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OPTIMAL CONTROL OF TIME-DISCRETE TWO-PHASE FLOW DRIVEN BY

A DIFFUSE-INTERFACE MODEL ∗

Harald Garcke1, Michael Hinze2 and Christian Kahle3

Abstract. We propose a general control framework for two-phase flows with variable densities in the
diffuse interface formulation, where the distribution of the fluid components is described by a phase
field. The flow is governed by the diffuse interface model proposed in [Abels, Garcke, Grün, M3AS
22(3):1150013(40), 2012]. On the basis of the stable time discretization proposed in [Garcke, Hinze,
Kahle, APPL NUMER MATH, 99:151–171, 2016] we derive necessary optimality conditions for the
time-discrete and the fully discrete optimal control problem. We present numerical examples with
distributed and boundary controls, and also consider the case, where the initial value of the phase field
serves as control variable.

1991 Mathematics Subject Classification. 35Q35, 49N45, 49M05, 65K10 .

January 15, 2018.

1. Introduction

In this paper we study a general discrete framework for control of two-phase fluids governed by the ther-
modynamically consistent diffuse interface model proposed in [5]. For the discretization we use the approach
of [23], where the authors propose a time discretization scheme, that preserves this important property in the
time discrete setting and, using a post-processing step, also in the fully discrete setting including adaptive mesh
discretization. As control actions we consider distributed control, Dirichlet boundary control, and control with
the initial condition of the phase field.

For the practical implementation we adapt the adaptive treatment developed in [23] to the optimal control
setting. On the discrete level, special emphasis has to be be taken for the control with the intial value of the
phase field, since the distribution of its phases is an outcome of the optimization procedure and thus a-priori
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unknown. In this case we combine the variational discretization from [38] with error estimation techniques to
find a good mesh for the numerical representation of the a-priori unknown phase distribution.

Let us comment on related literature on time discretizations and control of (two-phase) fluids. For investi-
gations of further time discretizations we refer to [7,23,27–29,31,34]. Concerning optimal control and feedback
control of fluids there is a wide range of literature available. Here we only mention [13,14,22,30,37,40].

Let us further comment on available literature for control of Cahn–Hilliard multiphase flow systems. In [35]
distributed optimal control of the Cahn–Hilliard system with a non smooth double obstacle potential is proposed,
and in [36] this work is extended to time-discrete two-phase flow given by a Cahn–Hilliard Navier–Stokes system
with equal densities. Both works aim at existence of optimal controls and first order optimality conditions.
In [34] the authors consider time discrete optimal control of multiphase flows based on the diffuse interface model
of [5]. This work aims at establishing existence of solutions and stationarity conditions for control problems
with free energies governed by the double obstacle potential, which is achieved through an appropriate limiting
process of control problems with smooth relaxed free energies. In [32] a goal oriented adaptive concept for
the numerical realization is proposed. The focus of the present work is different in that we consider numerical
analysis of the fully discrete problem, propose a tailored numerical adaptive concept for the control problem,
and present numerical examples which clearly show the potential of our approach.

We also mention the work of [12], where optimal control for a binary fluid, that is described by its density
distribution, is proposed.

Let us finally comment on feedback control approaches for multiphase flows. Model predictive control is
applied to the model from [5] in [39,43,44].

The paper is organized as follows. In Section 2 we state the model for the two-phase system and summarize
assumptions that we require for the data. In Section 3 we state the time discretization scheme proposed in [23]
and summarize properties of the scheme which we need in the present paper. We formulate the time discrete
optimization problem in Section 3. In Section 4 we consider the optimal control problem in the fully discrete
setting and present numerical examples in Section 6.

2. The governing equations

The two-phase flow is modeled by the diffuse interface model proposed in [5].

ρ∂tv + ((ρv + j) ⋅ ∇) v − div (2ηDv) + ∇π
−µ∇ϕ − ρK − f = 0 ∀x ∈ Ω, ∀t ∈ I, (1)

−div(v) = 0 ∀x ∈ Ω, ∀t ∈ I, (2)

∂tϕ + v ⋅ ∇ϕ − b∆µ = 0 ∀x ∈ Ω, ∀t ∈ I, (3)

−σε∆ϕ + σ
ε
W ′(ϕ) − µ = 0 ∀x ∈ Ω, ∀t ∈ I, (4)

v(0, x) = v0(x) ∀x ∈ Ω, (5)

ϕ(0, x) = ϕ0(x) ∀x ∈ Ω, (6)

v(t, x) = g ∀x ∈ ∂Ω, ∀t ∈ I, (7)

∇µ(t, x) ⋅ νΩ = ∇ϕ(t, x) ⋅ νΩ = 0 ∀x ∈ ∂Ω, ∀t ∈ I. (8)

Here ϕ denotes the phase field, µ the chemical potential, v the velocity field and π the pressure. Furthermore
j = −ρ2−ρ1

2
b∇µ is a diffuse flux for ϕ.

In addition Ω ⊂ Rn, n ∈ {2,3}, denotes an open, convex and polygonal (n = 2) or polyhedral (n = 3) bounded
domain. In particular it has Lipschitz boundary. Convexity of the domain is needed as we use H2-regularity
results for Poisson’s equation with L2 right hand sides which hold in polygonal or polyhedral domains if the
domain is convex. Its outer unit normal is denoted as νΩ, and I = (0, T ] with 0 < T < ∞ is a time interval.
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The free energy density is denoted by W and is assumed to be of double-well type with exactly two minima
at ±1. For W we use a splitting W =W+ +W−, where W+ is convex and W− is concave.

The density is denoted by ρ = ρ(ϕ), fulfilling ρ(−1) = ρ1 and ρ(1) = ρ2, where ρ1, ρ2 denote the densities of
the involved fluids. The viscosity is denoted by η = η(ϕ), fulfilling η(−1) = η1 and η(1) = η2, with individual
fluid viscosities η1, η2. The constant mobility is denoted by b, but this work can be generalized to general
non-degenerate mobilites. The gravitational force is denoted by K. By Dv = 1

2
(∇v + (∇v)t) we denote the

symmetrized gradient. The scaled surface tension is denoted by σ > 0 and the interfacial width is proportional
to ε > 0 which is fixed throughout this work. We further have a volume force f and boundary data g, as well as
an initial phase field ϕ0 and a solenoidal initial velocity field v0.

Concerning results on existence of solutions for (1)–(8) under different assumptions on W and b we refer
to [3, 4, 26].

Assumptions

For the data of our problem we assume:

(A1) W ∶ R→ R is twice continuously differentiable and is of double-well type, i.e. it has exactly two minima
at ±1 with values W (±1) = 0.

(A2) W ′

+
andW ′

−
are Frechét differentiable as operators fromH1(Ω) to (H1(Ω))⋆. Furthermore (W ′′

+
(ξ)δϕ, δϕ) ≥ 0

holds for all ξ, δϕ ∈H1(Ω).
(A3) W and its derivatives are polynomially bounded, i.e. there exists a C > 0 such that ∣W (x)∣ ≤ C(1+∣x∣q),

∣W ′

+
(x)∣ ≤ C(1 + ∣x∣q−1), ∣W ′

−
(x)∣ ≤ C(1 + ∣x∣q−1), ∣W ′′

+
(x)∣ ≤ C(1 + ∣x∣q−2), and ∣W ′′

−
(x)∣ ≤ C(1 + ∣x∣q−2)

holds for some q ∈ [2,4] if n = 3 and q ∈ [2,∞) if n = 2.
(A4) There exists ϕa ≤ −1 and ϕb ≥ 1, such that ρ(ϕ) = ρ(ϕa) for ϕ ≤ ϕa, and ρ(ϕ) = ρ(ϕb) for ϕ ≥ ϕb.

For ϕa < ϕ < ϕb the function ρ(ϕ) is affine linear, i.e. ρ(ϕ) = 1
2
((ρ2 − ρ1)ϕ + (ρ1 + ρ2)), and we define

ρδ ∶= (ρ2−ρ1)

2
.

Further, η(ϕ) = η(ϕa) for ϕ ≤ ϕa, and η(ϕ) = η(ϕb) for ϕ ≥ ϕb. For ϕa < ϕ < ϕb the function η(ϕ) is
affine linear, i.e. η(ϕ) = 1

2
((η2 − η1)ϕ + (η1 + η2)).

We define ρ > ρ > 0, η ≥ η > 0 fulfilling

● ρ ≥ ρ(ϕ) ≥ ρ > 0,

● η ≥ η(ϕ) ≥ η > 0,
see Remark 2.2.

(A5) The mean value of ϕ is zero, i.e. there holds 1
∣Ω∣ ∫Ω ϕdx = 0. This can be achieved by choosing the values

indicating the pure phases accordingly and considering a shifted system if required. In this case the
values ±1 change to some other appropriate values.

Remark 2.1. The Assumptions (A1)–(A3) are for example fulfilled by the polynomial free energy density

W poly(ϕ) = 1

4
(1 − ϕ2)2

.

Another free energy density fulfilling these assumptions is the relaxed double-obstacle free energy density given
by

λ(y) ∶= max(0, y − 1) +min(0, y + 1),

ξ ∶= 1 + 2s +
√

4s + 1

2s
,

δ ∶= 1

2
(1 − ξ2) + s

3
∣λ(ξ)∣3,

W s(y) = 1

2
(1 − (ξy)2) + s

3
∣λ(ξy)∣3 + δ (9)
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where s > 0, and as s denotes a penalisation parameter from Moreau–Yosida regularization s is chosen very
large in practice. The energy density W s can be understood as a relaxation of the double-obstacle free energy
density

W∞(ϕ) =
⎧⎪⎪⎨⎪⎪⎩

1
2
(1 − ϕ2) if ∣ϕ∣ ≤ 1,

∞ else,

which is proposed in [16,49] to model phase separation. We note that here we use a cubic penalisiation to obtain
the required regularity from (A1) and that ξ is chosen such that W s takes its minima at ±1 and δ is such that
W s(±1) = 0. Let us note that the larger s, the better W s reflects W∞.

In the numerical examples of this work we use the free energy density W ≡W s. For this choice the splitting
into convex and concave part reads

W+(ϕ) = s
1

3
∣λ(ξϕ)∣3, W−(ϕ) =

1

2
(1 − (ξϕ)2) + δ.

Furthermore we have

W ′

+
(ϕ) = sξ∣λ(ξϕ)∣λ(ξϕ), W ′′

+
(ϕ) = 2sξ2∣λ(ξϕ)∣.

Remark 2.2. For the weak formulation of (1)–(8) we later require affine linearity of ρ on the image of ϕ. The
affine linearity of η is assumed for simplicity. Note that in view of Assumption (A4), this essentially implies a
bound on ϕ, namely ϕ ∈ (ϕa, ϕb) as stated in Assumption (A4).

Using W s as free energy density we argue, that for s sufficiently large (see [23, Rem. 6]) ∣ϕ∣ ≤ 1 + θ holds,
with θ sufficiently small, and in [45] it is shown for the Cahn–Hilliard equation without transport, that for the

energy (9) in fact ∥ϕ∥L∞(Ω) ≤ 1 +Cs−1/2 holds.
In a general setting one might use a nonlinear dependence between ϕ and ρ, see e.g. [2], or choose a cut-off

procedure as proposed in [26,29].
Anyway, since we later require linearity of ρ on the image of ϕ we state Assumption (A4) and note that this

assumption is fulfilled in our numerical examples in Section 6.

Notation

We use the conventional notation for Sobolev and Hilbert Spaces, see e.g. [6]. With Lp(Ω), 1 ≤ p ≤ ∞, we
denote the space of measurable functions on Ω, whose modulus to the power p is Lebesgue-integrable. L∞(Ω)
denotes the space of measurable functions on Ω, which are essentially bounded. For p = 2 we denote by L2(Ω) the
space of square integrable functions on Ω with inner product (⋅, ⋅) and norm ∥ ⋅ ∥. By W k,p(Ω), k ≥ 1,1 ≤ p ≤ ∞,
we denote the Sobolev space of functions admitting weak derivatives up to order k in Lp(Ω). If p = 2 we write
Hk(Ω).

For f ∈ H1(Ω)n we introduce the continuous trace operator γ ∶ H1(Ω)n → H
1
2 (∂Ω)n as γf ∶= f ∣∂Ω. Vice

versa, for g ∈ H 1
2 (∂Ω)n with g ⋅ νΩ = 0 there exists g̃ ∈ H1(Ω)n, (div(g̃), q) = 0∀q ∈ L2(Ω) with γg̃ = g and

∥g̃∥H1(Ω)n ≤ C∥g∥
H

1
2 (∂Ω)n

, where C is independent of g, see [25, I. §2 Lem. 2.2]. We call ⋅̃ the extension

operator.
The subspace H1

0(Ω)n ⊂H1(Ω)n denotes the set of functions with vanishing boundary trace. We further set

L2
(0)(Ω) = {v ∈ L2(Ω) ∣ (v,1) = 0},

and with

Hσ(Ω) = {v ∈H1(Ω)n ∣ (div(v), q) = 0∀q ∈ L2(Ω)}
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we denote the space of all weakly solenoidal H1(Ω) vector fields, i.e. we include the solenoidality condition
in the distributional sense. We stress that there is no correspondence between the subscript σ and the scaled
surface tension. We denote both terms using σ since these are standard notations. We further introduce

H0,σ(Ω) =H1
0(Ω)n ∩Hσ(Ω).

For u ∈ Lq(Ω)n, q > 2 if n = 2, q ≥ 3 if n = 3, and v,w ∈H1(Ω)n we introduce the trilinear form

a(u, v,w) = 1

2
∫

Ω
((u ⋅ ∇) v)wdx − 1

2
∫

Ω
((u ⋅ ∇)w) v dx. (10)

Note that there holds a(u, v,w) = −a(u,w, v), and especially a(u, v, v) = 0. We have the following stability
estimate by Hölder inequalities and Sobolev embedding

∣a(u, v,w)∣ ≤ C∥u∥Lq(Ω)∥v∥H1(Ω)∥w∥H1(Ω).

For a square summable series of functions (fm)Mm=1 ∈ VM , where (V, ∥ ⋅ ∥V ) is a normed vector space, we

introduce the notation ∥(fm)Mm=1∥2
V = ∑Mm=1 ∥fm∥2

V .
Finally for v ∈ L2(Ω)n, ϕ ∈H1(Ω), φ ∈ L2(Ω) we introduce the total energy E(v,ϕ,φ)

E(v,ϕ,φ) ∶= 1

2
∫

Ω
ρ(φ)∣v∣2 dx + σ∫

Ω

ε

2
∣∇ϕ∣2 + 1

ε
W (ϕ)dx, (11)

where the first integral is the kinetic energy and the second integral represents the Ginzburg–Landau energy of
the phase field.

3. The time-discrete setting

In [23] existence of time discrete weak solutions for (1)–(4) is shown for the case of g = 0 and f = 0. In this
section we formulate a time discrete optimization problem for (1)–(4), where we use g, f , and ϕ0 as controls,
and show existence of solutions together with first order optimality conditions.

Let 0 = t0 < t1 < . . . < tm−1 < tm < tm+1 < . . . < tM = T denote an equidistant subdivision of the interval
I = [0, T ] with τm+1 − τm ≡ τ and sub intervals I0 = {0}, Im = (tm−1, tm], m = 1, . . . ,M . From here onwards
the superscript m denotes the corresponding variables at time instance tm, e.g. ϕm ∶= ϕ(tm). For functions
f ∈ L2(0, T, V ) we introduce fm ∶= ⨏Im f(t)dt ∈ V . Note that this can be seen as a discontinuous Galerkin
approximation using piecewise constant values.

We now introduce the optimal control problem under consideration. For this purpose we interpret ϕ0, f, and
g as sought control that we intend to choose, such that the corresponding phase field ϕM is close to a desired
phase field ϕd in the mean square sense. If ϕd is the measurement of a real world system, then finding ϕ0 such
that the corresponding phase field ϕM is close to ϕd resembles an inverse problem.

We denote by u ∈ U the control, where

U = UI ×UV ×UB = K ×L2(0, T ;Ruv) ×L2(0, T ;Rub)

is the space of controls, where

K ∶= {v ∈H1(Ω) ∣ ∫
Ω
v dx = 0, ∣v∣ ≤ 1} ⊂H1(Ω) ∩L∞(Ω)

denotes the space of admissible initial phase fields.
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By

B ∶ U →H1(Ω) ∩L∞(Ω) ×L2(0, T ;L2(Ω)n) ×L2(0, T ; (H1/2(∂Ω))n)

we denote the linear and bounded control operator, which consists of three components, i.e. B = [BI ,BV ,BB],
where BI(uI , uV , uB) ≡ BIuI ∶= uI , which is the initial phase field for the system, BV (uI , uV , uB) ≡ BV uV with
BV uV (t, x) = ∑uvl=1 fl(x)u

l
V (t) where fl ∈ L2(Ω)n are given functions, which is a volume force acting on the fluid

inside Ω, and BB(uI , uV , uB) ≡ BBuB , with BBuB(t, x) = ∑ubl=1 gl(x)u
l
B(t) where gl ∈ H1/2(∂Ω)n denote given

functions, and this is a boundary force acting on the fluid as Dirichlet boundary data. To obtain a solenoidal
velocity field, BBuB has to fulfill the compatibility condition ∫∂ΩBBuB ⋅ νΩ ds = 0, and in the following for
simplicity we assume gl ⋅ νΩ = 0, l = 1, . . . , ub, point wise.

Given a triple (αI , αV , αB) of non negative values with αI + αV + αB = 1 we introduce an inner product for
u = (uI , uV , uB) ∈ U and v = (vI , vV , vB) ∈ U by

(u, v)U = αI(∇uI ,∇vI)L2(Ω) + αV (uV , vV )L2(0,T ;Ruv ) + αB(uB , vB)L2(0,T ;Rub) (12)

and the norm ∥u∥2
U = (u,u)U .

We use the convention, that α⋆ = 0, ⋆ ∈ {I, V,B}, means, that we do not apply this kind of control. If αI = 0
we use ϕ0 as given data, if αB = 0, we assume no-slip boundary data for v. For notational convenience, in the
following we assume α⋆ /= 0 for all ⋆ ∈ {I, V,B}.

We stress, that we do not discretize the control in time, although the state equation is time discrete. Thus
we follow the concept of variational discretization [38]. Anyway, the control is discretized implicitly in time by
the adjoint equation that we will derive later. We also note, that in view of the state equation, this allows us
to dynamically adapt the time step size τ to the flow condition without changing the control space.

Following [23] we propose the following time discrete counterpart of (1)–(8):
Let u ∈ U and v0 ∈Hσ(Ω) ∩L∞(Ω) be given.

Initialization for m = 1:
Set ϕ0 = uI and v0 = v0.
Find ϕ1 ∈ H1(Ω) ∩ L∞(Ω), µ1 ∈ W 1,3(Ω), v1 ∈ Hσ(Ω), with γ(v1) = BBu1

B , such that for all w ∈ H0,σ(Ω),
Φ ∈H1(Ω), and Ψ ∈H1(Ω) it holds

1

τ
∫

Ω
(1

2
(ρ1 + ρ0)v1 − ρ0v0)wdx + a(ρ1v0 + j1, v1,w)

+∫
Ω

2η1Dv1 ∶Dwdx − ∫
Ω
µ1∇ϕ0w + ρ0Kwdx − ⟨BV u1

V ,w⟩
H−1(Ω),H1

0 (Ω)
= 0, (13)

1

τ
∫

Ω
(ϕ1 − ϕ0)Ψdx + ∫

Ω
(v0 ⋅ ∇ϕ0)Ψdx + ∫

Ω
b∇µ1 ⋅ ∇Ψdx = 0, (14)

σε∫
Ω
∇ϕ1 ⋅ ∇Φdx − ∫

Ω
µ1Φdx + σ

ε
∫

Ω
(W ′

+
(ϕ1) +W ′

−
(ϕ0))Φdx = 0, (15)

where j1 ∶= −ρδb∇µ1.

Two-step scheme for m > 1:
Given ϕm−2 ∈H1(Ω) ∩L∞(Ω), ϕm−1 ∈H1(Ω) ∩L∞(Ω), µm−1 ∈W 1,3(Ω), vm−1 ∈Hσ(Ω),
find vm ∈Hσ(Ω), γ(vm) = BBumB , ϕm ∈H1(Ω)∩L∞(Ω), µm ∈W 1,3(Ω) such that for all w ∈H0,σ(Ω), Ψ ∈H1(Ω),
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and Φ ∈H1(Ω) it holds

1

τ
∫

Ω
(ρ

m−1 + ρm−2

2
vm − ρm−2vm−1)wdx + ∫

Ω
2ηm−1Dvm ∶Dwdx

+a(ρm−1vm−1 + jm−1, vm,w)

−∫
Ω
µm∇ϕm−1w + ρm−1Kwdx − ⟨BV umV ,w⟩H−1(Ω),H1

0 (Ω)
= 0, (16)

∫
Ω

ϕm − ϕm−1

τ
Ψdx + ∫

Ω
(vm ⋅ ∇ϕm−1)Ψdx + ∫

Ω
b∇µm ⋅ ∇Ψdx = 0, (17)

σε∫
Ω
∇ϕm ⋅ ∇Φdx − ∫

Ω
µmΦdx + σ

ε
∫

Ω
(W ′

+
(ϕm) +W ′

−
(ϕm−1))Φdx = 0, (18)

where jm−1 ∶= −ρδb∇µm−1. We further use the abbreviations ρm ∶= ρ(ϕm) and ηm ∶= η(ϕm).
We note that in (16)–(18) the only nonlinearity arises from W ′

+
and thus only the equation (18) is nonlinear.

A similar argumentation holds for (13)–(15). The regularity ∇µm−1 ∈ L3(Ω) is required for the trilinear form
a(⋅, ⋅, ⋅), see (10).

Remark 3.1. We note that (16)–(18) is a two-step scheme for the phase field variable ϕ, and thus we need an
initialization as proposed in (13)–(15). Here, as in [23] the sequential coupling of (14)–(15) and (13) is used as
proposed in [46].

Another variant might be to require initial data on time instance t−1 for the phase field and at t0 for the
velocity field. Equations (17)–(18) can than be solved for ϕ0 and µ0 to obtain initial values, see [34].

Since we are later also interested in control of the initial value ϕ0 we propose the initialization scheme
(13)–(15) here.

Remark 3.2. For the rest of this paper we discuss optimal control of the time discrete system (13)–(18) for a
fixed parameter τ . We neither discuss the dependence of our results with respect to the limit τ → 0, nor with
respect to the limit ε → 0. In the subsequent analysis constants depend critically on ε as e.g. powers of ε−1

result from estimates involving Young’s inequality.
We refer to [26] for investigations related to the case τ → 0, and to [19,21] for investigations considering the

case ε→ 0 for the Allen–Cahn system.

Theorem 3.3. Let v0 ∈Hσ(Ω) ∩L∞(Ω)n and u ∈ U be given data.
Then there exists a unique solution (v1, ϕ1, µ1) to (13)–(15), and it holds

∥v1∥H1(Ω)n+∥ϕ1∥H2(Ω) + ∥µ1∥H2(Ω)

≤ C1(v0)C2 (∥uI∥H1(Ω), ∥BV u1
V ∥L2(Ω)n , ∥BBu1

B∥
H

1
2 (∂Ω)n

) (19)

and ϕ1, µ1 can be found by Newton’s method. The constants C1, C2 depend polynomially on its arguments, on
the system parameter and especially ε−1.

Proof. The existence of (ϕ1, µ1) ∈ H1(Ω) ×H1(Ω) follows from [33]. There the corresponding system without
the transport term v0∇uI is analyzed. This term is a given volume force, that can be incorporated in a
straightforward manner. From this we directly obtain the stability inequality

∥ϕ1∥H1(Ω) + ∥µ1∥H1(Ω) ≤ C1(v0)C2(∥uI∥H1(Ω)).

Since ∣W ′

+
(ϕ)∣ ≤ C(1 + ∣ϕ∣q ∣), q ≤ 3 we have W ′

+
(ϕ) ∈ L2(Ω) and by L2 regularity theory we have ϕ1 ∈ H2(Ω)

and

∥ϕ1∥H2(Ω) ≤ C(∥µ1∥H1(Ω), ∥ϕ1∥H1(Ω), ∥uI∥H1(Ω)).
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We further have v0∇uI ∈ L2(Ω) and thus we have µ1 ∈H2(Ω) and the stability inequality

∥µ1∥H2(Ω) ≤ C1(v0)C2(∥uI∥H1(Ω), ∥ϕ1∥H1(Ω)).

Convergence of Newton’s method directly follows from [33]. Note that the only nonlinearity W ′

+
is monotone.

With v0, ϕ1, uI , and µ1 given data, (13) defines a coercive and continuous bilinear form on Hσ and thus
existence and stability of a solution follows from Lax-Milgram’s theorem. This uses the antisymmetry of the
trilinear form a and Korn’s inequality. The non-homogeneous Dirichlet data are incorporated by extension.
Note that (13) is linear with respect to v1, and also compare the proof of Theorem 3.4. �

Theorem 3.4. Let vm−1 ∈ Hσ(Ω), ϕm−2 ∈ H1(Ω) ∩ L∞(Ω), ϕm−1 ∈ H1(Ω) ∩ L∞(Ω), and µm−1 ∈ W 1,3(Ω), be
given data. Then there exists a unique solution (vm, ϕm, µm) to (16)–(18).

It further holds ϕm ∈ H2(Ω) and if additionally ϕm−1 ∈ W 1,3(Ω) we have µm ∈ H2(Ω) and the stability
inequality

∥vm∥H1(Ω)n+∥µm∥H2(Ω) + ∥ϕm∥H2(Ω)

≤C (∥vm−1∥H1(Ω)n , ∥ϕm−1∥W 1,3(Ω), ∥BV umV ∥L2(Ω)n , ∥BBumB ∥
H

1
2 (∂Ω)n

) ,

holds. The constant C depends polynomially on its arguments, on the system parameter and especially ε−1.
Locally the unique solution can be found by Newton’s method.

Proof. In [23] the existence for γ(BBumB ) = 0 and BV u
m
V = 0 is shown using a Galerkin approach. The addi-

tional volume force is incorporated in a straight forward manner. The boundary data BBu
m
B is introduced by

investigating a shifted system, i.e. by considering vm = vm0 + B̃BumB , where vm0 has zero Dirichlet data. Note

that due to the linearity of (16) with respect to vm the terms involving B̃BumB are independent of the solution
on the current time instance, and also appear as volume force.

To derive the stability estimate, we proceed as follows. We define e ∶= B̃BumB , i.e. a solenoidal extension of
BBu

m
B into Ω, and use w = vm−e as test function in (16), Ψ = µm as test function in (17), and Φ = τ−1(ϕm−ϕm−1)

as test function in (18), and add the resulting equations. Using the properties of W ′

+
and W ′

−
we obtain

(compare [23, Thm. 7])

E(vm, ϕm, ϕm−1) + 1

2
∫

Ω
ρm−2∣vm − vm−1∣2 dx + 2τ ∫

Ω
ηm−1∣Dvm∣2 dx

+ τ ∫
Ω
b∣∇µm∣2 dx + σε

2
∥∇ϕm −∇ϕm−1∥2

≤ E(vm−1, ϕm−1, ϕm−2) + ∫
Ω
(ρ

m−1 + ρm−2

2
vm − ρm−2vm−1) e dx

+ τa(ρm−1vm−1 + Jm−1, vm, e) + 2τ ∫
Ω
ηm−1Dvm ∶Dedx

− τ ∫
Ω
µm∇ϕm−1e dx + (ρm−1K,vm − e) + τ(BV umV , vm − e)L2(Ω)n .

(20)

Note that for e ≡ 0, i.e. vm∣∂Ω ≡ 0, this result is shown in [23, Thm. 7]. For the left hand side of the inequality
(20) we have using (A4), (A5)

1

2
ρ∥vm∥2 + σε

2(1 +C2
p)

∥ϕm∥2
H1(Ω) ≤ E(vm, ϕm, ϕm−1), 2τη∥Dvm∥2 ≤ 2τ ∫

Ω
ηm−1∣Dvm∣2 dx,
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where Cp denotes the constant from Poincaré’s inequality. Thus for the left hand side we have by Korn’s
inequality, i.e. ∥v∥2

H1(Ω)n ≤ C(∥v∥2 + ∥Dv∥2), the lower bound

C (∥vm∥2
H1(Ω)n + ∥ϕm∥2

H1(Ω) + ∥∇µm∥2) .

Next we observe since e∣∂Ω = g and g ⋅ νΩ = 0 that for any β ∈ R it holds

∫
Ω
β∇ϕm−1e dx = −∫

Ω
div(βe)ϕm−1 dx + ∫

∂Ω
e ⋅ νΩϕ

m−1 ds = 0, (21)

and thus ∫Ω µ
m∇ϕm−1e dx = ∫Ω(µm − ∫Ω µ

m)∇ϕm−1e dx holds.
For the right hand side we have

E(vm−1, ϕm−1, ϕm−2) ≤ C (∥vm−1∥2 + ∥∇ϕm−1∥2 + 1 + ∥ϕm−1∥4
L4(Ω)) ,

∫
Ω
(ρ

m−1 + ρm−2

2
vm − ρm−2vm−1) e dx ≤ C (∥vm∥ + ∥vm−1∥) ∥e∥,

τa(ρm−1vm−1 + Jm−1, vm, e) ≤ C∥ρm−1vm−1 + Jm−1∥L3(Ω)∥vm∥H1(Ω)n∥e∥H1(Ω)n ,

2τ ∫
Ω
ηm−1Dvm ∶Dedx ≤ C∥∇vm∥∥∇e∥,

τ ∫
Ω
µm∇ϕm−1e dx ≤ C∥µm − ∫

Ω
µm dx∥L4(Ω)∥∇ϕm−1∥∥e∥L4(Ω) ≤ C∥∇µm∥∥ϕm−1∥H1(Ω∥e∥H1(Ω)n ,

(ρm−1K,vm − e) ≤ ρ∣K ∣∥vm∥L2(Ω)n ,

τ(BV umV , vm − e)L2(Ω)n ≤ ∥BV umV ∥∥vm∥ + ∥BV umV ∥∥e∥.

The bound for ∥vm∥H1(Ω)n , ∥ϕm∥H1(Ω) and ∥∇µm∥ now follows from a3 scaled Young’s inequality and compen-
sating the terms involving µm and vm on the left hand side.

To bound ∥µm∥ it is sufficient to bound ∫Ω µ
m dx and to use Poincaré’s inequality. The required bound is

obtained by testing (18) with Φ ≡ 1, using (A3) and the already shown bound on ϕm.
The local convergence of Newton’s method is shown in [23].
The regularity ϕm, µm ∈ H2(Ω) follow as in the proof of Theorem 3.3, but now using ∇ϕm−1 ∈ L3(Ω) and

vm ∈Hσ ↪ L6(Ω).
�

Let us next introduce the optimization problem under investigation. For this we first rewrite (13)–(18) in a
compact and abstract form and introduce

Y ∶=Hσ(Ω)M × (H1(Ω) ∩L∞(Ω))M ×W 1,3(Ω)M ,

Y0 ∶=H0,σ(Ω)M × (H1(Ω) ∩L∞(Ω))M ×W 1,3(Ω)M ,

y ∶=(vm, ϕm, µm)Mm=1 ∈ Y,

Z ∶= (H0,σ(Ω)M ×H1(Ω)M ×H1(Ω)M)⋆ ,

e ∶ Y0 ×U → Z,

e(y0, u) = 0. (22)
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The operator e is defined as follows

⟨ỹ, e(y0, u)⟩Z⋆,Z ∶=

τ−1 (1

2
(ρ1 + ρ0)(v1

0 + B̃Bu1
B) − ρ0v0, ṽ1) + a(ρ1v0 + j1, v1

0 + B̃Bu1
B , ṽ

1)

+ (2η1D(v1
0 + B̃Bu1

B),Dṽ1) − (µ1∇u1 + ρ0K, ṽ1)
− (BV u1

V , ṽ
1)

+ τ−1(ϕ1 − u1, ϕ̃
1) + (v0∇u1, ϕ̃

1) + (b∇µ1,∇ϕ̃1)
+ σε(∇ϕ1,∇µ̃1) − (µ1, µ̃1)
+ σε−1(W ′

+
(ϕ1) +W ′

−
(uI), µ̃1)

+
M

∑
m=2

[τ−1 (1

2
(ρm−1 + ρm−2)(vm0 + B̃BumB ) − ρm−2(vm−1

0 + B̃Bum−1
B ), ṽm)

+ a(ρm−1(vm−1
0 + B̃Bum−1

B ) + jm−1, vm0 + B̃BumB , ṽ
m)

+ (2ηm−1D(vm0 + B̃BumB ),Dṽm) − (µm∇ϕm−1 + ρm−1K, ṽm)
− (BV umV , ṽm)

+ τ−1(ϕm − ϕm−1, ϕ̃m) + ((vm0 + B̃BumB )∇ϕm−1, ϕ̃m) + (b∇µm,∇ϕ̃m)
+ σε(∇ϕm,∇µ̃m) − (µm, µ̃m)

+σε−1(W ′

+
(ϕm) +W ′

−
(ϕm−1), µ̃m)]

with y0 ∶= (vm0 , ϕm, µm)Mm=1 ∈ Y0, and ỹ = ((ṽm)Mm=1, (ϕ̃m)Mm=1, (µ̃m)Mm=1)))) ∈ Z⋆. Here again ρm ∶= ρ(ϕm),
ηm ∶= η(ϕm) and especially ρ0 ∶= ρ(uI), η0 ∶= η(uI).

Now the time-discrete optimization problem under investigation is given as

min
u∈U

J((ϕm)Mm=1, u) =
1

2
∥ϕM − ϕd∥2

L2(Ω)

+ α
2
(αI ∫

Ω

ε

2
∣∇uI ∣2 + ε−1Wu(uI)dx

+ αV ∥uV ∥2
L2(0,T ;Ruv ) + αB∥uB∥2

L2(0,T ;Rub))

s.t. e(y, u) = 0.

(P)

Here ϕd ∈ L2(Ω) is a given desired phase field, and α > 0 is a weight for the control cost. For the control cost
of the initial value we use the well-known Ginzburg–Landau energy (11) of the phase field uI with interfacial
thickness ε. Here we use the double obstacle free energy density Wu ≡ W∞ given in Remark 2.1. In our
numerical examples it is advantageous to use this non-smooth free energy density instead of the smoother one
used in the Cahn-Hilliard/Navier-Stokes system for the simulation.

Theorem 3.5. Let v0 ∈Hσ(Ω) ∩L∞(Ω), u ∈ U be given.
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Then there exists a unique solution to the equation e(y, u) = 0, i.e. there exist (vm, ϕm, µm)Mm=1 ∈ Y such that
(vm, ϕm, µm) is the unique solution to (13)–(18) for m = 1, . . . ,M . Moreover there holds

∥(vm)Mm=1∥H1(Ω)n + ∥(ϕm)Mm=1∥H2(Ω) + ∥(µm)Mm=1∥H2(Ω)

≤C1 (v0)C2 (∥uI∥H1(Ω), ∥(BV umV )Mm=1∥L2(Ω)n , ∥(BBumB )Mm=1∥H 1
2 (∂Ω)n

) .

Further e(y, u) is Fréchet-differentiable with respect to y, and ey(y, u) ∈ L(Y0, Z) has a bounded inverse.
Thus Newton’s method can be applied for finding the unique solution of (22) for given u.

Proof. The existence and stability of the solution for each time instance follows directly from Theorem 3.3 and
Theorem 3.4.

The equation e(y, u) = 0 is of block diagonal form with nonlinear entries on the diagonal. Thus solving (22)
reduces to solving each time instance with given data from the previous time instance. As argued in Theorem
3.3 and Theorem 3.4 these nonlinear equations can be solved by Newton’s method. Applying this argument for
all time instances we obtain that ey(y, u) ∈ L(Y0, Z) has a bounded inverse. �

Lemma 3.6. The functional J(y0, u) is continuously differentiable with respect to y0 and u.

Based on Theorem 3.5 we introduce the reduced functional Ĵ(u) ∶= J(y0(u), u) and state the following
theorem.

Theorem 3.7 (Existence of an optimal control). There exists at least one solution to P, i.e. at least one
optimal control.

Proof. Since Ĵ is bounded from below, there exists a minimizing sequence ul with Ĵ(ul) → Ĵ⋆ and Ĵ⋆ ∶=
infu Ĵ(u).

Since Ĵ is radially unbounded, there exists V ⊂ U , bounded, convex and closed such that ul ⊂ V and thus
there exists a weakly convergent subsequence, in the following again denoted by (ul). Since closed convex sets
are weakly closed, ul ⇀ u⋆ ∈ V holds. Let yl = (vl, ϕl, µl) denote the unique solution of (13)–(18) for ul. Then
yl ⇀ y⋆ ∈ Y , with y⋆ = y⋆(u⋆), and (u⋆, y⋆) solves (13)-(18). This can be shown as in [23, Thm. 6].

It remains to show, that J(u⋆) = J⋆. To begin with we note that yl ⇀ y⋆ holds, which implies ϕMl ⇀ ϕM
⋆

in H1(Ω) and ϕMl → ϕM
⋆

in L2(Ω) by Rellich’s theorem. This gives convergence for the first addend in (P).
Concerning the second addend we note that again Rellich’s theorem gives uIl → uI⋆ ∈ K in L2(Ω), and thus
pointwise a.e. This gives Wu(uIl) → Wu((uI)⋆) pointwise a.e.. The claim now follows from the weak lower
semicontinuity of norms, which implies that

Ĵ(u⋆) ≤ lim inf Ĵ(ul) = Ĵ⋆

holds. Thus u⋆ is an optimal control. �

We next derive first order optimality conditions in the abstract setting. We introduce an adjoint state p ∈ Z⋆

and the Lagrangian as

L(y, p, u) ∶= J(y, u) − ⟨p, e(y, u)⟩Z⋆,Z .

By Lagrangian calculus we then obtain the following first order optimality conditions.

Theorem 3.8 (First order optimality conditions in abstract setting). Let u ∈ U , y ∈ Y be an optimal solution
to P. Then there exists an adjoint state p ∈ Z⋆ and the triple (u, y, p) fulfills the following first order optimality
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conditions:

e(y, u) = 0 ∈ Z, (23)

(ey(y, u))⋆p = Jy(y, u) ∈ Y ⋆

0 , (24)

⟨Ju(y, u) + (eu(y, u))⋆p,w − u⟩U⋆,U = 0 ∀w ∈ U. (25)

Proof. From Theorem 3.5 and Lemma 3.6 we have that e and J fulfill the assumptions of [41, Cor. 1.3], which
in turn asserts the claim. �

To state the first order optimality system we introduce Lagrange multiplier p ∈ Z⋆, p = (pmv , pmϕ , pmµ )Mm=1 ∈
HM

0,σ ×H1(Ω)M ×H1(Ω)M and define the Lagrangian

L ∶ U × (H0,σ)M × (H1(Ω) ∩L∞(Ω))M ×W 1,3(Ω)M

× (H0,σ)M ×H1(Ω)M ×H1(Ω)M → R

as

L(u, vm0 , ϕm, µm, pmv , pmϕ , pmµ ) ∶= 1

2
∥ϕM − ϕd∥2

L2(Ω)

+ α
2
(αV ∥uV ∥2

L2(0,T ;Ruv ) + αB∥uB∥2
L2(0,T ;Rub) + αI (∫

Ω

δ

2
∣∇uI ∣2 +

1

δ
Wu(uI)dx))

−
M

∑
m=2

[1

τ
(ρ

m−1 + ρm−2

2
(vm0 + B̃BumB ) − ρm−2(vm−1

0 + B̃Bum−1
B ), pmv )

+ a(ρm−1(vm−1
0 + B̃Bum−1

B ) + jm−1, (vm0 + B̃BumB ), pmv )

+ (2ηm−1D(vm0 + B̃BumB ),Dpmv )

−(µm∇ϕm−1, pmv ) − (ρm−1K,pmv ) − (BV umV , pmv )]

−
M

∑
m=2

[1

τ
(ϕm − ϕm−1, pmϕ ) + ((vm0 + B̃BumB )∇ϕm−1, pmϕ ) + (b∇µm,∇pmϕ )]

−
M

∑
m=2

[σε(∇ϕm,∇pmµ ) − (µm, pmµ ) + σ
ε
(W ′

+
(ϕm) +W ′

−
(ϕm−1), pmµ )]

− [1

τ
(ρ

1 + ρ0

2
(v1 + B̃Bu1

B) − ρ0v0, p1
v) + a(ρ1v0 + j1, (v1 + B̃Bu1

B), p1
v)

+(2η1D(v1 + B̃Bu1
B),Dp1

v) − (µ1∇uI , p1
v) − (ρ0K,p1

v) − (BV u1
V , p

1
v)]

− [1

τ
(ϕ1 − uI , p1

ϕ) + (v0∇uI , p1
ϕ) + (b∇µ1,∇p1

ϕ)]

− [σε(∇ϕ1,∇p1
µ) − (µ1, p1

µ) +
σ

ε
(W ′

+
(ϕ1) +W ′

−
(uI), p1

µ)] .

Here again ρm ∶= ρ(ϕm), ηm ∶= η(ϕm) and especially ρ0 ∶= ρ(u1), η0 ∶= η(u1). In the following we write

vm ∶= vm0 + B̃BumB .
The optimality system is now given by (DL(x), x̃ − x) ≥ 0, where x abbreviates all arguments of L and x̃

denotes an admissible direction. For all components of x except uI it even holds (DL(x), x̃) = 0 since there no
further constraints apply, while UI is a convex subset of H1(Ω) ∩L∞(Ω).
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Derivative with respect to the velocity
The derivative with respect to vm0 for m = 2, . . . ,M into a direction ṽ ∈H0,σ is given by

(DvmL(. . . ,vm, . . .), ṽ) =

− 1

τ
((ρ

m−1 + ρm−2

2
ṽ, pmv ) − (ρm−1ṽ, pm+1

v ))

− a(ρmṽ, vm+1
0 + B̃Bum+1

B , pm+1
v )

− a(ρm−1(vm−1
0 + B̃Bum−1

B ) + jm−1, ṽ, pmv )
− (2ηm−1Dṽ,Dpmv ) − (ṽ∇ϕm−1, pmϕ ) = 0.

(26)

For m = 1 we get

(Dv1L( . . . , v1, . . .), ṽ) =
1

τ
(ρ0ṽ, p2

v) − a(ρ1ṽ, v2
0 + B̃Bu2

B , p
2
v)

− 1

2τ
((ρ1 + ρ0)ṽ, p1

v) − a(ρ1(v0
0 + B̃Bu0

B) + j1, ṽ, p1
v) − (2η1Dṽ,Dp1

v) = 0.

(27)

Note that for notational convenience here we introduce artificial variables vM+1
0 , pM+1

v , uM+1
B and set them to

vM+1
0 ≡ pM+1

v ≡ 0, uM+1
B = 0.

Remark 3.9. Note that we derive the adjoint system in the solenoidal setting. Introducing a variable π for
the pressure in the primal equation leads to an additional adjoint variable pπ for the adjoint pressure and to an
additional term (−divṽ, pπ).

Derivative with respect to the chemical potential
The derivative with respect to the chemical potential for m = 2, . . . ,M in a direction µ̃ ∈W 1,3(Ω) is

(DµmL(. . . , µm, . . .), µ̃) =
− a(jmµm µ̃, vm+1, pm+1

v ) + (µ̃∇ϕm−1, pmv ) − (b∇µ̃,∇pmϕ ) + (µ̃, pmµ ) = 0.
(28)

For m = 1 the equations is

(Dµ1L(. . . , µ1, . . .), µ̃) =
− a(j1

µµ̃, v
2, p2

v) − a(j1
µµ̃, v

1, p1
v) + (µ̃∇uI , p1

v) − (b∇µ̃,∇p1
ϕ) + (µ̃, p1

µ) = 0.
(29)

Here for m = 1, . . . ,M we abbreviate jmµ µ̃ = −ρδb∇µ̃, and for notational convenience we introduce artificial

variables vM+1 = vM+1
0 + ̃BBuM+1

B , pM+1
v , and set them to vM+1 ≡ pM+1

v ≡ 0.
The above also contains the boundary condition

∇pmϕ ⋅ νΩ = 0 m = 1, . . . ,M,

in weak form, which for smooth pmϕ follows from integration by parts.
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Derivative with respect to the phase field
The derivative with respect to the phase field ϕm in a direction ϕ̃ ∈H1(Ω) ∩L∞(Ω) is for m = 2, . . . ,M

(DϕmL(. . . , ϕm, . . .), ϕ̃) =

δmM(ϕm − ϕd, ϕ̃) −
1

τ
(ρ′ v

m+1pm+1
v + vm+2pm+2

v

2
, ϕ̃) + 1

τ
(ρ′vm+1pm+2

v , ϕ̃)

− a(ρ′ϕ̃vm, vm+1, pm+1
v ) − (2η′ϕ̃Dvm+1,Dpm+1

v )
+ (µm+1∇ϕ̃, pm+1

v ) + (ρ′ϕ̃K, pm+1
v )

− 1

τ
((ϕ̃, pmϕ ) − (ϕ̃, pm+1

ϕ )) − (vm+1∇ϕ̃, pm+1
ϕ )

− σε(∇ϕ̃,∇pmµ ) − σ
ε
(W ′′

+
(ϕm)ϕ̃, pmµ ) − σ

ε
(W ′′

−
(ϕm)ϕ̃, pm+1

µ ) = 0,

(30)

where δmM denotes the Kronecker delta. For m = 1 we get

(Dϕ1L(. . . , ϕ1, . . .), ϕ̃) =

− 1

τ
(ρ

′

2
ϕ̃, v2p2

v) − a(ρ′ϕ̃v1, v2, p2
v) − a(ρ′ϕ̃v0, v1, p1

v)

− (2η′ϕ̃Dv2,Dp2
v) − (2η′ϕ̃Dv1,Dp1

v) − (µ2∇ϕ̃p2
v) − (ρ′ϕ̃K, p2

v)

+ 1

τ
(ϕ̃, p2

ϕ) − (v2∇ϕ̃, p2
ϕ) −

σ

ε
(W ′′

−
(ϕ1)ϕ̃, p2

µ)

− 1

τ
(ρ

′ϕ̃

2
v1, p1

v) −
1

τ
(ϕ̃, p1

ϕ) − σε(∇ϕ̃,∇p1
µ) −

σ

ε
(W ′′

+
(ϕ1)ϕ̃, p1

µ) = 0.

(31)

Here for notational convenience we introduce artificial variables vM+1 = vM+1
0 + ̃BBuM+1

B , vM+2 = vM+2
0 + ̃BBuM+2

B ,

pM+1
v , pM+2

v , and set them to zero.
The above also contains the boundary condition

∇pmµ ⋅ νΩ = 0 m = 1, . . . ,M,

in weak form, which for smooth pmµ follows from integration by parts.

Derivative with respect to the control
Finally we calculate the derivative with respect to the control for the three parts of the control space.

For a test direction w ∈ UV we have

(DuV L(u, . . .),w) = ααV ∫
I
(uV ,w)Ruv dt +

M

∑
m=1

(BV wm, pmv )L2(Ω) = 0,

and thus the optimality condition is

αταV u
m
V +B∗

V p
m
v = 0 ∈ Ruv m = 1, . . . ,M (32)

Here B⋆

V p
m
v is defined as

B⋆

V p
m
v ∶= ((fl, pmv )L2(Ω)n)uvl=1.
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Concerning the derivative with respect to uB we have for a test function w ∈ UB

(DuBL(u, . . .),w) = ααB ∫
I
(uB ,w)Rub dt − τ−1 (ρ

1 + ρ0

2
B̃Bw1, p1

v)

− a(ρ1v0 + j1, B̃Bw1, p1
v) − 2(η1DB̃Bw1,Dp1

v)

−
M

∑
m=2

[τ−1 (ρ
m−1 + ρm−2

2
B̃Bwm, p

m
v ) − (ρm−2 ̃BBwm−1, pmv )

+a(ρm−1vm−1 + jm−1, B̃Bwm, p
m
v ) + a(ρm−1 ̃BBwm−1, vm, pmv )

+ 2(ηm−1DB̃Bwm,Dp
m
v ) + (B̃Bwm∇ϕm−1, pmϕ )] = 0.

(33)

For smooth solutions we use the derivative with respect the velocity, the no-flux boundary condition for vm

as well as for µm and integration by parts to observe

(DuBL(u, . . .),w) = ααB ∫
I
(uB ,w)Rub dt

−
M

∑
m=2

∫
∂Ω

2ηm−1Dpmv ⋅ νΩBBw
m ds − ∫

∂Ω
2η1Dp1

v ⋅ νΩBBw
1 ds

and thus the optimality condition in a strong formulation is

ααBτu
m
B − ((2ηm−1Dpmv ⋅ νΩ, g

l)H−1/2(∂Ω),H1/2(∂Ω))
ub

l=1
= 0 ∈ Rub ∀m = 2, . . . ,M,

ααBτu
1
B − (2η1Dp1

v ⋅ νΩ, g
l)H−1/2(∂Ω),H1/2(∂Ω) = 0 ∈ Rub .

(34)

The derivative with respect to the initial condition uI in a direction w − uI ∈ UI is

(DuIL(u, . . .),w − uI)U⋆
I
,UI =

α

2
αI (ε(∇uI ,∇(w − uI)) + ε−1 ∫

Ω
W ′

u(uI)(w − uI)dx)

− 1

2τ
(ρ′(w − uI)v2, p2

v) +
1

τ
(ρ′(w − uI)v1, p2

v)

− 1

2τ
(ρ′(w − uI)v1, p1

v) +
1

τ
(ρ′(w − uI)v0, p1

v)

+ (µ1∇(w − uI), p1
v) + (ρ′(w − uI)K,p1

v)

+ 1

τ
((w − uI), p1

ϕ) − (v0∇(w − uI), p1
ϕ) −

σ

ε
(W ′′

−
(uI)(w − uI), p1

µ) ≥ 0.

(35)

We note that uI ∈ H1(Ω) ∩ L∞(Ω) and thus that there exists no gradient representation for DuIL. This is
reflected later in our numerical approach.

Remark 3.10. From (32) we see, that in fact uV has a discrete structure with respect to time, namely it is
piecewise constant over time intervals, as the adjoint variable pv is. The same holds for uB .

4. The fully discrete setting

We next use finite elements to discretize the optimal control problem P in space. For this we use finite
elements on locally adapted meshes. At time instance tm, m = 1, . . . ,M we use a quasi-uniform, triangulation
of Ω with NTm triangles denoted by Tm = {Ti}NTmi=1 fulfilling Ω = ⋃NTmi=1 T i.
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On Tm we define the following finite element spaces:

V1
m ={v ∈ C(Tm) ∣ v∣T ∈ P1(T )∀T ∈ Tm},
V2
m ={v ∈ C(Tm)n ∣ v∣T ∈ P2(T )n ∀T ∈ Tm},

where P l(S) denotes the space of polynomials up to order l defined on S. We note that by construction
V1
m ⊂W 1,∞(Tm) and V2

m ⊂W 1,∞(Tm)n holds. We introduce the discrete analog to the space Hσ(Ω):

Hσ,m ∶= {v ∈ V2
m ∣ (divv, q) = 0∀q ∈ V1

m ∩L2(Ω)},

and

H0,σ,m ∶= {v ∈Hσ,m ∣γ(v) = 0}.

We further introduce a linear H1-stable projection operator Pm ∶H1(Ω) → V1
m satisfying

∥Pmv∥Lp(Ω) ≤ C∥v∥Lp(Ω), and ∥∇Pmv∥Lr(Ω) ≤ C∥∇v∥Lr(Ω),

for v ∈H1(Ω) with r ∈ [1,2] and p ∈ [1,6] if n = 3, and p ∈ [1,∞) if n = 2 and

∥Pmv − v∥H1(Ω) → 0

for h → 0 for v ∈ H2(Ω) Typically examples are the Clément operator or, by restricting the preimage to

C(Ω) ∩H1(Ω), the Lagrangian interpolation operator.
We further introduce

V2
m,b ∶= {v∣∂Ω ∣ v ∈ V2

m, ∫
∂Ω
v∣∂Ω ⋅ νΩ ds = 0}

and define Πm for m = 1, . . . ,M as the L2(∂Ω) projection onto the trace space V2
m,b of V2

m. This projection is

used to incorporate the boundary data and fulfills ∥Πmg−g∥L2(∂Ω) → 0 for all g ∈H1/2(∂Ω) with ∫∂Ω g ⋅νΩ ds = 0.
Using these spaces we state the discrete counterpart of (13)–(18):

Let u ∈ U and v0 ∈Hσ ∩L∞(Ω)n be given.
Initialization for m = 1:
Set ϕ0

h ∶= uI , v0 ∶= v0. Find v1
h ∈ Hσ,1, γ(v1

h) = Π1(BBu1
B), ϕ1

h ∈ V1
1 , µ1

h ∈ V1
1 such that for all w ∈ H0,σ,1, Ψ ∈ V1

1 ,
Φ ∈ V1

1 it holds:

τ−1 (1

2
(ρ1
h + ρ0

h)v1
h − ρ0

hv
0,w) + a(ρ1

hv
0 + j1

h, v
1
h,w)

+(2η1
hDv

1
h,Dw) − (µ1

h∇ϕ0
h + ρ0

hg,w) − (BV u1
V ,w) = 0, (36)

1

τ
(ϕ1

h − P 1ϕ0
h,Ψ) + (b∇µ1

h,∇Ψ) + (v0∇ϕ0
h,Ψ) = 0, (37)

σε(∇ϕ1
h,∇Φ) + σ

ε
(W ′

+
(ϕ1

h) +W ′

−
(P 1ϕ0

h),Φ) − (µ1
h,Φ) = 0, (38)

where j1 ∶= −ρδb∇µ1
h.

Two-step scheme for m > 1:
Given ϕm−2

h ∈ V1
m−2, ϕm−1

h ∈ V1
m−1, µm−1

h ∈ V1
m−1, vm−1

h ∈Hσ,m−1, find vmh ∈Hσ,m, γ(vmh ) = Πm(BBumB ), ϕmh ∈ V1
m,
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µmh ∈ V1
m such that for all w ∈H0,σ,m, Ψ ∈ V1

m, Φ ∈ V1
m it holds:

τ−1 (1

2
(ρm−1
h + ρm−2

h )vmh − ρm−2
h vm−1

h ,w) + a(ρm−1
h vm−1

h + jm−1
h , vmh ,w)

+(2ηm−1
h Dvmh ,Dw) − (µmh ∇ϕm−1

h + ρm−1
h g,w) − (BV umV ,w) = 0, (39)

1

τ
(ϕmh − Pmϕm−1

h ,Ψ) + (b∇µmh ,∇Ψ) + (vmh ∇ϕm−1
h ,Ψ) = 0, (40)

σε(∇ϕmh ,∇Φ) + σ
ε
(W ′

+
(ϕmh ) +W ′

−
(Pmϕm−1

h ),Φ) − (µmh ,Φ) = 0, (41)

where jm−1
h ∶= −ρδb∇µm−1

h .
We require bounds with respect to W 1,p(Ω)-norms for the solution of (36)–(41) and prepare these with the

following lemmas.

Lemma 4.1. For all 1 < p < ∞ there exists a continuous function C(p), such that

∥∇u∥Lp(Ω) ≤ C(p) sup
η∈Lq(Ω),η≠0

(η,1)=0

(∇u,∇η)
∥∇η∥Lq(Ω)

,

where 1
p
+ 1
q
= 1. Further, from the generalized Poincaré inequality, [8, Thm. 8.16], we obtain ∥η∥W 1,q(Ω) ≤

C∥∇η∥Lq(Ω) and thus

∥∇u∥Lp(Ω) ≤ C(p) sup
η∈Lq(Ω),η≠0

(η,1)=0

(∇u,∇η)
∥η∥W 1,q(Ω)

.

Proof. The proof follows as in [11, Lem. 1.1] and uses Lp-stability for u shown in [24, Thm. 1.2]. �

Lemma 4.2. For v ∈W 1,p(Ω) let Qhv ∈ V1
m be defined by

(∇Qhv,∇w) = (∇v,∇w) ∀w ∈ V1
m, (42)

∫
Ω
Qhv dx = ∫

Ω
v dx. (43)

Let 1 < p < ∞. Then it holds

∥Qhv∥W 1,p(Ω) ≤ C(p)∥v∥W 1,p(Ω). (44)

Proof. The proof follows the lines of [17, Ch. 8]. Combining it with the techniques provided in [11] and [48]
allows also the treatment of Neumann boundary data. �

Lemma 4.3. Let uh ∈ V1
m ⊂W 1,q(Ω). Then it holds

∥∇uh∥Lp(Ω) ≤ C(p) sup
ηh∈V 1

m,ηh≠0

(η,1)=0

(∇uh,∇ηh)
∥ηh∥W 1,q(Ω)

,

where 1
p
+ 1
q
= 1.

Proof. Directly follows by combining Lemma 4.1, the definition of Qhv in (43) and the stability estimate (44),
compare [48, Thm. 2.3]. �
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Theorem 4.4. Let v0 ∈ H1(Ω)n ∩ L∞(Ω)n, u ∈ U be given. Then there exist unique v1
h ∈ Hσ,1, γ(v1

h) =
Π1(BBu1

B), ϕ1
h ∈ V1

1 and µ1
h ∈ V1

1 solving (36)–(38). It further holds

∥µ1
h∥W 1,3(Ω) + ∥ϕ1

h∥W 1,4(Ω) + ∥v1
h∥H1(Ω)

≤ C1(v0)C2 (∥uI∥H1(Ω), ∥BV u1
V ∥L2(Ω)n , ∥BBu1

B∥
H

1
2 (∂Ω)n

) ,

where the constants C1, C2 depend polynomially on their arguments and the system parameter, including ε−1,
but are independent of h.

Proof. For (37)–(38) the existence of a unique solution follows similar as in [33] by considering a suitable
minimization problem. The additional term v0∇ϕ0 can be incorporated in a straightforward manner. Also the
stability in H1 is proven in [33].

To obtain the estimates of higher regularity we use Lemma 4.3. It holds (37)

C∥µ1
h∥W 1,3(Ω) ≤ ∥∇µ1

h∥L3(Ω) + ∥µ1
h∥L3(Ω)

≤∥µ1
h∥L3(Ω) +C sup

vh∈V1
m,(vh,1)=0

∥vh∥
W

1, 3
2 (Ω)

=1

(∇µ1
h,∇vh)

≤C∥µ1
h∥H1(Ω) +C sup(∣1

τ
(ϕ1

h − P 1ϕ0
h, vh)∣ + ∣(v0∇ϕ0

h, vh)∣)

≤C∥µ1
h∥H1(Ω) +C sup (∥ϕ1

h − P 1ϕ0
h∥L2(Ω)∥vh∥L2(Ω) + ∥v0∇ϕ0

h∥L2(Ω)n∥vh∥L2(Ω))
≤C∥µ1

h∥H1(Ω) +C∥ϕ1
h − P 1ϕ0

h∥L2(Ω) +C∥v0∇ϕ0
h∥L2(Ω)n

≤C (∥µ1
h∥H1(Ω) + ∥ϕ1

h∥H1(Ω) + ∥ϕ0
h∥H1(Ω) + ∥v0∥L∞(Ω)n∥ϕ0

h∥H1(Ω))

(45)

which, together with the already known bound for ∥µ1
h∥H1(Ω) states the bound on µ1

h in W 1,3(Ω). Note the

continuous embedding W 1, 32 (Ω) ↪ L2(Ω) used for vh.
For ϕ1

h we argue similarly and estimate

C∥ϕ1
h∥W 1,4(Ω)

≤∥ϕ1
h∥L4(Ω) +C sup

vh∈W
1, 4

3 (Ω),(vh,1)=0

∥v∥
W

1, 4
3 (Ω)

=1

((∇ϕ1
h,∇vh))

≤C∥ϕ1
h∥H1(Ω) +C sup(∣(µ1

h, vh)∣ + ∣σ
ε
(W ′

+
(ϕ1

h) +W ′

−
(P 1ϕ0

h), vh)∣)

≤C∥ϕ1
h∥H1(Ω) +C∥µ1

h∥L2(Ω) +C sup [(1 + ∣ϕ1
h∣q−1, ∣vh∣) + (1 + ∣P 1ϕ0

h∣q−1, ∣vh∣)]
≤C∥ϕ1

h∥H1(Ω) +C∥µ1
h∥L2(Ω)

+C (∥1 + ∣ϕ1
h∣q−1∥L2(Ω) + ∥1 + ∣P 1ϕ0

h∣q−1∥L2(Ω)) sup ∥vh∥L2(Ω)

≤C∥ϕ1
h∥H1(Ω) +C∥µ1

h∥L2(Ω) +C (1 + ∥ϕ1
h∥H1(Ω) + ∥ϕ0

h∥H1(Ω)) .

We note the continuous embeddings W 1, 43 (Ω) ↪ L2(Ω) and H1(Ω) ↪ L6(Ω).
The existence of a unique solution for (36) and stability for v1

h then follows from Lax–Milgram’s theorem as
in Theorem 3.3 and considering a shifted system. �

Theorem 4.5. For all m = 2, . . . ,M , let u ∈ U , ϕm−2 ∈ V1
m−2, ϕm−1 ∈ V1

m−1, µm−1 ∈ V1
m−1, vm−1 ∈ Hσ,m−1 be

given. Then there exist unique vmh ∈Hσ,m, γ(vmh ) = Πm(BBumB ), ϕmh ∈ V1
m and µmh ∈ V1

m solving (39)–(41).
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It further holds

∥µmh ∥W 1,3(Ω) + ∥ϕmh ∥W 1,4(Ω) + ∥vmh ∥H1(Ω)n

≤ C (∥vm−1
h ∥H1(Ω)n , ∥µm−1

h ∥W 1,3(Ω), ∥ϕm−1
h ∥W 1,4(Ω),

∥BV umV ∥L2(Ω)n , ∥BBumB ∥
H

1
2 (∂Ω)n

) ,

where C depends polynomially on its arguments and the system parameters, including ε−1, but is independent
of h.

Proof. In [23] the existence of unique solutions to (39)–(41) together with bounds in H1(Ω) on the solution is
shown for the case BV u

m
V = 0, BBu

m
B = 0, using [51, Lem. II 1.4]. The volume force BV u

m
V is given data that

enters the proof in a straightforward manner. The boundary data BBu
m
B can be incorporated by investigating

a shifted system as in Theorem 3.4.
The estimates of higher regularity follow as in Theorem 4.4. There the bound for µ1

h relies on L∞(Ω)
regularity of v0, that is not available here. Instead in (45) we can use a L6(Ω) bound for vmh that directly
follows from the H1(Ω) bound by Sobolov embedding, together with the L3(Ω) bound for ∇ϕm−1

h . �

Theorem 4.6. Let v0 ∈ H1(Ω)n ∩ L∞(Ω), u ∈ U be given. Then there exist sequences (vm)Mm=1 ∈ (Hσ,m)Mm=1,
(ϕm)Mm=1, (µm)Mm=1 ∈ (V1

m)Mm=1, such that (vm, ϕm, µm) is the unique solution to (36)–(41) for m = 1, . . . ,M .
Moreover there holds

∥(vmh )Mm=1∥H1(Ω) + ∥(µmh )Mm=1∥W 1,3(Ω) + ∥(ϕmh )Mm=1∥W 1,4(Ω)

≤ C1(v0)C2 (∥uI∥H1(Ω), ∥(BV umV )Mm=1∥L2(Ω)n , ∥(BBumB )Mm=1∥H 1
2 (∂Ω)n

) .

Here the constants C1,C2 depend polynomially on their arguments and the system parameter, including ε−1 but
are independent of h.

Proof. The existence of the solution for each time instance follows directly from Theorem 4.4 and Theorem 4.5.
The stability estimate follows from iteratively applying the stability estimates from Theorem 4.4; �

Remark 4.7. The bounds with respect to higher norms are required in Section 5 for the limit process h→ 0.

To derive first order necessary optimality conditions we argue as in the case of the time discrete optimization
problem and show that Newton’s method can be used for solving the primal equation (36)–(41) on each time
instance.

Theorem 4.8. Newton’s method can be used for finding the unique solution to (36)–(41) on each time instance.

Proof. For m = 1 this is shown in [33]. For m > 1 we abbreviate equation (39)–(41) by

F ((vmh , ϕmh , µmh ), (w,Φ,Ψ)) = 0,

with a nonlinear operator F ∶ Hσ,m × V1
m × V1

m → (H0,σ,m × V1
m × V1

m)⋆. Then F is Fréchet differentiable, since
all terms are linear beside the term W ′

+
which is Frechét differentiable by (A2). The derivative in a direction
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(δv, δϕ, δµ) ∈H0,σ,m × V1
m × V1

m is given by

⟨G(vmh , ϕmh , µmh )(δv, δϕ, δµ), (w,Φ,Ψ)⟩ ∶=
1

τ
(ρ

m−1 + ρm−2

2
δv,w) + a(ρm−1vm−1 + jm−1, δv,w)

+ (ηm−1Dδv,Dw) − (δµ∇ϕm−1,w)

+ 1

τ
(δϕ,Ψ) + (b∇δµ,∇Ψ) + (δv∇ϕm−1,Ψ)

+ σε(∇δϕ,∇Φ) + σ
ε
(W ′′

+
(ϕmh )δϕ,Φ) − (δµ,Φ).

The existence of a solution (δv, δϕ, δµ) can be shown following [23, Thm. 2], using Brouwer’s fixpoint theorem.
The boundedness of (δv, δϕ, δµ) follows from the same proof. �

We next introduce the fully discrete analog to problem (P).

min
u∈U

J((ϕmh )Mm=1, u) =
1

2
∥ϕMh − ϕd∥2

L2(Ω)

+ α
2
(αI (∫

Ω

ε

2
∣∇uI ∣2 + ε−1Wu(uI)dx)

+ αV ∥uV ∥2
L2(0,T ;Ruv ) + αB∥uB∥2

L2(0,T ;Rub))

s.t. (36) − (41).

(Ph)

We stress, that we do not discretize the control for the initial value. However for a practical implementation we
need a discrete description for uI . This will be discussed after deriving the optimality conditions, see Section 6.

Theorem 4.9 (Existence of an optimal discrete control). There exists at least one optimal control to Ph.

Proof. The claim follows from standard arguments, compare Theorem 3.7. �

We next state the fully discrete counterpart of the first order optimality conditions from Section 3.
For this we introduce adjoint variables (pmv,h)Mm=1 ∈ (H0,σ,m)Mm=1, (pmϕ,h)Mm=1 ∈ (V1

m)Mm=1, and (pmµ,h)Mm=1 ∈
(Vm)Mm=1. For convenience in the following we often write vmh ∶= vm0,h + B̃BumB .

By the same Lagrangian calculus as in Section 3 we obtain the following fully discrete optimality system.

Derivative with respect to the velocity
The derivative with respect to vm0,h for m = 2, . . . ,M into a direction ṽ ∈ V2

m is given by

(Dvm
h
L(. . . ,vmh , . . .), ṽ) =

− 1

τ
((
ρm−1
h + ρm−2

h

2
ṽ, pmv,h) − (ρm−1

h ṽ, pm+1
v,h ))

− a(ρmh ṽ, vm+1
h , pm+1

v,h ) − a(ρm−1
h vm−1

h + jm−1
h , ṽ, pmv,h)

− (2ηm−1
h Dṽ,Dpmv,h) − (ṽ∇ϕm−1

h , pmϕ,h) = 0.

(46)

For m = 1 we get
(Dv1

h
L( . . . , v1

h, . . .), ṽ) =

− 1

2τ
((ρ1

h + ρ0)ṽ, p1
v,h) +

1

τ
(ρ0ṽ, p2

v,h) − a(ρ1
hṽ, v

2
h, p

2
v,h)

− a(ρ1
hv

0
h + j1

h, ṽ, p
1
v,h) − (2η1

hDṽ,Dp
1
v,h) = 0.

(47)
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Note that for notational convenience here we introduce artificial variables vM+1
h , pM+1

v,h , and set them to vM+1
h ≡

pM+1
v,h ≡ 0.

Derivative with respect to the chemical potential
The derivative with respect to the chemical potential for m = 2, . . . ,M in a direction µ̃ ∈ V1

m is

(Dµm
h
L(. . . , µmh , . . .), µ̃) =
− a(jµµ̃, vm+1

h , pm+1
v,h ) + (µ̃∇ϕm−1

h , pmv,h) − (b∇µ̃,∇pmϕ,h) + (µ̃, pmµ,h) = 0.
(48)

For m = 1 the equations is

(Dµ1L(. . . , µ1, . . .), µ̃) =
− a(jµµ̃, v2

h, p
2
v,h) − a(j1

µµ̃, v
1
h, p

1
v,h) + (µ̃∇uI , p1

v,h)
− (b∇µ̃,∇p1

ϕ,h) + (µ̃, p1
µ,h) = 0.

(49)

Here for m = 1, . . . ,M we abbreviate jmµ µ̃ = −ρδb∇µ̃ and for notational convenience we introduce artificial

variables vM+1
h and pM+1

v,h , and set them to vM+1
h ≡ pM+1

v,h ≡ 0.

Derivative with respect to the phase field
The derivative with respect to the phase field ϕmh in a direction ϕ̃ ∈ V1

m is for m = 2, . . . ,M

(Dϕm
h
L(. . . , ϕmh , . . .), ϕ̃) =

δmM(ϕmh − ϕd, ϕ̃) −
1

τ
(ρ′

vm+1
h pm+1

v,h + vm+2
h pm+2

v,h

2
, ϕ̃) + 1

τ
(ρ′vm+1

h pm+2
v,h , ϕ̃)

− a(ρ′ϕ̃vmh , vm+1
h , pm+1

v,h ) − (2η′ϕ̃Dvm+1
h ,Dpm+1

v,h )
+ (µm+1

h ∇ϕ̃, pm+1
v,h ) + (ρ′ϕ̃g, pm+1

v,h )

− 1

τ
((ϕ̃, pmϕ,h) − (Pm+1ϕ̃, pm+1

ϕ,h )) − (vm+1
h ∇ϕ̃, pm+1

ϕ,h )

− σε(∇ϕ̃,∇pmµ,h) −
σ

ε
(W ′′

+
(ϕmh )ϕ̃, pmµ,h) −

σ

ε
(W ′′

−
(Pm+1ϕmh )Pm+1ϕ̃, pm+1

µ,h ) = 0.

(50)

Here δmM denotes the Kronecker delta of m and M . For m = 1 we get

(Dϕ1
h
L(. . . , ϕ1

h, . . .), ϕ̃) =

− 1

τ
(ρ

′

2
ϕ̃, v2

hp
2
v,h) − a(ρ′ϕ̃v1

h, v
2
h, p

2
v,h) − a(ρ′ϕ̃v0, v1

h, p
1
v,h)

− (2η′ϕ̃Dv2
h,Dp

2
v,h) − (2η′ϕ̃Dv1

h,Dp
1
v,h) − (µ2

h∇ϕ̃p2
v,h) − (ρ′ϕ̃g, p2

v,h)

+ 1

τ
(P 2ϕ̃, p2

ϕ,h) − (v2
h∇ϕ̃, p2

ϕ,h) −
σ

ε
(W ′′

−
(P 2ϕ1

h)P 2ϕ̃, p2
µ,h)

− 1

τ
(ρ

′ϕ̃

2
v1
h, p

1
v,h) −

1

τ
(ϕ̃, p1

ϕ,h) − σε(∇ϕ̃,∇p1
µ,h) −

σ

ε
(W ′′

+
(ϕ1

h)ϕ̃, p1
µ,h) = 0.

(51)

Here for notational convenience we introduce artificial variables vM+1
h , vM+2

h , pM+1
v,h , and pM+2

v,h , and set them to
zero.

Remark 4.10. We note that the projection operator Pm enters (50)–(51) acting on the test function ϕ̃.

Derivative with respect to the control
Finally we calculate the derivative with respect to the control for the three parts of the control space.
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For a test direction w ∈ UV we have

(DuV L(u, . . .),w) = ααV ∫
I
(uV ,w)Ruv dt +

M

∑
m=1

(BV wm, pmv,h)L2(Ω) = 0,

and thus the optimality condition is

αταV u
m
V +B∗

V p
m
v,h = 0 ∈ Ruv m = 1, . . . ,M. (52)

Here B⋆

V p
m
v is defined as

B⋆

V p
m
v ∶= ((fl, pmv,h)L2(Ω)n)uvl=1.

Concerning the derivative with respect to uB we have for a test function w ∈ UB

(DuBL(u, . . .),w) = ααB ∫
I
(uB ,w)Rub dt − τ−1 (

ρ1
h + ρ0

2
B̃Bw1, p1

v,h)

− a(ρ1
hv

0 + j1
h, B̃Bw

1, p1
v,h) − 2(η1

hDB̃Bw
1,Dp1

v,h)

−
M

∑
m=2

[τ−1 (
ρm−1
h + ρm−2

h

2
B̃Bwm, p

m
v,h) − (ρm−2

h
̃BBwm−1, pmv,h)

+a(ρm−1
h vm−1

h + jm−1
h , B̃Bwm, p

m
v,h) + a(ρm−1

h
̃BBwm−1, vmh , p

m
v,h)

+ 2(ηm−1
h DB̃Bwm,Dp

m
v,h) + (B̃Bwm∇ϕm−1

h , pmϕ,h)]

=∶ ααB ∫
I
(uB ,w)Rub dt + Fh(w) = 0.

(53)

Here Fh(w) abbreviates the action of the discrete normal derivative of pv,h, see e.g. [41].

The derivative with respect to the initial condition uI in any direction w − uI ∈ UI is

(DuIL(u, . . .),w − uI)U⋆
I
,UI =

α

2
αI (ε(∇uI ,∇(w − uI)) + ε−1 ∫

Ω
W ′

u(uI)(w − uI)dx)

− 1

2τ
(ρ′(w − uI)v2

h, p
2
v,h) +

1

τ
(ρ′(w − uI)v1

h, p
2
v,h)

− 1

2τ
(ρ′(w − uI)v1

h, p
1
v,h) +

1

τ
(ρ′(w − uI)v0, p1

v,h)

+ (µ1
h∇(w − uI), p1

v,h) + (ρ′(w − uI)K,p1
v,h)

+ 1

τ
((w − uI), p1

ϕ,h) − (v0∇(w − uI), p1
ϕ,h) −

σ

ε
(W ′′

−
(uI))(w − uI), p1

µ,h) ≥ 0,

(54)

and this inequality holds for all w ∈ UI .

Remark 4.11. We use the finite element space V1
1 for the representation of uI .

5. The limit h→ 0

We next investigate the limit h → 0 for problem Ph. Let u⋆, ϕ⋆ denote a solution to P and uh, ϕh denote a
solution to Ph. Since uh, ϕh is a minimizer for J in the discrete setting, we have J(uh, ϕh) ≤ J(Phu⋆, Phϕ⋆) ≤
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CJ(u⋆, ϕ⋆) = Cj, where Ph denotes any H1-stable projection onto the discrete spaces. Thus

1

2
∥ϕMh − ϕd∥2 + α

2
(αI ∫

Ω

ε

2
∣∇uI,h∣2 + ε−1Wu(uI,h)dx

+ αV ∥uB,h∥2
L2(0,T ;Ruv ) + αB∥uV,h∥2

L2(0,T ;Rub)) ≤ Cj.
(55)

Note that the mean value of uI,h is fixed and thus by Poincarés inequality we have ∥uI,h∥H1(Ω) ≤ C(1+∥∇uI,h∥).
Thus from (55) we obtain the following bounds uniform in h:

∥uI,h∥H1(Ω) + ∥uB,h∥L2(0,T ;Ruv ) + ∥uV,h∥L2(0,T ;Rub) ≤ C.

Using Theorem 4.6 we further get the bounds

∥(vmh )Mm=1∥H1(Ω)n + ∥(µmh )Mm=1∥W 1,3(Ω) + ∥(ϕmh )Mm=1∥W 1,4(Ω) ≤ C.

Using Lax-Milgram’s theorem and the above bounds we further obtain bounds

∥(pmv,h)Mm=1∥H1(Ω)n + ∥(pmϕ,h)Mm=1∥H1(Ω) + ∥(pmµ,h)Mm=1∥H1(Ω) ≤ C

for the adjoint variables.
Now there exist u⋆I ∈H1(Ω), u⋆V ∈ L2(0, T ;Ruv), u⋆B ∈ L2(0, T ;Rub) such that

uI,h ⇀ u⋆I , uV,h ⇀ u⋆V , uB,h ⇀ u⋆B .

There further exist (vm,⋆)Mm=1 ∈ (H1(Ω)n)M , (ϕm,⋆)Mm=1 ∈W 1,4(Ω)M , and (µm,⋆)Mm=1 ∈W 1,3(Ω)M such that

vmh ⇀ vm,⋆, ϕmh ⇀ ϕm,⋆, µmh ⇀ µm,⋆ ∀m = 1, . . . ,M.

And there further exist (pm,⋆v )Mm=1 ∈H1(Ω)M , (pm,⋆ϕ )Mm=1 ∈H1(Ω)M , and (pm,⋆µ )Mm=1 ∈H1(Ω)M such that

pmv,h ⇀ pm,⋆v , pmϕ,h ⇀ pm,⋆ϕ , pmµ,h ⇀ pm,⋆µ ∀m = 1, . . . ,M.

Now let us proceed to the limit in the fully discrete optimality system. To this end we will especially show
the following strong convergence results

ϕmh → ϕm in H1(Ω),
µmh → µm in W 1,3(Ω),
vmh → vm in Hσ(Ω),
uI,h → uI in H1(Ω),

for m = 1, . . . ,M .

The limit h→ 0 in the primal equation
The convergence of (41) to (18) and of (38) to (15) follows directly from the proposed weak convergences
together with the strong convergence ϕmh → ϕm in L∞ obtained by compact Sobolev embedding. To obtain
strong convergence in H1(Ω) we argue as in the proof of Theorem 4.4.

Let B ∶H1(Ω)×H1(Ω) → R denote the coercive bilinear form B(u, v) = σε(∇u,∇v)+(u, v) and let Qhϕ
1 ∈ V1

1

denote the projection of ϕ1 onto V1
1 with respect to B fulfilling ∥Qhϕ1−ϕ1∥H1(Ω) → 0 for h→ 0, since ϕ1 ∈H2(Ω).
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Then it holds

∥ϕ1
h − ϕ1∥H1(Ω) ≤ ∥ϕ1

h −Qhϕ1∥H1(Ω) + ∥Qhϕ1 − ϕ1∥H1(Ω),

and

C∥ϕ1
h −Qhϕ1∥2

H1(Ω)

≤ B(ϕ1
h −Qhϕ1, ϕ1

h −Qhϕ1) = B(ϕ1
h − ϕ1, ϕ1

h −Qhϕ1)
≤∣(µ1

h − µ1, ϕ1
h −Qhϕ1)∣ + ∥ϕ1

h − ϕ1∥L2(Ω)∥ϕ1
h −Qhϕ1∥L2(Ω)

+ σ
ε
∣(W ′

+
(ϕ1

h) −W ′

+
(ϕ1), ϕ1

h −Qhϕ1)∣ + σ
ε
∣(W ′

−
(P 1ϕ0

h) −W ′

−
(ϕ0), ϕ1

h −Qhϕ1)∣

≤∥µ1
h − µ1∥L2(Ω)∥ϕ1

h −Qhϕ1∥L2(Ω) + ∥ϕ1
h − ϕ1∥L2(Ω)∥ϕ1

h −Qhϕ1∥L2(Ω)

+ σ
ε
∥W ′

+
(ϕ1

h) −W ′

+
(ϕ1)∥L5/3(Ω)∥ϕ1

h −Qhϕ1∥L5/2(Ω)

+ σ
ε
∥W ′

−
(P 1ϕ0

h) −W ′

−
(ϕ0)∥L5/3(Ω)∥ϕ1

h −Qhϕ1∥L5/2(Ω).

Using the Sobolev embedding H1(Ω) ↪ Lp(Ω), p ≤ 6 and dividing by ∥ϕ1
h −Qhϕ1∥H1(Ω) we obtain

C∥ϕ1
h −Qhϕ1∥H1(Ω) ≤∥µ1

h − µ1∥L2(Ω) + ∥ϕ1
h − ϕ1∥L2(Ω)

+ σ
ε
∥W ′

+
(ϕ1

h) −W ′

+
(ϕ1)∥L5/3(Ω) +

σ

ε
∥W ′

−
(P 1ϕ0

h) −W ′

−
(ϕ0)∥L5/3(Ω).

The first two terms on the right converge to zero by the compact embeddingH1(Ω) ↪ L2(Ω). Since ∣W ′

+
(ϕ1

h)∣5/3 ≤
C(1+∣ϕ1

h∣3)5/3 ∈ L5(Ω) ⊂ L1(Ω), by using Assumption (A3), the third term converges by Lebesgue’s generalized
convergence theorem [8, Thm. 3.25]. The same argument holds for the last term, where we additionally use the
stability of P 1 with respect to L5(Ω). The same arguments apply for the case m > 1.

The convergence of equation (40) to (17) and (37) to (14) is shown using the strong convergence vmh → vm in
L3(Ω) together with weak convergence ∇ϕm−1

h ⇀ ∇ϕm−1 in L2(Ω) yielding weak convergence of the transport

term vmh ∇ϕm−1
h in L6/5. For m = 1 v0∇ϕ0

h converges weakly in L2(Ω). Further, strong convergence µmh → µm in
H1(Ω) follows as above.

To show strong convergence in W 1,3 it is thus sufficient to show strong convergence for ∇µ1
h → ∇µ1 in L3(Ω).

We define Qhv ∈ V1
1 by

(∇(Qhv − v),∇wh) = 0 ∀wh ∈ V1
1 ,

(Qhv,1) = (v,1),

satisfying ∥Qhv∥W 1, 3
2 (Ω)

≤ C∥v∥
W 1, 3

2 (Ω)
, Lemma 4.2.
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We adapt the idea from Theorem 4.4 and proceed

C∥∇µ1
h −∇µ1∥L3(Ω)

≤ sup

v∈W1, 3
2 (Ω),(v,1)=0

∥v∥
W

1, 3
2 (Ω)

=1

(∇(µ1
h − µ1),∇v) = sup [(∇(µ1

h − µ1),∇Qhv) + (∇(µ1
h − µ1),∇(v −Qhv))]

≤ sup [(∇(µ1
h − µ1),∇Qhv) + (∇µ1,∇(Qhv − v))]

≤ C sup [∣τ−1(ϕ1
h − ϕ1,Qhv)∣ + ∣τ−1(P 1ϕ0

h − ϕ0,Qhv)∣ + ∣(v0∇ϕ0
h − v0∇ϕ0,Qhv)

+∣τ−1(ϕ1 − ϕ0,Qhv − v)∣ + ∣(v0∇ϕ0,Qhv − v)∣]

≤ C [∥ϕ1
h − ϕ1∥L2(Ω) + ∥P 1ϕ0

h − ϕ0∥L2(Ω)

+∥ϕ1 − ϕ0∥L2(Ω) sup ∥Qhv − v∥L2(Ω) + ∥v0∇ϕ0∥L2(Ω) sup ∥Qhv − v∥L2(Ω)]
+C sup ∣(v0∇Qhv,ϕ0

h − ϕ0)∣
≤ C [∥ϕ1

h − ϕ1∥L2(Ω) + ∥P 1ϕ0
h − ϕ0∥L2(Ω)

+∥ϕ1 − ϕ0∥L2(Ω) sup ∥Qhv − v∥L2(Ω) + ∥v0∇ϕ0∥L2(Ω) sup ∥Qhv − v∥L2(Ω)]
+C∥v0∥L∞(Ω)∥ϕ0

h − ϕ0∥L2(Ω).

Note that we used integration by parts to deal with the transport term. From the Hölder and Sobolev inequalities
it follows

∥Qhv − v∥2
L2(Ω) ≤ ∥Qhv − v∥L 3

2 (Ω)
∥Qhv − v∥L3(Ω).

The last term is bounded due to the fact, that ∥v∥
W 1, 3

2 (Ω)
≤ 1 and Qh is stable in W 1, 32 (Ω). Since ∥Qhv −

v∥
L

3
2 (Ω)

≤ Ch∥v∥
W 1, 3

2 (Ω)
we obtain ∥Qhv − v∥L2(Ω) → 0 for h → 0 and thus the strong convergence of ∇µh in

L3(Ω). Ifm > 1 we can use the strong convergence ϕm−1
h → ϕm−1 inH1(Ω) ↪ L6(Ω) together with ∥vmh ∥L6(Ω) ≤ C

to treat the transport term.

Next we consider the convergence of (39) to (16) and (36) to (13). Here the convergence (ηm−1
h Dvmh ∶

Dw) → (ηm−1Dvm ∶Dw) follows from the strong convergence ϕm−1
h → ϕm−1 in L∞(Ω) (by compact embedding

W 1,4(Ω) ↪ L∞(Ω)) and the weak convergence Dvmh ⇀Dvm in L2(Ω). The convergence of the trilinear form is
obtained by using the just shown strong convergence ∇µmh → ∇µm in L3(Ω) together with the weak convergence
of vmh ⇀ vm in L6(Ω).

Let us finally show strong convergence vmh → vm in H1(Ω)n for m = 1, . . . ,M Let B ∶ H0,σ,1 ×H0,σ,1 → R
denote the coercive bilinear form B(u, v) = 2(η1

hDu ∶ Dv) + (u, v). The coercivity of B follows from Korn’s
inequality. Let wh ∈Hσ,1 denote the Ritz projection of v1 in Hσ with boundary values γ(v1

h) ≡ Π(BBu1
B). Then

wh − v1 → 0 in H1(Ω)n. Since v1
h ⇀ v1 in H1(Ω)n we find wh − v1

h ⇀ 0 in H1(Ω)n, and wh − v1
h ∈ H0,σ,1. We

thus may estimate

∥v1
h − v1∥H1(Ω)n ≤ ∥v1

h −wh∥H1(Ω)n + ∥wh − v1∥H1(Ω)n .
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Now we proceed with

C∥v1
h −wh∥2

H1(Ω)n ≤ B(v1
h −wh, v1

h −wh) = B(v1
h, v

1
h −wh) −B(wh, v1

h −wh)

≤ (BV u1
V,h, v

1
h −wh) + (µ1

h∇ϕ0
h, v

1
h −wh) + (ρ0

hg, v
1
h −wh)

− a(ρ1
hv

0 + j1
h, v

1
h, v

1
h −wh) − τ−1 (

ρ1
h + ρ0

h

2
v1
h − ρ0

hv
0, v1

h −wh)

+ (v1
h, v

1
h −wh) − 2(η1

hDwh ∶D(v1
h −wh)) − (wh, v1

h −wh)
≤ ∥BV u1

V,h∥L2(Ω)∥v1
h −wh∥L2(Ω) + ∥µ1

h∇ϕ0
h∥L 3

2 (Ω)
∥v1
h −wh∥L3(Ω)

+ ∥ρ0
hg∥L2(Ω)n∥v1

h −wh∥L2(Ω)

+ ∣a(ρ1
hv

0 + j1
h, v

1
h, v

1
h −wh)∣

+ τ−1∥1

2
(ρ1
h + ρ0

h)v1
h − ρ0

hv
0∥L2(Ω)∥v1

h −wh∥L2(Ω)

+ ∥v1
h −wh∥2

L2(Ω) + ∣2(η1
hDwh ∶D(v1

h −wh))∣.

Now ∣(η1
hDw

1
h ∶ D(v1

h −wh))∣ → 0 for h → 0 since η1
hDwh → η1Dv1 in L2(Ω) and D(v1

h −wh) ⇀ 0 in L2(Ω), and
thus beside the trilinear form all terms directly vanish for h→ 0.

For the trilinear form we use the antisymmetry a(⋅, v1
h −wh, v1

h −wh) = 0 and proceed

∣a(ρ1
hv

0 + j1
h, v

1
h, v

1
h −wh)∣ = ∣a(ρ1

hv
0 + j1

h,wh, v
1
h −wh)∣

≤ ∣1
2
((ρ1

hv
0 + j1

h)∇wh, v1
h −wh)∣ + ∣1

2
((ρ1

hv
0 + j1

h)∇(v1
h −wh),wh)∣ .

We note the strong convergence ρ1
hv

0 + j1
h → ρ1v0 + j1 in L3(Ω) and for the first term we additionally use the

strong convergence of ∇wh → ∇v1 in L2(Ω) and the weak convergence v1
h −wh ⇀ 0 in L6(Ω) to observe that the

first term tends to zero. For the second term we proceed vice versa and use the strong convergence wh → v1 in
L2(Ω) and the weak convergence ∇(v1

h −wh) ⇀ 0 in L2(Ω) to observe that also the second term tends to zero
for h→ 0.

For m > 1 we use ρm−1
h → ρm−1 in L∞(Ω) to again obtain the strong convergence ρm−1

h vm−1
h + jm−1

h →
ρm−1vm−1 + jm−1 in L3(Ω).

The limit h→ 0 in the dual equation
The convergence of (46) and (47) to (26) and (27), i.e. the adjoint Navier–Stokes equation, is shown as in the
primal equation using the strong convergence of ϕmh in L∞(Ω) and µmh in W 1,3(Ω) to show convergence of the
trilinear form and of the diffusion term.

The convergence of (48) and (49) to (28) and (29) uses strong convergence of pm+1
v,h in L4(Ω) and of vm+1

h in

L6(Ω), where the additional regularity for vh is required.
The convergence of (50) and (51) to (30) and (31) also follows directly using the above shown strong con-

vergence of the primal variables. Especially for the term (η′ϕ̃Dvm+1
h ∶ Dpm+1

v,h ) we need the strong convergence

vm+1
h → vm+1 in H1(Ω).

The limit h→ 0 in the derivative w.r.t. the control
The convergence of (52) to (32) is shown using the strong convergence pmv,h in L2(Ω).

The convergence of (53) to (33) is shown using the various strong convergence results.
Finally we show the convergence of (54) to (35). Since J(uh, ϕh) → J(u⋆, ϕ⋆), we observe convergence

∥∇uI,h∥L2(Ω) → ∥∇u⋆I∥L2(Ω). Together with Poincaré’s inequality and the weak convergence uI,h ⇀ u⋆I in H1(Ω)
we observe strong convergence uI,h → u⋆I in H1(Ω). The convergence (54) to (35) now readily follows.
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6. Numerical examples

In this section we show numerical results for the optimal control problem Ph. The implementation is done in
C++ using the finite element toolbox FEniCS [47] together with the PETSc linear algebra backend [10] and the
linear solver MUMPS [9]. For the adaptation of the spatial meshes the toolbox ALBERTA [50] is used. The
minimization problem is solved by steepest descent method. If the initial phase field is not used as control, we
use the GNU scientific library [1], if the initial value is used as control we use a self written implementation
using the H1 regularity of the control u1.

Let us next define some data, that is used throughout all examples. We use ρ(ϕ) = ρ2−ρ1

2
ϕ + ρ1+ρ2

2
and

η(ϕ) = η2−η1

2
ϕ+ η1+η2

2
, where ρ1, ρ2 and η1, η2 depend on the actual example. For the free energy we always use

(9), with s = 1e4, and the mobility is set to b ≡ ε/500.

6.1. The adaptive concept

For the construction of the spatially adapted meshes we use the error indicators that are constructed in [23]
for the primal equation and use the series of meshes that we construct for the primal equation also for the dual
equation. This means that we use classical residual based error estimation to obtain suitable error indicators.
We note that following [18] the cell-wise residuals for the Cahn–Hilliard equation can be subsumed to the edge-
wise error indicators. We further note that from our numerical tests we obtain that the cell-wise residuals of
the momentum equation is much smaller than the edge-wise indicators, while it turns out to be very expensive
to evaluate. Thus we neglect this term. The final error indicator is the cell-wise sum of the jumps of the normal
derivatives of the phase field variable, the chemical potential and the velocity field over the cell boundary.
The final adaptation scheme for the primal equation is a Dörfler marking scheme based on this indicator, see
e.g. [20, 23].

For the Dörfler marking we set the largest cell volume to Vmax = 0.0003, while the smallest cell volume is set

to Vmin = 1
2
(πε

8
)2

which results in 8 triangles across the interface of thickness O(πε).
Concerning the temporal resolution, we stress that we did not discretize the control uV and uB with respect

to time, i.e. we use the variational discretization approach from [38]. Thus we can adapt the time step size
during the optimization to fulfill a CFL-condition without changing the actual control space. Thus we start

with a given large time step size τ and reduce this steps size whenever the CFL-condition maxT
∣ym∣T ∣τ

diam(T )
≤ 1 is

violated for any m = 1, . . . ,M by halven τ .

6.2. A rising bubble

In this example investigate the pure boundary control αV ≡ αI ≡ 0. Here we use uI = ϕ0 as given data that
we represent on a adapted mesh using the proposed adaptive concept.

We investigate the example of a rising bubble, compare [44] and use the parameters from the benchmark
paper [42], i.e. ρ1 = 1000, ρ2 = 100, η1 = 10, η2 = 1. The surface tension is 24.5 which due to our choice of free
energy corresponds to σ = 15.5972. The gravitational constant is g = (0,−0.981)t and the computational domain
is Ω = (0,1) × (0,1.5). The time interval is I = [0,1.0] and we start with a step size τ = 5e− 3, that is refined to
τ = 2.5e − 3 throughout the optimization.

The initial phase field is given by

ϕ0(x) =
⎧⎪⎪⎨⎪⎪⎩

sin((∥x −M1∥ − r)/ε) if ∣∥x −M1∥ − r∣/ε ≤ π/2,
sign(∥x −M1∥ − r) else,

(56)

with M1 = (0.5,0.75)t and r = 0.25. The desired phase field is given by the same expression but with M1 =
(0.5,0.5)t. Thus we aim to move a bubble to the bottom without changing its shape.
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Figure 1. The initial phase field ϕ0 (left), the desired phase field ϕd (middle) and the control
areas together with the zero-level lines of ϕ0 and ϕd (right) for the rising bubble example.
Note that each of the control areas contains 10 controls of the type f[m,ξ, c](x) that point
tangential to ∂Ω with overlapping support.

Concerning the ansatz functions for the operator BB we introduce the vector field

(f[m,ξ, c](x))i =
⎧⎪⎪⎨⎪⎪⎩

cos ((π/2)∥ξ−1(x −m)∥)2
if c ≡ i and ∥ξ−1(x −m)∥ ≤ 1,

0 else.

This describes an approximation to the Gaussian bell with local support. The center is given by m and the
diagonal matrix ξ describes the width of the bell in unit directions. We identify a scalar value for ξ with ξI,
where I denotes the identity matrix. The parameter c is the number of the component in which the vector field
f is non-zero. On the left and right boundary of Ω we provide 10 equidistantly distributed ansatz functions
f[mi, ξi, ci](x). Here ξi = 1.5/10 and ξi = 1.0/10 if mi is located on bottom or top. We always choose ci such
that the ansatz function is tangential to Ω.

We set α = 1e − 10 and ε = 0.04 and stop the optimization as soon as ∥∇J(u)∥U is decreased by a factor of
0.1.

In Figure 1 we present the initial phase field ϕ0, the desired phse field ϕd and the control areas together with
the zero-level lines of ϕ0 and ϕd.

The steepest descent method is able to reduce ∥∇J∥U from 6e − 2 to 4.6e − 2 in 67 iterations and stagnates
due to no further decrease in ∥∇J∥U . Mean while the functional J is reduced from 0.509 to 0.033. In Figure 2
we show the evolution of ϕ for the optimal control together with the magnitude of the velocity field.

In Figure 3 we show the evolution of the control action over time. We observe a rapid decay of the control
strength at the end of the time horizon, while the first peak corresponds to a strong control at the side walls in
the region above the bubble, that is rather inactive after this initial stage.

6.3. Reconstruction of the initial value

Finally we investigate an example of finding an initial phase field, such that after a given amount of time
without further control action a desired phase field is achieved. Here we apply only initial value control, i.e.
αV = αB = 0, and we use no-slip boundary conditions for the velocity field.
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Figure 2. The evolution of the optimally controlled phase field and velocity field at times
t = 0.25,0.5,0.75,1.0 (left to right) when control is only applied to the side walls and not at the
bottom and the top part of the boundary. The pictures show the magnitude of the velocity field
on the left and the phase field on the right. For t = 0.1 we additionally indicate the zero-level
line of ϕd by a black line. Note that the velocity field coincides with BBuB on the boundary.
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Figure 3. The evolution of the optimal control action over time, i.e. ∥u(t)∥ for the rising
bubble example.

Let us turn to the representation of uI . We initialize uI with a constant value uI = −0.8 and use a homoge-
neously refined initial mesh for its representation. We use this mesh for T1.

After each step of the minimization algorithm we use the jumps accross edges in normal direction of ∇uI
to construct a new grid for the representation of uI and interpolate the current control to the new grid. The
marking is evaluated based on a Dörfler approach.

The parameter for this example are given as ρ1 = 1000, ρ2 = 1, η1 = 10, η2 = 0.1, σ = 1.245 and g ≡ −0.981.
These are the parameters of the second benchmark from [42], where σ was rescaled due to our specific choice
of energy. We note that due to the large ratio in density, the bubble undergoes strong deformation during
rising. The optimization horizon again is I = [0,1.5], and Ω = (0,1)2. We set α = 0.2 and solve the optimization
problem for ε = 0.02.

We initialize the optimization with uI ≡ −0.8 and use a circle around M = (0.5,0.6) with radius r =
0.1763040551 as defined in (56) as desired shape. These values are used such that ∫Ω ϕd − uI dx = 0 is ful-
filled.

The optimization problem is solved using the VMPT method, proposed in [15]. It is an extension of the
projected gradient method to the Banach space setting. In our situation this is H1(Ω) ∩L∞(Ω).
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Figure 4. The optimal control uI (left) and the resulting distribution at the end of the time
interval (right), where the bubble is shown in gray. The black line indicates the zero level line
of the desired shape.

We stop the allover algorithm as soon as ∣(DJuI (⋅), v)∣ < 1e − 3, where v denotes the current normalized
search direction. In our example this is reached after 31 iterations, where J is reduced from 3.8e-1 to 1.9e-1,
and especially ∥ϕK − ϕd∥ is reduced from 0.43 to 0.16.

In Figure 4 we show the initial shape at the end of the optimization process, on the left and the corresponding
shape at the end of the optimization time interval together with the zero level line of the desired shape on the
right.

Remark 6.1. In first tests we used an energy for Wu that fulfills Assumptions (A1)–(A5) and the method of
steepest descent to solve the resulting optimization problem. There we only got very slow convergence of the
algorithm and the resulting optimal uI had much broader interfaces. So it seems that it is recommended to use
the non-smooth free energy as we propose here.
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