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In this paper, an elliptic optimal control problem with controls from H 1(Ω)which

have to satisfy standard box constraints is considered. Thus, Lagrange multipliers

associated with the box constraints are, in general, elements of H 1(Ω)? as long as

the lower and upper bound belong to H 1(Ω) as well. If these bounds possess less

regularity, the overall existence of a Lagrange multiplier is not even guaranteed.

In order to avoid the direct solution of a not necessarily available KKT-system, a

penalty method is suggested which �nds the minimizer of the control-constrained

problem. Its convergence properties are analyzed. Furthermore, some numerical

strategies for the computation of optimal solutions are suggested and illustrated.
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1 Introduction

In practice, optimal control applies to many areas e.g. �uid mechanics, microelectronics, and

medical engineering. From the mathematical point of view, control functions are demanded to be

chosen from a suitable function spaces in order to ensure the existence of optimal solutions, see

De los Reyes [2015], Hinze et al. [2009], Tröltzsch [2009] for an introduction to optimal control.

Usually, control functions are elements of L2(Ω) which is the space of all Lebesgue measurable

functions whose square is integrable. In several cases, however, L2
-regularity is not enough to

guarantee the existence of an optimal solution. Particularly, the set of feasible controls associated
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with optimal control problems with control switching or control complementarity constraints,

see Clason et al. [2017], Mehlitz and Wachsmuth [2016] and the references therein, is not weakly

sequentially closed as a subset of L2(Ω). In order to overcome this di�culty, a suitable choice

for the control space is the Sobolev space H 1(Ω) of all L2
-functions possessing weak derivatives

in L2(Ω). In the paper Deng et al. [2018], some �rst steps regarding optimal control in H 1(Ω)
were made. More precisely, optimal control problems with additional constraints on the control

function’s weak gradient were investigated.

In this paper, an optimal control problem of a linear elliptic partial di�erential equation is

studied. The control is chosen from H 1(Ω) and restricted by box constraints. This choice causes

optimal controls to be more advantageous when applied in practice since they are likely to

be smoother than their counterparts from L2(Ω). In order to ensure maximal generality, the

associated lower and upper bound for the control are chosen from L2(Ω). Since the optimal

control problem of interest is convex, its KKT-conditions are su�cient for optimality. However,

suitable constraint quali�cations do not generally hold at the feasible points of the program. As a

consequence, the KKT-conditions do not provide a reliable necessary criterion for optimality. In

order to solve the problem, a penalty method is suggested which bypasses this lack of regularity.

The remaining parts of the paper are organized as follows: In Section 2, the model problem is

introduced and the underlying necessary assumptions are motivated. Some notation used in this

manuscript is presented in Section 3. Section 4 is dedicated to the study of a penalization method

which can be used to compute the global minimizer of the model problem. First, a suitable

penalty term is introduced. Afterwards, the convergence properties of the proposed method

are analyzed. In Section 5, some issues w.r.t. optimality conditions and constraint quali�cations

for the model problem are discussed which motivate the suggested penalty method even more.

Finally, Section 6 deals with the computational treatment of the optimal control problem. Some

examples are implemented and the corresponding results are shown.

2 Problem statement and motivation

For a given bounded domain Ω ⊂ Rd
with boundary Γ satisfying the cone condition, see [Adams

and Fournier, 2003, Section 4], the following elliptic optimal control problem is considered:

1

2
‖y − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω) → min

y,u

−∇ · (C(x)∇y(x)) + a(x)y(x) = u(x) a.e. on Ω

®n · (C(x)∇y(x)) + d(x)y(x) = 0 a.e. on Γ

u(x) ≤ u(x) ≤ u(x) a.e. on Ω.

(OC)

It is worth mentioning that H 1(Ω) is the underlying space for state and control functions.

Furthermore, there appears a regularization term w.r.t. the control’s H 1
-norm in the objective

functional of (OC). Finally, the control function has to satisfy certain inequality constraints

demanding some upper and lower bounds to be valid. It has to be mentioned that the overall

theory of the paper stays correct in the absence of one of these bounds after doing some obvious

changes.

The precise assumptions on the problem data are stated below.
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Assumption 2.1. Let C ∈ L∞(Ω;Rd×d ) possess symmetric images in Rd×d on Ω and let the
subsequent condition of uniform ellipticity be satis�ed for some constant c0 > 0:

∀x ∈ Ω ∀ξ ∈ Rd
: ξ>C(x)ξ ≥ c0 |ξ |22 .

The data functions a ∈ L∞(Ω) and d ∈ L∞(Γ) are chosen such that ‖a‖L∞(Ω) + ‖d‖L∞(Γ) > 0 is
valid. The target state yd ∈ L2(Ω), a Tikhonov regularization parameter λ > 0, as well as functions
u, u ∈ L2(Ω) are �xed. Let u(x) ≤ u(x) be satis�ed for all x ∈ Ω. Finally, it is assumed that the set

Uad :=
{
u ∈ H 1(Ω)

�� u(x) ≤ u(x) ≤ u(x) f.a.a. x ∈ Ω
}

is nonempty.

Recall that the operator which assigns any source u to the (uniquely determined) weak

solution y of the state equation appearing in (OC) is linear and continuous as a mapping from

L2(Ω) to H 1(Ω), see [Evans, 2010, Section 6]. Since H 1(Ω) is continuously embedded into L2(Ω),
this solution operator is linear and continuous as a mapping from H 1(Ω) to H 1(Ω) as well.

Observe that in standard optimal control, i.e. in the setting where the control u is chosen

from L2(Ω) while the regularization term in the objective is given by the squared L2
-norm of u,

the existence of global minimizers of the associated optimal control problem is still guaranteed

if λ = 0 holds since Uad is bounded in L2(Ω). However, it is not generally bounded in H 1(Ω).

Example 2.2. For d = 1 and Ω := (0, 1), u ≡ 0 and u ≡ 1 are �xed. De�ne {uk }k ∈N ⊂ Uad as
stated below:

∀k ∈ N∀x ∈ Ω : uk (x) :=

{
1 − kx if x ∈

(
0, 1

k

)
0 otherwise.

Some calculations show

∀k ∈ N : ‖uk ‖2L2(Ω) =
1

3k , ‖∂xuk ‖2L2(Ω) = k .

Thus, ‖uk ‖H 1(Ω) ≥
√
k is obtained for any k ∈ N, i.e. {uk }k ∈N (and, thus,Uad) is not bounded w.r.t.

the H 1-norm.

A nearby way to overcome this shortcoming is the H 1
-regularization term in the objective of

(OC). It has to be mentioned that another suitable choice for the regularization term would be the

squaredL2
-norm of∇u sinceUad is bounded in L2(Ω) by de�nition. In any case, the regularization

parameter λ has to be positive in order to obtain the existence of a global minimizer of (OC) via

standard arguments (convexity and closedness of Uad are obvious).

Proposition 2.3. The optimal control problem (OC) possesses a unique optimal solution.

In standard control-constrained optimal control, it is well known that for su�ciently regular

upper and lower bounds, particularly in the case u, u ∈ H 1(Ω), the resulting optimal control ū is a

function fromH 1(Ω) as well, see e.g. Tröltzsch [2009]. However, ū may not be the optimal control

for the associated optimal control problem with controls from H 1(Ω) and H 1
-regularization

term as the following example from ODE control depicts.
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Example 2.4. Set d = 1 as well as Ω := (−1, 1) and consider the standard optimal control problem

1

2
‖y − yd‖2L2(Ω) + ‖u‖

2

L2(Ω) → min

y,u

y ∈ H 1(Ω), u ∈ L2(Ω)
∇y(x) = u(x) a.e. on Ω

y(−1) = 0

u(x) ≥ x a.e. on Ω.

(1)

Therein, the desired state yd ∈ L2(Ω) is given as stated below:

∀x ∈ Ω : yd(x) := 1

2
(max{0;x})2.

Set ū(x) := max{0;x} for all x ∈ Ω. One can easily check that the associated solution of the state
equation is given by ȳ = yd. Since ū is the projection (w.r.t. the L2-norm) of the constant 0-function
onto the set

{u ∈ L2(Ω) |u(x) ≥ x f.a.a. x ∈ Ω},
(ȳ, ū) must be the optimal solution of (1).

Next, the slightly modi�ed optimal control problem

1

2
‖y − yd‖2L2(Ω) + ‖u‖

2

H 1(Ω) → min

y,u

y ∈ H 1(Ω), u ∈ H 1(Ω)
∇y(x) = u(x) a.e. on Ω

y(−1) = 0

u(x) ≥ x a.e. on Ω.

(2)

will be investigated. Note that ū as given above is feasible to (2) as well and (due to ȳ = yd) produces
the objective value

‖ū‖2H 1(Ω) = ‖ū‖
2

L2(Ω) + ‖∂xū‖
2

L2(Ω) =

∫
1

0

x2
dx +

∫
1

0

1
2
dx = 4

3
.

For ε ∈ (0, 1], the function ūε (x) := max{ε ;x} = max{0;x − ε} + ε for all x ∈ Ω will be studied
next. First, ūε is feasible to (2) as well. The associated solution of the state equation is given by

∀x ∈ Ω : ȳε (x) = 1

2
(max{0;x − ε})2 + ε(x + 1).

Some calculations show

‖ȳε − yd‖2L2(Ω) = ε
2

∫
0

−1

(x + 1)2dx +

∫ ε

0

(
ε(x + 1) − 1

2
x2

)
2

dx

+

∫
1

ε

(
1

2
(x − ε)2 + ε(x + 1) − 1

2
x2

)
2

dx

= 1

3
ε2 +

[
1

3
ε2((ε + 1)3 − 1) − ε

(
1

4
ε4 + 1

3
ε3

)
+ 1

20
ε5

]
+

(
1

2
ε2 + ε

)
2 (1 − ε)

= 1

3
ε2 +

[
ε3 + ε4 + 1

3
ε5 − 1

4
ε5 − 1

3
ε4 + 1

20
ε5

]
+

[
ε2 − 3

4
ε4 − 1

4
ε5

]
= − 7

60
ε5 − 1

12
ε4 + ε3 + 4

3
ε2.
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Moreover,

‖ūε ‖2H 1(Ω) =

∫
1

−1

(max{ε ;x})2dx +

∫
1

ε
1
2
dx

=

∫ ε

−1

ε2
dx +

∫
1

ε
x2

dx + (1 − ε)

= ε2(1 + ε) + 1

3
(1 − ε3) + (1 − ε)

holds true. Now, one can check

1

2

ȳ0,01 − yd
2

L2(Ω) +
ū0,01

2

H 1(Ω) ≈ 1, 3236 < 4

3
= 1

2
‖ȳ − yd‖2L2(Ω) + ‖ū‖

2

H 1(Ω) ,

i.e. (ȳ , ū) is not the optimal solution of (2).

The above comments and examples indicate that the theoretical treatment of the optimal

control problem (OC) might be di�erent from standard techniques for control-constrained

optimal control problems in the Lebesgue space L2(Ω).

3 Notation

For any two vectors x ,y ∈ Rn
, x · y denotes their Euclidean inner product while |x |

2
represents

the Euclidean norm of x . Furthermore, En ∈ Rn×n
expresses the unit matrix in Rn×n

.

Let X be a Banach space with norm ‖·‖X . Then, X?
denotes the associated (topological)

dual space. The corresponding dual pairing is given by 〈·, ·〉X : X? × X → R. Recall that the

canonical embedding x 7→ 〈·,x〉X is an injective isometry from X to X??
by the theorem of

Hahn-Banach. If it is surjective as well, then X is called re�exive. Any re�exive Banach space X
satis�es X � X??

. It is well known that any Hilbert space is re�exive. A sequence {xk }k ∈N ⊂ X
converges to some x̄ ∈ X (xk → x̄ for short) if ‖xk − x̄ ‖X → 0 holds as k →∞. On the other

hand, {xk }k ∈N converges weakly to x̄ (xk ⇀ x̄ for short) if

〈
x?,xk

〉
X →

〈
x?, x̄

〉
X holds true

for all x? ∈ X?
as k →∞.

For a set A ⊂ X, the polar cone and annihilator of A are de�ned via

A◦ =
{
x? ∈ X?

��∀x ∈ A :

〈
x?,x

〉
X ≤ 0

}
, A⊥ =

{
x? ∈ X?

��∀x ∈ A :

〈
x?,x

〉
X = 0

}
.

Obviously,A⊥ = A◦∩(−A)◦ holds true. For a closed, convex coneK ⊂ X and x̄ ∈ K , the relations

cone(K − {x̄}) = K − lin x̄ , (K − {x̄})◦ = K◦ ∩ {x̄}⊥

are easily obtained. Here, lin x̄ = {αx̄ | α ∈ R} denotes the linear space induced by x̄ .

LetY be another Banach space. The setL [X,Y] represents the Banach space of all continuous

linear operators mapping fromX toY. For any operatorF ∈ L [X,Y],F? ∈ L
[
Y?,X?

]
denotes

its adjoint. An operator A ∈ L
[
X,X?

]
is said to be elliptic whenever there exists a constant

α > 0 such that the relation

∀x ∈ X : 〈A[x],x〉X ≥ α ‖x ‖2X

5



is valid. Note that any elliptic operator is an isomorphism, see [Werner, 1995, Lemma IV.5.3].

Supposing that X ⊂ Y is valid, X is called continuously embedded into Y if the identical

mapping E : X → Y is an element of L [X,Y]. This is expressed by X ↪→ Y and E is called the

associated natural embedding. Additionally, if E is compact, i.e. if the closed unit ball of X is

compact in Y, then X is said to be compactly embedded into Y.

A function J : X → Y is called Fréchet di�erentiable at x̄ ∈ X if there exists a continuous

linear operator J ′(x̄) ∈ L [X,Y], which satis�es

lim

‖d ‖X↘0

‖ J (x̄ + d) − J (x̄) − J ′(x̄)[d]‖Y
‖d ‖X

= 0.

In this case, J ′(x̄) is called the Fréchet derivative of J at x̄ . Suppose that x 7→ J ′(x) is a well-

de�ned mapping from X to L [X,Y] which is (Lipschitz) continuous in a neighborhood of x̄ .

Then, J is said to be (Lipschitz) continuously Fréchet di�erentiable at x̄ .

A mapping j : X → R is called coercive if for all sequences {xk }k ∈N ⊂ X which satisfy

‖xk ‖X → ∞, it holds j(xk ) → ∞ as k → ∞. The mapping j is called weakly lower semi-

continuous at x̄ ∈ X if for all sequences {xk }k ∈N ⊂ X satisfying xk ⇀ x̄ , the inequality

j(x̄) ≤ lim infk→∞ j(xk ) is valid. Note that any convex and continuous functional is weakly

lower semicontinuous, see [Tröltzsch, 2009, Theorem 2.12].

Let Ω ⊂ Rd
be a nonempty, bounded domain and B be a re�exive Banach space. For a real

number p ∈ [1,∞), Lp (Ω;B) denotes the common Lebesgue space of all (equivalence classes of)

Lebesgue measurable functionsu : Ω → B such that x 7→ ‖u(x)‖pB is integrable, while L∞(Ω;B)
is the Lebesgue space of all Lebesgue measurable functions u : Ω → B such that ‖u(·)‖B is

essentially bounded. The associated norm is given by

∀u ∈ Lp (Ω;B) : ‖u‖Lp (Ω;B) :=

(∫
Ω
‖u(x)‖pB dx

)
1/p

for all p ∈ [1,∞) and

∀u ∈ L∞(Ω;B) : ‖u‖L∞(Ω;B) := inf

N ⊂Ω, |N |=0

(
sup

x ∈Ω\N
‖u(x)‖B

)
for p = ∞, respectively. Here, |M | denotes the Lebesgue measure of the measurable set M ⊂ Ω.

For brevity, we write Lp (Ω) := Lp (Ω;R) for all p ∈ [1,∞]. The spaces Lp (Ω) are re�exive Banach

spaces for all p ∈ (1,∞). Particularly, L2(Ω) is a Hilbert space. The associated dual pairing is

given by

∀u,v ∈ L2(Ω) : 〈v,u〉L2(Ω) =

∫
Ω
u(x)v(x)dx .

Here, L2(Ω) and L2(Ω)? are identi�ed with the aid of Riesz’s representation theorem.

Let H 1(Ω) be the Sobolev space of all order one weakly di�erentiable functions from L2(Ω)
whose weak derivatives are elements of L2(Ω) as well. The space H 1(Ω) is equipped with the

following norm:

∀y ∈ H 1(Ω) : ‖y ‖H 1(Ω) :=
(
‖y ‖2L2(Ω) +

∑d
i=1

∂xiy2

L2(Ω)

)
1/2
.
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Obviously, H 1(Ω) ↪→ L2(Ω) holds true, and this embedding is compact as long as Ω satis�es at

least the so-called cone condition, see [Adams and Fournier, 2003, Sections 4 and 6]. Note that

H 1(Ω) is a Hilbert space. However, for the well-known reasons, H 1(Ω)? is not identi�ed with

H 1(Ω). Taking the considerations in [Adams and Fournier, 2003, Section 3] into account, for any

ξ ∈ H 1(Ω)?, there exist not necessarily uniquely determined functions ν0,ν1, . . . ,νd ∈ L2(Ω)
such that

∀y ∈ H 1(Ω) : 〈ξ ,y〉H 1(Ω) = 〈ν0,y〉L2(Ω) +
∑d

i=1

〈
νi , ∂xiy

〉
L2(Ω)

holds true.

4 A penalty method

The aim of this section is to state a penalty method which can be used to compute the uniquely

determined global minimizer of (OC) which exists due to Proposition 2.3. First, a suitable penalty

term is constructed in Section 4.1. The associated penalty method is described in Section 4.2. Its

convergence properties are analyzed as well.

4.1 On the penalty term

In this section, a single abstract inequality constraint of the form

v(x) ≤ 0 a.e. on Ω

is studied. Note that v is chosen from L2(Ω).
Introducing a mapping P : L2(Ω) → R given by

∀v ∈ L2(Ω) : P(v) := 1

2
‖max{0;v}‖2L2(Ω) =

1

2

∫
Ω

(
max{0;v(x)})2dx ,

some function v ∈ L2(Ω) satis�es the aforementioned inequality constraint if and only if

P(v) = 0 holds true. Particularly, P(v) > 0 is valid provided v is positive on a subset of Ω which

possesses positive measure.

In the upcoming lemmas, some properties of the mapping P are discussed. Although standard

arguments are used for their validation, proofs are included for the reader’s convenience.

Lemma 4.1. The mapping P is convex. Furthermore, if a : H 1(Ω) → L2(Ω) is a�ne, then the
composition P ◦ a : H 1(Ω) → R is convex as well.

Proof. The proof of the �rst assertion follows in an obvious way after noting that the function

s 7→ 1

2
max{0; s}2, which maps from R to R, is convex.

Noting that a satis�es a(αv1 + (1 − α)v2) = αa(v1) + (1 − α)a(v2) for any α ∈ [0, 1] and any

v1,v2 ∈ H 1(Ω), the second assertion is a consequence of the �rst one. �

Lemma 4.2. The mapping P is Lipschitz continuously Fréchet di�erentiable. For �xed v̄ ∈ L2(Ω),
the following formula characterizes the Fréchet derivative of P at v̄ :

∀d ∈ L2(Ω) : P ′(v̄)[d] =
∫
Ω

max{0; v̄(x)}d(x)dx .

7



Proof. Noting that the function s 7→ 1

2
max{0; s}2 which maps from R to R is continuously

di�erentiable with derivative s 7→ max{0; s}, the following estimate is derived from the mean

value theorem for any v̄ ∈ L2(Ω) and d ∈ L2(Ω):����∫
Ω

(
1

2
max{0; v̄(x) + d(x)}2 − 1

2
max{0; v̄(x)}2 −max{0; v̄(x)}d(x)

)
dx

����
≤

∫
Ω

�� 1

2
max{0; v̄(x) + d(x)}2 − 1

2
max{0; v̄(x)}2 −max{0; v̄(x)}d(x)

��
dx

≤
∫
Ω

sup

θ (x )∈[0,1]
|max{0; v̄(x) + θ (x)d(x)} −max{0; v̄(x)}| |d(x)|dx

≤
∫
Ω

sup

θ (x )∈[0,1]
|θ (x)d(x)| |d(x)|dx =

∫
Ω
|d(x)|2dx = ‖d ‖2L2(Ω) .

This yields

0 ≤ lim

‖d ‖L2(Ω)↘0

‖d ‖−1

L2(Ω)

����P(v̄ + d) − P(v̄) − ∫
Ω

max{0; v̄(x)}d(x)dx
���� ≤ lim

‖d ‖L2(Ω)↘0

‖d ‖L2(Ω) = 0.

Since ����∫
Ω

max{0; v̄(x)}d(x)dx
���� ≤ ∫

Ω
|v̄(x)| |d(x)|dx ≤ ‖v̄ ‖L2(Ω) ‖d ‖L2(Ω)

holds true for all d ∈ L2(Ω), P ′(v̄) := max{0; v̄(x)} is the Fréchet derivate of P at v̄ .

For another function w̄ ∈ L2(Ω), it is easily seen that

‖P ′(v̄) − P ′(w̄)‖2L2(Ω) =

∫
Ω
|max{0; v̄(x)} −max{0; w̄(x)}|2 dx

≤
∫
Ω
|v̄(x) − w̄(x)|2 dx = ‖v̄ − w̄ ‖2L2(Ω)

is valid. Thus, the function v 7→ max{0;v} which maps from L2(Ω) to L2(Ω) is Lipschitz

continuous, i.e. P is Lipschitz continuously Fréchet di�erentiable. �

4.2 Computing the global minimizer

For the computational treatment of (OC), a sequence of penalized surrogate problems will be

considered. Let {γk }k ∈N ⊂ R be a sequence of positive penalty parameters tending to ∞ as

k →∞ and investigate

1

2
‖y − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω) + γkP(u − u) + γkP(u − u) → min

y,u

−∇ · (C(x)∇y(x)) + a(x)y(x) = u(x) a.e. on Ω

®n · (C(x)∇y(x)) + d(x)y(x) = 0 a.e. on Γ.

(OC(γk ))

Therein, the penalty term P is the same which was studied in Section 4.1.

Noting that the penalty terms are convex, continuous, and bounded from below, see Lemmas

4.1 and 4.2, the state-reduced problem which corresponds to (OC(γk )) is unconstrained and

possesses a convex, continuous, as well as coercive objective functional. That is why the following

result is self-evident.
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Proposition 4.3. For any k ∈ N, (OC(γk )) possesses a unique optimal solution.

In the upcoming proposition, it is studied how the sequence of minimizers associated with

(OC(γk )) is related to the global minimizer of (OC).

Proposition 4.4. For any k ∈ N, let (ȳk , ūk ) ∈ H 1(Ω) ×H 1(Ω) be the unique optimal solution of
(OC(γk )). Then, {(ȳk , ūk )}k ∈N possesses a convergent subsequence (without relabeling) whose limit
point (ȳ , ū) ∈ H 1(Ω) × H 1(Ω) is the unique minimizer of (OC).

Proof. Due to Assumption 2.1, there exists a feasible point (ỹ , ũ) ∈ H 1(Ω)×H 1(Ω) of (OC). Since,

for any k ∈ N, this point is feasible to (OC(γk )) as well, the following estimate is obtained:

1

2
‖ȳk − yd‖2L2(Ω)+

λ
2
‖ūk ‖2H 1(Ω)+γkP(u−ūk )+γkP(ūk −u) ≤

1

2
‖ỹ − yd‖2L2(Ω)+

λ
2
‖ũ‖2H 1(Ω) . (3)

Especially,

∀k ∈ N : ‖ūk ‖2H 1(Ω) ≤
2

λ

(
1

2
‖ỹ − yd‖2L2(Ω) +

λ
2
‖ũ‖2H 1(Ω)

)
follows from the nonnegativity of P and, thus, {ūk }k ∈N is bounded in H 1(Ω) and, therefore,

possesses a weakly convergent subsequence (without relabeling) with weak limit ū ∈ H 1(Ω).
Due to the compactness of H 1(Ω) ↪→ L2(Ω), ūk → ū in L2(Ω) is valid. Recalling the continuity

properties of the solution operator associated with the given PDE, the associated states {ȳk }k ∈N
converge strongly in H 1(Ω) to some ȳ ∈ H 1(Ω) which solves the state equation for �xed source

u := ū.

Let E : H 1(Ω) → L2(Ω) be the natural embedding. De�ning a�ne as well as continuous

mappings a1,a2 : H 1(Ω) → L2(Ω) by

∀u ∈ H 1(Ω) : a1(u) := u − E[u], a2(u) := E[u] − u, (4)

a more precise formula of the penalty term in (OC(γk )) is given by γk (P ◦ a1)(u) + γk (P ◦ a2)(u).
Thus, the estimate (3) yields

0 ≤ lim

k→∞
(P ◦ ai )(ūk ) ≤ lim

k→∞
1

γk

(
1

2
‖ỹ − yd‖2L2(Ω) +

λ
2
‖ũ‖2H 1(Ω)

)
= 0

for i = 1, 2. Recalling that P ◦ ai is convex and continuous for i = 1, 2, see Lemmas 4.1 and 4.2, it

is weakly lower semicontinuous. This leads to

0 ≤ (P ◦ ai )(ū) ≤ lim inf

k→∞
(P ◦ ai )(ūk ) = 0,

i.e. (P ◦ ai )(ū) = 0 for i = 1, 2 holds true. This shows ū ∈ Uad, i.e. (ȳ, ū) is feasible to (OC).

For an arbitrary feasible point (y ,u) ∈ H 1(Ω) × H 1(Ω) of (OC), the estimate

1

2
‖ȳk − yd‖2L2(Ω) +

λ
2
‖ūk ‖2H 1(Ω) +γk (P ◦ a1)(ūk ) +γk (P ◦ a2)(ūk ) ≤ 1

2
‖y − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω)

is inherent since (y,u) is feasible to (OC(γk )) as well. Recalling that y 7→ ‖y − yd ‖2L2(Ω) and

u 7→ ‖u‖2H 1(Ω) as well as P ◦a1 and P ◦a2 are weakly lower semicontinuous functionals mapping
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from H 1(Ω) to R,

1

2
‖ȳ − yd‖2L2(Ω) +

λ
2
‖ū‖2H 1(Ω)

≤ lim inf

k→∞
1

2
‖ȳk − yd‖2L2(Ω) + lim inf

k→∞
λ
2
‖ūk ‖2H 1(Ω)

≤ lim inf

k→∞

(
1

2
‖ȳk − yd‖2L2(Ω) +

λ
2
‖ūk ‖2H 1(Ω)

)
≤ lim sup

k→∞

(
1

2
‖ȳk − yd‖2L2(Ω) +

λ
2
‖ūk ‖2H 1(Ω)

)
≤ lim sup

k→∞

(
1

2
‖ȳk − yd‖2L2(Ω) +

λ
2
‖ūk ‖2H 1(Ω) + γk (P ◦ a1)(ūk ) + γk (P ◦ a2)(ūk )

)
≤ 1

2
‖y − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω)

is derived. Consequently, (ȳ, ū) is the global minimizer of (OC).

Choosing y := ȳ and u := ū, the above estimate yields

lim

k→∞

(
1

2
‖ȳk − yd‖2L2(Ω) +

λ
2
‖ūk ‖2H 1(Ω)

)
= 1

2
‖ȳ − yd‖2L2(Ω) +

λ
2
‖ū‖2H 1(Ω) .

Noting that ȳk → ȳ holds in H 1(Ω), ‖ūk ‖H 1(Ω) → ‖ū‖H 1(Ω) is obtained. Combining this with

the weak convergence ūk ⇀ ū in H 1(Ω), the strong convergence ūk → ū in H 1(Ω) follows from

the fact that H 1(Ω) is a Hilbert space. This completes the proof. �

For any k ∈ N, the unique minimizer of (OC(γk )), which exists due to Proposition 4.3, can be

characterized by some necessary and su�cient optimality conditions.

Proposition 4.5. Fix k ∈ N. A feasible point (ȳk , ūk ) ∈ H 1(Ω) ×H 1(Ω) of (OC(γk )) is the unique
minimizer of this problem if and only if there are an adjoint state pk ∈ H 1(Ω) as well as functions
φk ,ψk ∈ L2(Ω) which solve the following system:

−∇ · (C(x)∇pk (x)) + a(x)pk (x) = ȳk (x) − yd(x) a.e. on Ω

®n · (C(x)∇pk (x)) + d(x)pk (x) = 0 a.e. on Γ

γk max{0; u − ūk } − φk = 0

γk max{0; ūk − u} −ψk = 0

λ 〈ūk ,v〉H 1(Ω) + 〈pk − φk +ψk ,v〉L2(Ω) = 0 for all v ∈ H 1(Ω).

(5)

Therein, the PDE has to be understood in the weak sense.

Proof. First, linear operators A,B ∈ L
[
H 1(Ω),H 1(Ω)?

]
will be introduced which allow an

abstract representation of the constraining PDE. Therefor, set

〈A[y],v〉H 1(Ω) :=

∫
Ω

(
C(x)∇y(x)

)
· ∇v(x)dx +

∫
Ω
a(x)y(x)v(x)dx +

∫
Γ
d(x)y(x)v(x)ds

〈B[u],v〉H 1(Ω) :=

∫
Ω
u(x)v(x)dx

(6)
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for arbitrary y ,u,v ∈ H 1(Ω). It can be easily checked that A is elliptic and self-adjoint due to

Assumption 2.1, see e.g. [Evans, 2010, Section 6]. Furthermore, B is self-adjoint as well. Since

the constraining PDE is interpreted in weak sense, it is equivalent to A[y] − B[u] = 0.

Thus, exploiting the a�ne and continuous functionsa1,a2 : H 1(Ω) → R de�ned in (4), problem

(OC(γk )) reads as

1

2
‖E[y] − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω) + γk (P ◦ a1)(u) + γk (P ◦ a2)(u) → min

y,u

A[y] − B[u] = 0.
(7)

Here, E : H 1(Ω) → L2(Ω) denotes the natural embedding again and is added for formal correct-

ness. Note that (7) is convex and possesses a continuously Fréchet di�erentiable objective, see

Lemmas 4.1 and 4.2. The surjectivity of A implies that the KKT-conditions associated with (7)

(and, thus, with (OC(γk ))) are necessary and su�cient optimality conditions, see Jahn [1996]. Ex-

ploiting the chain rule, see [Tröltzsch, 2009, Theorem 2.20], in order to compute the derivatives

of P ◦ a1 and P ◦ a2, these KKT conditions are equivalent to

E?
[
E[ȳk ] − yd

]
− A?[pk ] = 0 (8a)

λ 〈ūk , ·〉H 1(Ω) + γkE
?
[
−max{0; u − E[ūk ]} +max{0;E[ūk ] − u}

]
+ B?[pk ] = 0 (8b)

for some adjoint state pk ∈ H 1(Ω). Clearly, it holds〈
E?[w],v

〉
H 1(Ω) =

∫
Ω
w(x)v(x)dx

for any w ∈ L2(Ω) and v ∈ H 1(Ω). Thus, recalling that A is self-adjoint, (8a) is equivalent to the

weak formulation of the PDE which appears in the �rst two lines of (5). De�ning φk ,ψk ∈ L2(Ω)
as it is done in the third and fourth line of (5), (8b) equals the last line in (5) since B is self-adjoint.

This completes the proof. �

In order to obtain necessary optimality conditions for (OC), it is reasonable to take the limit

k →∞ in the optimality system (5) presented in Proposition 4.5. However, since the multiplier

sequence {ψk − φk }k ∈N ⊂ L2(Ω) associated with the control constraints is usually bounded in

H 1(Ω)? but not in L2(Ω), standard arguments for control constraints in L2(Ω) do not apply in

the present situation.

Remark 4.6. For any k ∈ N, let (ȳk , ūk ) ∈ H 1(Ω) ×H 1(Ω) be the unique minimizer of (OC(γk )),
and let pk ∈ H 1(Ω) as well as φk ,ψk ∈ L2(Ω) be the associated multipliers from Proposition 4.5.
Recalling Proposition 4.4, we can assume w.l.o.g. that ȳk → ȳ and ūk → ū hold true in H 1(Ω)
where (ȳ, ū) ∈ H 1(Ω) ×H 1(Ω) is the global minimizer of (OC). The continuity of the PDEs solution
operator implies that the sequence {pk }k ∈N converges to some point p ∈ H 1(Ω) which satis�es

−∇ · (C(x)∇p(x)) + a(x)p(x) = ȳ(x) − yd(x) a.e. on Ω

®n · (C(x)∇p(x)) + d(x)p(x) = 0 a.e. on Γ.

Thus, the last line in (5) can be used to infer that {ψk −φk }k ∈N ⊂ L2(Ω) converges in H 1(Ω)?. This,
however, does not mean that {φk }k ∈N and {ψk }k ∈N are bounded in L2(Ω). Especially, taking the
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limit k → ∞, it cannot be inferred that there exist standard Lagrange multipliers φ,ψ ∈ L2(Ω)
satisfying standard complementarity conditions in L2(Ω).

Note that the convergence of {ψk −φk }k ∈N in H 1(Ω)? to some ξ ∈ H 1(Ω)? is not enough to infer
that {ψk }k ∈N and {φk }k ∈N converge in H 1(Ω)? to the positive and negative part of ξ . In fact, the
positive and negative part of ξ are not necessarily elements of H 1(Ω)? again, cf. [Wachsmuth, 2016,
Appendix 2].

5 Discussion of optimality and regularity conditions

In spite of Remark 4.6, it is possible to derive KKT-type necessary and su�cient optimality

conditions for (OC) provided the upper and lower obstacle u and u are su�ciently regular.

Throughout this section, the following assumption will be standing.

Assumption 5.1. Let u, u ∈ H 1(Ω) hold true.
Using the operators de�ned in (6), the constraints of (OC) can be written in the compact form

A[y] − B[u] = 0

u − u ∈ H 1

+(Ω)
u − u ∈ H 1

+(Ω).
(9)

Here, H 1

+(Ω) represents the cone of almost everywhere nonnegative functions in H 1(Ω). In the

upcoming theorem, the KKT-conditions of (OC) are presented. By convexity, they provide a

su�cient optimality criterion.

Theorem 5.2. Let (ȳ , ū) ∈ H 1(Ω) ×H 1(Ω) be a feasible point of (OC) and assume that there are
a function p ∈ H 1(Ω) as well as φ,ψ ∈ H 1(Ω)? which solve the following system:

−∇ · (C(x)∇p(x)) + a(x)p(x) = ȳ(x) − yd(x) a.e. on Ω

®n · (C(x)∇p(x)) + d(x)p(x) = 0 a.e. on Γ

〈λū − φ +ψ ,v〉H 1(Ω) + 〈p,v〉L2(Ω) = 0 for all v ∈ H 1(Ω)
φ ≥ 0,

〈
φ, u − ū

〉
H 1(Ω) = 0

ψ ≥ 0, 〈ψ , ū − u〉H 1(Ω) = 0.

(10)

Therein, the PDE has to be understood in the weak sense, while φ ≥ 0 andψ ≥ 0 are de�ned via
duality:

∀ξ ∈ H 1(Ω)? : ξ ≥ 0 ⇐⇒ 〈ξ ,v〉H 1(Ω) ≥ 0 ∀v ∈ H 1

+(Ω).
Then, (ȳ, ū) is the global minimizer of (OC).

Proof. Clearly, the last two conditions in (10) are equivalent to −φ ∈ H 1

+(Ω)◦ ∩ {ū − u}⊥ as well

as −ψ ∈ H 1

+(Ω)◦ ∩ {u − ū}⊥, respectively. Thus, the system (10) can be written in the following

abstract way:

E?[E[ȳ] − yd] − A?[p] = 0

〈λū + (−φ) − (−ψ ), ·〉H 1(Ω) + B
?[p] = 0

−φ ∈ H 1

+(Ω)◦ ∩ {ū − u}⊥

−ψ ∈ H 1

+(Ω)◦ ∩ {u − ū}⊥.
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Here, E ∈ L
[
H 1(Ω),L2(Ω)

]
denotes the natural embedding while A,B ∈ L

[
H 1(Ω),H 1(Ω)?

]
are

de�ned in (6). The above conditions form the KKT-system of the convex program

1

2
‖E[y] − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω) → min

y,u

A[y] − B[u] = 0

u − u ∈ H 1

+(Ω)
u − u ∈ H 1

+(Ω)

(11)

evaluated at the feasible point (ȳ, ū). Following standard KKT-theory for convex problems, see

e.g. Jahn [1996], (ȳ , ū) is a minimizer of (11). However, since (11) and (OC) are equivalent, (ȳ , ū)
solves (OC). �

It is well known from the literature, see e.g. [Bonnans and Shapiro, 2000, Theorem 3.9], that

the optimal solution of (OC) satis�es the KKT-conditions (10) if an appropriate constraint quali-

�cation is valid. The fundamental constraint quali�cation for the investigation of optimization

problems in Banach spaces is Robinson’s constraint quali�cation, see Bonnans and Shapiro

[2000], Robinson [1976], Zowe and Kurcyusz [1979]. In the lemma below, the actual form of

Robinson’s constraint quali�cation for the abstract constraint system (9) is derived.

Lemma 5.3. Let (ȳ , ū) ∈ H 1(Ω) × H 1(Ω) be a feasible point of the constraint system (9). Then,
Robinson’s constraint quali�cation is valid at (ȳ, ū) if and only if the following condition holds:

lin{ū − u} + lin{u − ū} − H 1

+(Ω) = H 1(Ω).

Proof. Following the de�nition, see [Bonnans and Shapiro, 2000, Section 2.3.4], Robinson’s

constraint quali�cation is valid for (9) at (ȳ , ū) if and only if
A −B
O I
O −I


(
H 1(Ω)
H 1(Ω)

)
− ©«

{0}
H 1

+(Ω) − lin{ū − u}
H 1

+(Ω) − lin{u − ū}

ª®¬ = ©«
H 1(Ω)?
H 1(Ω)
H 1(Ω)

ª®¬
is valid. Here, I is the identical operator and O is an appropriate all-zero-operator. Noting that

A is an isomorphism, this is equivalent to[
I
−I

]
H 1(Ω) −

(
H 1

+(Ω) − lin{ū − u}
H 1

+(Ω) − lin{u − ū}

)
=

(
H 1(Ω)
H 1(Ω)

)
.

Applying [Mehlitz, 2017, Lemma 3.4], it is easily seen that this condition reduces to

−H 1

+(Ω) + lin{ū − u} − H 1

+(Ω) + lin{u − ū} = H 1(Ω).

SinceH 1

+(Ω) is a closed, convex cone,H 1

+(Ω)+H 1

+(Ω) = H 1

+(Ω) is valid. This yields the claim. �

In the setting d = 1, Robinson’s constraint quali�cation may hold under additional assump-

tions.
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Lemma 5.4. Assume that d = 1 holds true. Furthermore, suppose that there is ε > 0 such that
u(x) − u(x) ≥ ε is valid for almost all x ∈ Ω. Then, Robinson’s constraint quali�cation holds at
any feasible point of the constraint system (9).

Proof. Let (ȳ , ū) ∈ H 1(Ω) × H 1(Ω) be arbitrarily chosen. Due to Lemma 5.3, it has to be shown

that for anyv ∈ H 1(Ω), there exist α , β ∈ R andw ∈ H 1

+(Ω) such thatv = α(ū−u)+β(u−ū)−w
holds, in order to prove the validity of Robinson’s constraint quali�cation.

Due to d = 1, H 1(Ω) ↪→ L∞(Ω) holds true, see [Adams and Fournier, 2003, Theorem 4.12].

That is why there exists a constant M > 0 such that v(x) ≤ M is valid for all x ∈ Ω. De�ne

Ω1 := {x ∈ Ω | u(x) − ū(x) ≥ ε/2} and Ω2 := Ω \ Ω1. By assumption, ū(x) − u(x) ≥ ε/2 holds

for all x ∈ Ω2. As a consequence,

2M
ε (ū(x) − u(x)︸       ︷︷       ︸

≥0

) + 2M
ε (u(x) − ū(x)︸       ︷︷       ︸

≥0

) ≥
{

2M
ε (ū(x) − u(x)) ≥ M if x ∈ Ω2

2M
ε (u(x) − ū(x)) ≥ M if x ∈ Ω1

is obtained for all x ∈ Ω. Thus, choosing α = β = (2M)/ε , w := α(ū − u) + β(u − ū) −v belongs

to H 1

+(Ω). This completes the proof. �

Corollary 5.5. Let (ȳ, ū) ∈ H 1(Ω) × H 1(Ω) be a minimizer of (OC) and let the assumptions of
Lemma 5.4 be valid. Then, there exist a function p ∈ H 1(Ω) and multipliers φ,ψ ∈ H 1(Ω)? which
solve the KKT-system (10).

In the lemma below, some comments on the violation of Robinson’s constraint quali�cation

are presented.

Lemma 5.6. Let one of the following conditions be valid. Then, Robinson’s constraint quali�cation
is violated at all feasible points of (OC).

1. It holds d ≥ 2 and there is a nontrivial subdomain Ω′ ⊂ Ω such that the restrictions u|Ω′
and u|Ω′ are essentially bounded.

2. There is a nontrivial subdomain Ω′ ⊂ Ω such that the restrictions u|Ω′ and u|Ω′ coincide.

Proof. For the proof of the lemma’s assertion under validity of the �rst condition, it has to

be noted that due to d ≥ 2, there is a function y0 ∈ H 1

+(Rd ) which is not bounded at the

origin, see [Adams and Fournier, 2003, Examples 4.41, 4.43]. Furthermore, �x x̃ ∈ Ω′ and set

ṽ(x) := y0(x − x̃) for all x ∈ Ω. Then, ṽ ∈ H 1

+(Ω) is not bounded at x̃ . Supposing that Robinson’s

constraint quali�cation is valid at some feasible point (ȳ , ū) ∈ H 1(Ω) ×H 1(Ω) of (OC), there are

α , β ∈ R and w ∈ H 1

+(Ω) such that ṽ = α(ū − u) + β(u − ū) −w holds. Due to the postulated

assumptions, the restictions of ū,u, and u to Ω′ are essentially bounded. Due to the nonnegativity

of w , this yields the existence of M > 0 such that

0 ≤ ṽ(x) = α(ū(x) − u(x)) + β(u(x) − ū(x)) −w(x) ≤ M

holds for almost allx ∈ Ω′. Thus,ṽ is essentially bounded on Ω′. This, however, is a contradiction,

i.e. Robinson’s constraint quali�cation is violated.
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Now, let the second condition of the lemma be valid and �x a point (ȳ, ū) ∈ H 1(Ω) ×H 1(Ω)
which is feasible to (OC). Then, u(x) = ū(x) = u(x) holds for all x ∈ Ω′. This yields

lin{ū − u} + lin{ū − u} − H 1

+(Ω) ⊂ {v ∈ H 1(Ω) |v(x) ≤ 0 a.e. on Ω′} & H 1(Ω),

and by means of Lemma 5.3, Robinson’s constraint quali�cation is violated at (ȳ, ū). �

Clearly, the constraint system (9) is equivalent to

A[y] − B[u] = 0

u ∈ Uad.

Due to the surjectivity of A, Robinson’s constraint quali�cation is valid at all of its feasible

points. However, the resulting KKT-system is more abstract than (10). Particularly, there is only

one Lagrange multiplier ξ ∈ H 1(Ω)? which is associated with the constraint u ∈ Uad.

Theorem 5.7. Let (ȳ , ū) ∈ H 1(Ω) ×H 1(Ω) be a feasible point of (OC). Then, (ȳ , ū) is a minimizer
of (OC) if and only if there are a function p ∈ H 1(Ω) as well as ξ ∈ H 1(Ω)? which solve the
following system:

−∇ · (C(x)∇p(x)) + a(x)p(x) = ȳ(x) − yd(x) a.e. on Ω

®n · (C(x)∇p(x)) + d(x)p(x) = 0 a.e. on Γ

〈λū + ξ ,v〉H 1(Ω) + 〈p,v〉L2(Ω) = 0 for all v ∈ H 1(Ω)
〈ξ ,u − ū〉H 1(Ω) ≤ 0 for all u ∈ Uad.

(12)

Therein, the PDE has to be understood in the weak sense.

Remark 5.8. As it has been emphasized in Remark 4.6, the Lagrange multiplier ξ ∈ H 1(Ω)? which
appears in the necessary optimality conditions provided in Theorem 5.7 cannot be decomposed into
a positive and a negative part which are still elements of H 1(Ω)? in general. This decomposition
trick, however, works for standard box constraints in L2(Ω), see e.g. [Tröltzsch, 2009, Theorem 2.29].
Clearly, if there exist multipliers p ∈ H 1(Ω) and φ,ψ ∈ H 1(Ω)? which solve the system (10), then p
and ξ := ψ − φ solve the system (12).

Obviously, the situation is far more comfortable when Uad is de�ned w.l.o.g. only via a lower

obstacle. Combining ideas from the proofs of the above result, the validity of the upcoming

result is easily veri�ed.

Corollary 5.9. Consider the optimal control problem (OC) in the absence of the upper bound u.
Let (ȳ, ū) ∈ H 1(Ω) × H 1(Ω) be feasible to (OC). Then, (ȳ, ū) is a minimizer of (OC) if and only if
there exist a function p ∈ H 1(Ω) and a multiplier φ ∈ H 1(Ω)? which solve the following system:

−∇ · (C(x)∇p(x)) + a(x)p(x) = ȳ(x) − yd(x) a.e. on Ω

®n · (C(x)∇p(x)) + d(x)p(x) = 0 a.e. on Γ

〈λū − φ,v〉H 1(Ω) + 〈p,v〉L2(Ω) = 0 for all v ∈ H 1(Ω)
φ ≥ 0,

〈
φ, u − ū

〉
H 1(Ω) = 0.

Therein, the PDE has to be understood in the weak sense.
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6 Numerical treatment

This section deals with the computational treatment of a sequence of the penalized surrogate

problems (OC(γk )). The optimality system in function spaces will be discretized and the resulting

nonlinear system will be solved by Newton’s method. A simple pathfollowing algorithm will

be used to implement the increasing of the penalty parameter. Finally, a number of numerical

experiments will be performed.

6.1 Discrete optimality system

For simplicity, let d = 0 be �xed in the boundary condition of the PDE. Then, the penalized

surrogate problem of interest is given by

1

2
‖y − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω) +

γk
2


max{0; u − u}

2

L2(Ω)

+
γk
2


max{0;u − u}

2

L2(Ω) → min

y,u

−∇ · (C(x)∇y(x)) + a(x)y(x) = u(x) a.e. on Ω

®n · (C(x)∇y(x)) = 0 a.e. on Γ.

(13)

The optimality conditions for (13) have been already derived in Proposition 4.5. Thus, in order

to solve the optimal control problem (13), the following system must be solved where γk is �xed:

−∇ · (C(x)∇p(x)) + a(x)p(x) = ȳ(x) − yd(x) a.e. on Ω

®n · (C(x)∇p(x)) = 0 a.e. on Γ

γk max{0; u − ū} − φ = 0

γk max{0; ū − u} −ψ = 0

λ 〈ū,v〉H 1(Ω) + 〈p − φ +ψ ,v〉L2(Ω) = 0 for all v ∈ H 1(Ω).

(14)

By Proposition 4.5 this is not only a necessary but also a su�cient condition for a feasible point

(ȳ, ū) ∈ H 1(Ω) ×H 1(Ω) of the optimal control problem (13) to be a minimizer. Here, p ∈ H 1(Ω)
denotes the adjoint state, while φ,ψ ∈ L2(Ω) are arti�cial multipliers.

The next step is to discretize the KKT-system. Discretizing the in�nite-dimensional optimality

conditions is referred to the "�rst-optimize-then-discretize approach" or "indirect method".

In preparation for that step, the system must be tranferred into its weak formulation. The

�rst and second lines of the optimality system (14) are still in a strong formulation of a PDE

with a Neumann (or second-type) boundary condition. After multiplying with test functions

v ∈ V := H 1(Ω), integrating over Ω, and applying Green’s formula, the boundary condition can

be eliminated and the weak formulation of the PDE is obtained. Replacing φ andψ , respectively,

by their de�nitions, and together with the state equation, the following system of PDEs in weak

formulation is obtained:

〈C∇p,∇v〉L2(Ω) + 〈ap,v〉L2(Ω) − 〈ȳ − yd,v〉L2(Ω) = 0 for all v ∈ H 1(Ω),
λ 〈ū,v〉H 1(Ω) +

〈
p − γk max{0; u − ū} + γk max{0; ū − u},v

〉
L2(Ω) = 0 for all v ∈ H 1(Ω),

〈C∇ȳ ,∇v〉L2(Ω) + 〈aȳ ,v〉L2(Ω) − 〈ū,v〉L2(Ω) = 0 for all v ∈ H 1(Ω).

16



Note that due to the appearence of the H 1
-pairing, the second equation is also a PDE for the

control. Note further that all remaining functions are from H 1(Ω), except the data functions u,

u, and C, a, as well as yd, which come from appropriate Lebesgue spaces in general. Later, this

fact makes it necessary to use two di�erent types of �nite element ansatz functions.

One advantage of the chosen "indirect method" is that one can use the linearity of the dual

pairings to split them into easier to handle "atomic" parts. For instance,

〈ȳ − yd,v〉L2(Ω) = 〈ȳ,v〉L2(Ω) − 〈yd,v〉L2(Ω) ,

and from the second equation one obtains

λ 〈ū,v〉H 1(Ω) = λ 〈ū,v〉L2(Ω) + λ 〈∇ū,∇v〉L2(Ω;Rd ) .

The reader familiar with the �nite element method immediately recognizes the basic integrals

appearing in the FEM. After discretizing Ω by a suitable tessellation Ω∆, replacing the test space

H 1(Ω) by a �nite dimensional subspace Vh , and discretizing the functions u, y , p, u, u, and yd

by suitable discrete approximations ®u, ®y , ®p, ®u,
®u, and ®yd, one obtains the following discretized

optimality system:

−(K(C) +M1(a))®p +M1(1)®y −M01®yd = 0

λ (M1(1) + K(Ed )) ®u − γkM01

(
max

{
0; ®u − E10®u

})
+γkM01

(
max

{
0;E10®u − ®u

})
+M1(1)®p = 0

−(K(C) +M1(a))®y +M1(1)®u = 0

(15)

Note that the sti�ness matrices depend on the coe�cient functions C and Ed. Furthermore, the

discrete system contains three di�erent mass matrices: M1(a) is associated with the coe�cient

function a,M1(1) comes from the dual pairing 〈vh ,wh〉L2(Ω), wherevh ,wh ∈ H 1(Ω), and the mass

matrix M01 comes from the discretization of the dual pairing 〈uh ,vh〉L2(Ω), where vh ∈ H 1(Ω)
but uh ∈ L2(Ω). Here, they will be calculated in the chosen �nite element spaces P1(Ω∆) and

P0(Ω∆) (piecewise a�ne and pieceweise constant elements), respectively. The matrices M01

and E10 represent the relationship between the di�erent elements evaluated at grid nodes and

barycenters of the elements in the mixed �nite element systems.

The matrix E10 represents the mapping E10 : P1(Ω∆) → P0(Ω∆). It is the discrete analogue of

the formal embedding operator E : H 1(Ω) → L2(Ω). Its use at this point results from practical

considerations: From the numerical point of view, it is much easier to bring the control from its

H 1
-representation into an L2

-representation, and then to perform, for instance, the operation

E10®u − ®u. It is now a subtraction operation for vectors with the same length, and then easily

applied in the max-function. To the contrary, u(x) − u(x) should be performed pointwise on

every element on the tessellation of Ω and then applied in the max-function pointwise. For an

introduction to the problem of projections w.r.t. piecewise constant and a�ne functions, the

paper Hinze [2005] may be a good start.

The detailed execution of a similar discretization strategy is described in [Deng et al., 2018,

Section 7.1].
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To perform the numerical experiments in the next section, the object oriented Matlab class

library OOPDE, see Prüfert [2015], is used. It provides tools to compute all matrices appearing

in the discrete optimality system in an easy way as well as methods implementing Newton’s

method to solve nonlinear systems of equations.

6.2 Algorithm and program

In the last section, the solution process for the optimality system (15) w.r.t. �xed parameter γk
was described. However, the choice of a suitable value for γk is not clear, and hence, a sequence

of problems must be considered, where γk →∞ for k →∞. To solve the problem numerically,

a simple path-following algorithm is used. The following pseudo-code Algorithm 1 describes

the discrete version of the algorithm, but this conceptual algorithm is also valid to solve the

problem in function spaces.

Algorithm 1 Conceptional algorithm

S0 Let be {γk }k ∈N a sequence with γk →∞ as k →∞. Let a tolerance tol > 0 be given. Choose

®uo arbitrarily. Compute ®y0 as a solution of the discretized state equation with source ®u0.

Compute ®p0 as a solution of the discretized adjoint equation with source E10®y0 − ®yd. Set

k = 1.

S1 Solve the discretized KKT-system (15) for �xed γk by (damped) Newton’s method with

starting point (®yk−1, ®uk−1, ®pk−1). Let (®yk , ®uk , ®pk ) be the associated solution.

S2 If ‖®uk − ®uk−1‖M < tol, then accept ®uk as the discrete optimal control. Otherwise, set k = k + 1

and go to S1.

It is worth mentioning that although the initial value ®u0 for the discretized control can be

chosen arbitrarily, it is better to select it out of the feasible range ®u ≤ ®u ≤ ®u. For example, ®u0

can be the mean of ®u and
®u. Note that the norm ‖·‖M in the stopping criterion can be every

vector norm. However, an adequate choice may be the Euclidean norm weighted by the mass

matrix M1(1), or weighted by K(Ed ) +M1(1), which can be seen as discrete counterparts of the

L2
- and H 1

-norms, respectively.

Note further that in the absence of control constraints or in the case of a unilateral constraint,

one can set u = −∞ and/or u = ∞. In such cases, max

{
0;E10®u − ®u

}
and/or max

{
0; ®u − E10®u

}
,

respectively, are all-zero vectors. In the absence of both control constraints, the KKT-system

becomes linear. However, it can be still solved trivially by Newton’s method, and Newton’s

method will converge after one iteration. A path-following is not necessary in this case. However,

the program will detect such situations and act accordingly.

Note that the function s 7→ max{0; s} is not di�erentiable at s = 0, but such situations may

be rare in numerical computations. In the code, the de�nition

∂s max{0; s} :=


0 if s < 0

1

2
if s = 0

1 if s > 0
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is used. Clearly, it can be seen as a single-valued selection of the subdi�erential map associated

with the convex function s 7→ max{0; s}.
To overcome problems arising from the nonsmoothness of the max-function, the use of a

smoothed version of the max-function, see for instance Neitzel et al. [2011], could be taken into

account as well.

6.3 Numerical experiments

In this section, some numerical experiments for solving the optimal control problem are pre-

sented. Fix d = 2 and Ω := (0, 1)2. The maximal mesh width for the discretization of the domain

is chosen as h = 0.025. For simplicity, the coe�cient functions C ≡ E2 and a ≡ 1 are chosen to

be constants. The desired state yd ∈ L2(Ω) is given by

∀(x1,x2) ∈ Ω : yd(x1,x2) :=

{
x1 sin(2πx1) + 3 cos(2πx2) + 2x2 if x1 ≤ 1

2

x1 sin(2πx1) + 3 cos(2πx2) + 2x2 − 2 if x1 >
1

2
.

Obviously, this function possesses discontinuities. However, since it is an L2
-function, it can be

discretized by piecewise constant �nite elements, see Figure 1.

Figure 1: Nonsmooth, discontinuous desired state yd, discretized as an L2
-function by piecewise

constant basis functions.

The Tikhonov regularization parameter for the H 1
-norm of the control is �xed to λ := 10

−6
.

In Algorithm 1, the sequence {γk }k ∈N of penalty parameters is initialized with γ0 = 0.01 and

γk := 2γk−1 is given recursively for all k ∈ N.

(1) In the �rst experiment, a problem without constraints for the control is considered, i.e.

u = −∞ and u = ∞. Since the penalty terms disappear, the equation system (15) becomes linear,

and after only one step, the solutions for control, state, and adjoint, depicted in Figure 2 are

obtained.

19



Figure 2: Solutions with unconstrained control, u = −∞ and u = ∞.

(2) In the second experiment, the lower bound u = −2 and the upper bound u = 5 are added.

All other settings remain unchanged.

Figure 3: Solutions with constrained control, u = −2 and u = 5.

The solutions in Figure 3 are demonstrative. Due to the small Tikhonov regularization

parameter for the control, the solution of the control is rather steep. As the parameter grows,

the solution of the control becomes smoother, compare with Figure 6.

(3) In the third experiment, only a lower bound for the control is given by u = 0, i.e. u = ∞
is �xed. This means the control is restricted to be nonnegative. The other settings remain

unchanged. The obtained results are shown in Figure 4.

Figure 4: Solutions with nonnegative control, u = 0 and u = ∞.

(4) In the fourth experiment, only an upper bound for the control is given by u = 0, i.e. the

control is considered to be nonpositive. Particularly, u = −∞ is �xed. The other settings remain

unchanged further on. Figure 5 illustrates the obtained results.
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Figure 5: Solutions with nonpositive control, u = −∞ and u = 0.

6.4 Perspectives of regularization

It is already known that the H 1
-regularization term ensures that there exists a unique optimal

solution for the optimal control problem (OC). Recall that the squared H 1
-norm of the control u

can be considered as the sum of the squared L2
-norms of u and its derivative ∇u. Let λu and

λdu be two di�erent Tikhonov regularization parameters for the L2
-norms for the control and

its derivative, respectively. The new penalized surrogate problem becomes

1

2
‖y − yd‖2L2(Ω) +

λu
2
‖u‖2L2(Ω) +

λ
du
2
‖∇u‖2L2(Ω;Rd )

+
γk
2


max{0; u − u}

2

L2(Ω) +
γk
2


max{0;u − u}

2

L2(Ω) → min

y,u

−∇ · (C(x)∇y(x)) + a(x)y(x) = u(x) a.e. on Ω

®n · (C(x)∇y(x)) = 0 a.e. on Γ.

(16)

It already has been mentioned in Section 2 that a regularization term of the L2
-norm w.r.t.

the derivative of the control is enough to guarantee the existence of a global minimizer of the

optimal control problem. This situation is covered by the model program (16) choosing λu = 0

and λdu > 0. Figure 6 shows some results for control-constrained optimization where λu = 0

and λdu = 10
−5

are chosen.

Figure 6: Solutions with constrained control, u = −2 and u = 5, Tikhonov regularization

parameters λu = 0 and λdu = 10
−5

for the squared L2
-norm of u and ∇u, respectively.

In order to clarify, which of these two L2
-norms has more in�uence on the actual solutions,

additional experiments are implemented. First, setting λu = 10
−5

and λdu = 10
−6

, the resulting

solutions with unconstrained control are computed and illustrated in Figure 7.
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Figure 7: Solutions with unconstrained control, u = −∞ and u = ∞, Tikhonov regulariza-

tion parameters λu = 10
−5

and λdu = 10
−6

for the squared L2
-norms of u and ∇u,

respectively.

In comparison with Figure 2, the solutions hardly change. Next, changing the parameters to

λu = 10
−6

and λdu = 10
−5

, one obtains the solutions shown in Figure 8.

Figure 8: Solutions with unconstrained control u = −∞ and u = ∞, Tikhonov regularization pa-

rameters λu = 10
−6

and λdu = 10
−5

for the squared L2
-norms of u and ∇u, respectively.

Obviously, the regularization parameter λdu associated with the norm of the control’s weak

gradient has more in�uence on getting solutions for the optimal control problem than λu .

Particularly, the control with less slope is favoured to be chosen than others.
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