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The combination of POD model reduction with adaptive finite element
methods in the context of phase field models

Carmen Gräßle1,∗ and Michael Hinze1,∗∗

1 Universität Hamburg, Bundesstr. 55, 20146 Hamburg, Germany

In the present paper we derive a reduced order model utilizing proper orthogonal decomposition (POD-ROM), for which
we utilize adaptively obtained spatial snapshots. In a fully discrete setting this contains the challenge that the snapshots
are vectors of different lengths. In order to handle this issue, we interprete the snapshots as elements of a common Hilbert
space and consider the POD method from an infinite-dimensional perspective. Thus, the inner product of pairs of snapshots
can be computed explicitely, which enables us to build the reduced order model. This approach is applied to a phase field
model which is described by a Cahn-Hilliard equation. In the numerical examples we illustrate our appoach and compare a
nonsmooth with a smooth free energy concerning the influence on the quality of the solution to the ROM.
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1 Introduction

For many problem settings, model order reduction utilizing proper orthogonal decomposition (POD-MOR) is known to be
a powerful tool in order to reduce numerical effort by replacing large scale systems by low dimensional approximations.
The POD method is based on a Galerkin ansatz, in which the ansatz functions (POD modes) contain information about the
underlying dynamical system. According to snapshot based POD in [15], this system information is obtained from snapshots
of the solution trajectory, which are generated in a simulation. In many pratical applications, spatially adaptive concepts are
unavoidable in order to make simulations implementable. For example, in the context of phase field models, the interface
formation and evolution can be described utilizing a diffuse interface approach. Many degrees of freedom are needed in order
to well resemble the phase transitions, whereas in the pure phases a little number of degrees of freedom suffice. Even with
the use of spatial adaptivity, numerical simulations and especially optimization can still be computationally expensive. This
is why we apply POD model order reduction with the aim to speed up the computations. However, the combination of spatial
adaptively generated snapshots with POD reduced order modeling contains the challenge that in a fully discrete setting the
snapshots are vectors of different lengths due to the different spatial resolutions at each time instance. In order to deal with
this issue, several ideas have been proposed. For example, in [8], a fixed reference mesh is utilized, onto which the h-adaptive
snapshots are interpolated. Moreover, in [14] an interpolation approach is outlined, where given snapshots are interpolated by
piecewise polynomials. Recently, the combination of POD model reduction with adaptive finite element snapshots is realized
in [16] by constructing common finite element spaces. Two options are considered: either all snapshots are expressed in
terms of a common finite element basis or pairs of snapshots are expressed in terms of a common finite element basis of these
pairs. Finally, in [9], we derive a POD reduced order model for a general parabolic evolution equation utilizing arbitrary finite
element discretizations. In this work, our focus lies on the POD model model order reduction for the Cahn-Hilliard equation
which can be set up explicitely for arbitrary finite element discretizations.

2 The Cahn-Hilliard system

A common mathematical model to describe phase field systems utilizing a diffuse interface approach is the Cahn-Hilliard
system. It was proposed in [5] as a model for phase separation in binary alloys. For a given a mixture of two components A
and B, also referred to as phases, a phase field variable c is introduced in order to characterize the phase structures. In the
regions of pure A-phase it is c ≡ −1 and in the pure B-phase it is c ≡ +1. The interfacial region is described by c ∈ (−1, 1)
and its thickness is finite and of order O(ε) with 0 < ε � 1. Let Ω ⊂ Rd, d ∈ {2, 3}, denote a bounded open domain with
Lipschitz continuous boundary ∂Ω and let T > 0 be a fixed end time. Introducing the chemical potential w, the Cahn-Hilliard
equations can be formulated in a coupled system for the phase field c and the chemical potential w:

ct(t,x) + v(t,x) · ∇c(t,x) = m∆w(t,x) in (0, T )× Ω, (1a)

w(t,x) = − σε∆c(t,x) +
σ

ε
W ′(c(t,x)) in (0, T )× Ω, (1b)
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with homogeneous Neumann boundary conditions∇c(t,x) ·νΩ = ∇w(t,x) ·νΩ = 0 on (0, T )×∂Ω and the initial condition
c(0,x) = c0(x) in Ω. By νΩ we denote the outward normal on ∂Ω, m ≥ 0 is a constant mobility and σ > 0 denotes the
surface tension. The convective term v · ∇c describes the transport of the phase field with velocity v. Note that the transport
term represents the coupling to the Navier-Stokes equations in the context of multiphase flow, see e.g. [10] and [2].

The free energy function W (c) is of double-well type. A typical choice for W is the polynomial free energy function

W p(c) = (1− c2)2/4, (2)

which has exactly two minimal points at c = ±1, i.e. at the energetically favorable state. However, W p allows c to have
values |c| > 1 which are not meaningful from a physical perspective. Another choice for W is the relaxed double-obstacle
free energy

W rel
s (c) =

1

2
(1− c2) +

s

2
(max(c− 1, 0)2 + min(c+ 1, 0)2), (3)

with relaxation parameter s � 0, which is introduced in [11] as the Moreau-Yosida relaxation of the double-obstacle free
energy

W∞(c) =

{
1
2 (1− c2), if c ∈ [−1, 1],

+∞, else.
(4)

The double-obstacle free energy enforces |c| ≤ 1. For more details on the choices for W we refer to [1] and [4], for example.
Concerning existence, uniqueness and regularity of a solution to (1), we refer to e.g. [4].

3 POD reduced order modeling utilizing snapshots with arbitrary finite element dis-
cretizations

POD method in real Hilbert spaces. The objective of this work is to derive a POD-ROM for the Cahn-Hilliard system
(1) which can be set up explicitely for spatially adaptive snapshots. For this reason, we consider the snapshots as elements
of a common Hilbert space and apply the POD method in an infinite-dimensional setting. For further details about the POD
method in Hilbert spaces, we refer to e.g. [13]. Here, we recall the main aspects.
Let (V, 〈·, ·〉V ) and (H, 〈·, ·〉H) be real separable Hilbert spaces such that there exists a dense and continuous embedding
V ↪→ H . Assume, we are given snapshots y0 ∈ V 0, . . . , yn ∈ V n belonging to different conformal subspaces V 0, . . . , V n ⊂
V ⊂ X with X = V or X = H . By construction we have V = span{yj}nj=0 ⊂ V ⊂ X . The key idea of the POD method in
Hilbert spaces is to describe the space V by means of a few orthonormal functions {ψi}`i=1 ⊂ X with ` ≤ d := dimV in the
following sense:

min
ψ1,...,ψ`∈X

n∑

j=0

αj

∥∥∥∥∥y
j −

∑̀

i=1

〈yj , ψi〉X ψi

∥∥∥∥∥

2

X

s.t. 〈ψi, ψj〉X = δij for 1 ≤ i, j ≤ `, (5)

with {αj}nj=0 denoting nonnegative weights. A solution to (5) is called rank-` POD basis. We introduce the linear bounded
operator

Y : Rn+1 → X, Yφ =
n∑

j=0

√
αjφjy

j for φ = (φ0, . . . , φn) ∈ Rn+1 (6)

and its Hilbert space adjoint

Y? : X → Rn+1, Y?ψ =
(
〈ψ,√α0y

0〉X , . . . , 〈ψ,
√
αny

n〉X
)T

for ψ ∈ X. (7)

Following the so-called method of snapshots, we consider the matrix

K := Y?Y ∈ R(n+1)×(n+1), Kij =
√
αi
√
αj〈yi, yj〉X for i, j = 0, . . . , n. (8)

It is important to emphasize that each inner product of two snapshots from different finite element spaces can be computed
explicitely, because they all live in a common Hilbert space. Moreover, the matrix dimension ofK only depends on the number
of utilized snapshots. Hence, K can be set up explicitely. Since K is symmetric and thus positive semi-definite, it follows that
for the eigenvalue problem Kφi = λiφi, there exist (n+ 1) nonnegative eigenvalues λ1 ≥ · · · ≥ λd > 0 and λi = 0 for i > d
and corresponding eigenvectors φi ∈ Rn+1, 0 ≤ i ≤ n, which can be chosen pairwise orthonormal. Thus, the eigenvectors
{φi}ni=0 are the right singular vectors of Y and contain the space independent time information. It can be shown that a POD
basis is given by

ψi =
1√
λi
Yφi for 1 ≤ i ≤ `. (9)
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POD reduced order modeling. We stay in the infinite-dimensional setting and derive the POD reduced order model for (1)
utilizing the method of snapshots (8). For both the phase field c and the chemical potential w we make an individual POD
Galerkin ansatz

c`(t) =

`c∑

i=1

ηci (t)ψ
c
i , w`(t) =

`w∑

i=1

ηwi (t)ψwi for all t ∈ [0, T ]. (10)

Inserting (10) into (1) and choosing X`c

c = span{ψc1, . . . , ψc`c} ⊂ X as test space for (1b) and X`w

w = span{ψw1 , . . . , ψw`w} ⊂
X as test space for (1a) leads to the system

{
d
dt 〈c`(t), ψw〉H + 〈v · ∇c`(t), ψw〉H +m〈∇w`(t),∇ψw〉H = 0 ∀ψw ∈ X`w

w ,

−〈w`(t), ψc〉H + σε〈∇c`(t),∇ψc〉H + σ
ε 〈W ′(c`(t)), ψc〉V ′,V = 0 ∀ψc ∈ X`c

c .
(11)

Since we want to construct a POD-ROM for arbitrary finite element discretizations, we rewrite (11) using the identity (9):
{

Dw(Φw)TKwc ΦcDcη̇c(t) +Dw(Φw)TT ΦcDcηc(t) +mDw(Φw)TAwwΦwDwηw(t) = 0,

−Dc(Φc)TKcwΦwDwηw(t) + σεDc(Φc)TAccDcηc(t) + σ
εN (ηc(t)) = 0,

(12)

for t ∈ (0, T ] and Dc(Φc)TKccΦcDcηc(0) = Dcη̄0, where (η̄0)i = 〈Y?c c0, φci 〉Rn+1 for i = 1, . . . , `. We use the follow-
ing notation: ηc = (ηc1, . . . , η

c
`c)T ∈ R`c , ηw = (ηw1 , . . . , η

w
`w)T ∈ R`w , Dc = diag(1/

√
λc1, . . . , 1/

√
λc`c) ∈ R`c×`c ,

Dw = diag(1/
√
λw1 , . . . , 1/

√
λw`w) ∈ R`w×`w , Φc = [φc1 | . . . | φc`c ] ∈ R(n+1)×`c , Φw = [φw1 | . . . | φw`w ] ∈ R(n+1)×`w ,

(Kwc )ij =
√
αj
√
αi〈cj , wi〉X ,Kwc ∈ R(n+1)×(n+1), (Kcw)ij =

√
αj
√
αi〈wj , ci〉X ,Kcw ∈ R(n+1)×(n+1),

(Kcc)ij =
√
αj
√
αi〈cj , ci〉X ,Kcc ∈ R(n+1)×(n+1), (Aww)ij =

√
αj
√
αi〈∇wi,∇wj〉X ,Aww ∈ R(n+1)×(n+1), (Acc)ij =

√
αj
√
αi〈∇ci,∇cj〉X ,Acc ∈ R(n+1)×(n+1), Tij =

√
αj
√
αi〈v · ∇cj , wi〉X , T ∈ R(n+1)×(n+1),

N (ηc(t))j = 〈W ′(c`(t)), ψcj〉X ,N (ηc(t)) ∈ R`c .

To handle the nonlinearity, we project the finite element solution onto the POD space for each time instance k = 0, . . . , n, i.e.
we approximate

N (ηc(tk))j = 〈W ′(c`(tk)), ψcj〉V ′,V ≈ 〈W ′(ck), ψci 〉V ′,V . (13)

4 Numerical example

The data is chosen as follows: we consider a rectangular domain Ω = (0, 1.5)× (0, 0.75), the end time T = 0.025, constant
mobility m ≡ 0.00002 and a constant surface tension σ = 24.5. The interface parameter ε is set to ε = 0.02. As initial
condition we use a circle with radius r = 0.25 and center (0.375, 0.375). The velocity field is of parabolic type. We consider
V = H1

0 (Ω), H = L2(Ω). By tj = j∆t for 0 ≤ j ≤ 1000 with ∆t = 2.5 · 10−05 we introduce a uniform time grid. For the
temporal discretization we utilize a semi-implicit Euler scheme which reads as follows: for given cj−1, find cj with associated
wj solving





〈c
j − cj−1

∆t
, v1〉H + 〈v · ∇cj−1, v1〉H +m〈∇wj ,∇v1〉H = 0 ∀v1 ∈ V,

−〈wj , v2〉H + σε〈∇cj ,∇v2〉H +
σ

ε
〈W ′+(cj) +W ′−(cj−1), v2〉H = 0 ∀v2 ∈ V,

(14)

and c0 = c0. Note that the free energy function W is split into a convex part W+ and a concave part W−, such that
W = W+ + W− and W ′+ is treated implicitly with respect to time and W ′− is treated explicitly with respect to time. This
leads to an unconditionally energy stable time marching scheme, compare [7]. The system (14) is discretized in space utiziling
piecewise linear finite elements which are spatially adapted according to the gradient jump. Snapshots of the phase field at
three different time points together with the adaptive meshes are shown in figure 1.

Fig. 1: Finite element solution of the phase field c at t = t0, t500, t1000 with adaptive meshes using W rel
10000
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The decay of the eigenvalues of the matrix (8) for snapshots of the phase field c, the chemical potential w and the convex
part of the nonlinearity W ′+(c) is shown in figure 2. It shows that in the nonsmooth case with the relaxed double obstacle
free energy W rel

s more POD modes are needed for a good approximation than in the smooth case utilizing the polynomial free
energy W p. Table 1 summarizes the approximation quality of the solution to the POD-ROM (12) for different numbers of
utilized POD modes and using different free energy functions.
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Fig. 2: Normalized eigenvalues for c (left), w (middle), W ′+(c) (right) using different free energy functions and adaptive spatial meshes

`c = `w εc,W
p εw,W

p εc,W
rel
10000 εw,W

rel
10000 εc,W

p, ROM-DEIM εc,W
p, ROM-proj

3 5.36 · 10−3 5.33 · 10−2 7.20 · 10−3 6.95 · 10−1 6.97 · 10−3 4.70 · 10−2

5 3.48 · 10−3 7.85 · 10−2 5.44 · 10−3 6.00 · 10−1 3.80 · 10−3 4.64 · 10−2

10 1.34 · 10−3 3.94 · 10−2 2.75 · 10−3 2.53 · 10−1 1.43 · 10−3 4.61 · 10−2

20 2.02 · 10−4 6.71 · 10−3 1.13 · 10−3 1.38 · 10−1 2.42 · 10−4 4.65 · 10−2

50 6.05 · 10−6 2.72 · 10−4 1.36 · 10−4 1.11 · 10−2 2.24 · 10−5 4.67 · 10−2

Table 1: Relative L2-errors between the finite element and POD solution for different free energies and with DEIM and the approximation
using projection, respectively

Concerning the computational times, it turns out that the use of hyperreduction for the nonlinearity leads to an immense
speedup. For the polynomial free energy, we get for `c = `w = 20 the following CPU times using adaptive meshes:
finite element simulation: 1693sec, POD basis computation: 301sec, POD-ROM simulation: 160sec, POD-ROM-DEIM [6]
simulation: 0.09sec, POD-ROM with projection from (13): 0.02sec. For comparison, the finite element simulation would take
8279sec on a uniform mesh with mesh size as small as the smallest triangle in the adaptive meshes.
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