;W 1,q

D (Ω)), see [19, Thm. A.1]. We arrive at∫ t

0

〈−ṗ(T − s), p+(T − s)〉W 1,q
D (Ω) ds+

∫ t

0

∫
Ω

∇p(T − s)(x)∇p+(T − s)(x)︸ ︷︷ ︸
≥0

d(s, x)

+

∫ t

0

∫
Ω

λ(T − s, x)p+(T − s, x)︸ ︷︷ ︸
≥0, see (5.2)

d(s, x) =

∫ t

0

∫
Ω

(ȳ − yd)(T − s, x)︸ ︷︷ ︸
≤0

p+(T − s, x) d(s, x) ∀ t ∈ [0, T ].

(5.10)
Thanks to [32, Lemma 3.2] combined with (5.10) and p ∈ H1(0, T ;L2(Ω)), we have∫ t

0

〈−ṗ(T − s), p+(T − s)〉W 1,q
D (Ω) ds = 1/2‖p+(T − t)‖2L2(Ω) − 1/2 ‖p+(T )‖2L2(Ω)︸ ︷︷ ︸

=0

≤ 0 for all t ∈ [0, T ],

which gives in turn p ≤ 0 a.e. in Q.
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(II) In order to derive conditions which guarantee (4.45), we first show that there
exists a constant c > 0, dependent only on the given data, so that −p ≤ c a.e. in Q.
To this end, we apply a comparison principle again and assume in the following that
(5.9) holds. Consider the equation

− ˙̃p−4p̃ = ȳ − yd, p̃(T ) = 0. (5.11)

Since −4 satisfies maximal parabolic Lr(0, T ;W−1,q(Ω))-regularity, there exists a
unique p̃ ∈ Wr

T (W 1,q
D (Ω),W−1,q(Ω)) ↪→ L∞(Q) which solves (5.11). To see this, one

uses the transformation t 7→ T − t. Thus,

−p̃(t, x) ≤ ‖p̃‖L∞(Q) ≤ K1‖ȳ − yd‖Lr(0,T ;L2(Ω)) ≤ c a.e. in Q, (5.12)

where K1 denotes the constant from (5.8). Note that a value for c (dependent only
on the given data) can be obtained from (5.7) and (5.8). In view of (5.2) and p ≤ 0,
λ ≤ 0 follows. We “compare” (5.1b) with (5.11) and we see that

− p(t, x) ≤ −p̃(t, x) ≤ c a.e. in Q, (5.13)

as a result of (5.12). Here we relied on [32, Lemma 3.3]. Before we proceed with the
proof, let us recall that we defined δz := ρz/2 for all z ∈ N , which means that

Qs = {(t, x) ∈ Q | |ȳ(t, x)− z| ≥ ρz/2 ∀ z ∈ N}.

Note that (4.45) is automatically satisfied a.e. in {(t, x) ∈ Qs|f ′′(ȳ(t, x)) ≥ 0}, since
p ≤ 0. On the other hand, from (5.13) one has

f ′′(ȳ(t, x))p(t, x) ≤ −cf ′′(ȳ(t, x)) = c|f ′′(ȳ(t, x))|
≤ c sup

v∈M
|f ′′(v)|

<∞ f.a.a. (t, x) ∈ Qs with f ′′(ȳ(t, x)) < 0,

(5.14)

where we abbreviateM := {v ∈ R | |v − z| ≥ ρz/2 ∀ z ∈ N , |v| ≤ ‖ȳ‖L∞(Q), f
′′(v) <

0}. The last inequality in (5.14) is true, since N is finite and f ′′ is continuous on
{v ∈ R| |v − z| ≥ ρz/4 ∀ z ∈ N}, by assumption. Thus, if in addition to (5.9),

c sup
v∈M

|f ′′(v)| ≤ 1 (5.15)

holds, then (4.45) is guaranteed. Note that (4.45) is automatically fulfilled if f is
convex on {v ∈ R | |v − z| ≥ ρz/4 ∀ z ∈ N , |v| ≤ ‖ȳ‖L∞(Q) + 1}, since in this case
f ′′(ȳ(t, x)) ≥ 0 f.a.a. (t, x) ∈ Qs.

In conclusion, for the setting considered here, (5.9) and (5.15) imply that every strong
stationary point of (P) satisfies all assumptions in Theorems 4.15 and 4.18, and thus,
the necessary optimality condition (5.1) is also sufficient for local optimality.
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