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INTRINSIC FORMULATION OF KKT CONDITIONS AND1

CONSTRAINT QUALIFICATIONS ON SMOOTH MANIFOLDS∗2

RONNY BERGMANN† AND ROLAND HERZOG†3

Abstract. Karush-Kuhn-Tucker (KKT) conditions for equality and inequality constrained opti-4
mization problems on smooth manifolds are formulated. Under the Guignard constraint qualification,5
local minimizers are shown to admit Lagrange multipliers. The linear independence, Mangasarian–6
Fromovitz, and Abadie constraint qualifications are also formulated, and the chain “LICQ implies7
MFCQ implies ACQ implies GCQ” is proved. Moreover, classical connections between these con-8
straint qualifications and the set of Lagrange multipliers are established, which parallel the results in9
Euclidean space. The constrained Riemannian center of mass on the sphere serves as an illustrating10
numerical example.11

Key words. nonlinear optimization, smooth manifolds, KKT conditions, constraint qualifica-12
tions13
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1. Introduction. We consider constrained, nonlinear optimization problems15

(1.1)


Minimize f(p), p ∈M,

s.t. g(p) ≤ 0,

and h(p) = 0,

16

where M is a smooth manifold. The objective f : M → R and the constraint func-17

tions g : M → Rm and h : M → Rq are assumed to be functions of class C1. The18

main contribution of this paper is the development of first-order necessary optimality19

conditions in Karush-Kuhn-Tucker (KKT) form, well known when M = Rn, under20

appropriate constraint qualifications (CQs). Specifically, we introduce and discuss21

analogues of the linear independence, Mangasarian–Fromovitz, Abadie and Guignard22

CQ, abbreviated as LICQ, MFCQ, ACQ and GCQ, respectively; see for instance23

Solodov, 2010, Peterson, 1973 or Bazaraa, Sherali, Shetty, 2006, Ch. 5.24

It is well known that KKT conditions are of paramount importance in nonlin-25

ear programming, both for theory and numerical algorithms. We refer the reader to26

Kjeldsen, 2000 for an account of the history of KKT condition in the Euclidean setting27

M = Rn. A variety of programming problems in numerous applications, however,28

are naturally given in a manifold setting. Well-known examples for smooth manifolds29

include spheres, tori, the general linear group GL(n) of non-singular matrices, the30

group of special orthogonal (rotation) matrices SO(n), the Grassmannian manifold31
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2 R. BERGMANN, AND R. HERZOG

of k-dimensional subspaces of a given vector space, and the orthogonal Stiefel man-32

ifold of orthonormal rectangular matrices of a certain size. We refer the reader to33

Absil, Mahony, Sepulchre, 2008 for an overview and specific examples. Recently op-34

timization on manifolds has gained interest e.g., in image processing, where methods35

like the cyclic proximal point algorithm by Bačák, 2014, half-quadratic minimiza-36

tion by Bergmann, Chan, et al., 2016, and the parallel Douglas-Rachford algorithm37

by Bergmann, Persch, Steidl, 2016 have been introduced. They were then applied to38

variational models from imaging, i.e., optimization problems of the form (1.1), where39

the manifold is given by the power manifold MN with N being the number of data40

items or pixel. We emphasize that all of the above consider unconstrained problems41

on manifolds.42

In principle, inequality and equality constraints in (1.1) might be taken care of43

by considering a suitable submanifold of M (with boundary). This is much like in44

the caseM = Rn, where one may choose not to include some of the constraints in the45

Lagrangian but rather treat them as abstract constraints. Often, however, there may46

be good reasons to consider constraints explicitly, one of them being that Lagrange47

multipliers carry sensitivity information for the optimal value function, although this48

is not addressed in the present paper.49

To the best of our knowledge, a systematic discussion of constraint qualifica-50

tions and KKT conditions for (1.1) is not available in the literature. We are aware51

of Udrişte, 1988 where KKT conditions are derived for convex inequality constrained52

problems and under a Slater constraint qualification on a complete Riemannian man-53

ifold. The work closest to ours is Yang, Zhang, Song, 2014, where KKT and also54

second-order optimality conditions are derived for (1.1) in the setting of a smooth55

Riemannian manifold, and under the assumption of LICQ. Other constraint qualifi-56

cations are not considered. We also mention Ledyaev, Zhu, 2007 where a framework57

for generalized derivatives of non-smooth functions on smooth Riemannian manifolds58

is developed and Fritz-John type optimality conditions are derived as an application.59

The novelty of the present paper is the formulation of analogues for a range of60

constraint qualifications (LICQ, MFCQ, ACQ, and GCQ) in the smooth manifold61

setting. We establish the classical “LICQ implies MFCQ implies ACQ implies GCQ”62

and prove that KKT conditions are necessary optimality conditions under any of63

these CQs. We also show that the classical connections between these constraint64

qualifications and the set of Lagrange multipliers continue to hold, e.g., Lagrange65

multipliers are generically unique if and only if LICQ holds. Finally, our work shows66

that the smooth structure on a manifold is a framework sufficient for the purpose67

of first-order optimality conditions. In particular, we do not need to introduce a68

Riemannian metric as in Yang, Zhang, Song, 2014.69

We wish to point out that optimality conditions can also be derived by considering70

M to be embedded in a suitable ambient Euclidean space RN . This approach requires,71

however, to formulate additional, nonlinear constraints in order to ensure that only72

points in M are considered feasible. Another drawback of such an approach is that73

the number of variables grows since N is larger than the manifold dimension. In74

contrast to the embedding approach, we formulate KKT conditions and appropriate75

constraint qualifications (CQs) using intrinsic concepts on the manifold M. This76

requires, in particular, the generalization of the notions of tangent and linearizing77

cones to the smooth manifold setting. The intrinsic point of view is also the basis78
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INTRINSIC KKT CONDITIONS AND CQS ON SMOOTH MANIFOLDS 3

of many optimization approaches for problems on manifolds; see for instance Absil,79

Mahony, Sepulchre, 2008; Absil, Baker, Gallivan, 2007; Boumal, 2015.80

The material is organized as follows. In section 2 we review the necessary back-81

ground material on smooth manifolds. Our main results are given in section 3, where82

KKT conditions are formulated and shown to hold for local minimizer under the Guig-83

nard constraint qualifications. We also formulate further constraint qualifications84

(CQs) and establish “LICQ implies MFCQ implies ACQ implies GCQ”. Section 485

is devoted to the connections between CQs and the set of Lagrange multipliers. In86

section 5 we present an application of the theory.87

Notation. Throughout the paper, ε is a positive number whose value may vary88

from occasion to occasion. We distinguish between column vectors (elements of Rn)89

and row vectors (elements of Rn).90

2. Background Material. In this section we review the required background91

material on smooth manifolds. We refer the reader to Spivak, 1979; Aubin, 2001; Lee,92

2003; Tu, 2011; Jost, 2017 for a thorough introduction.93

Definition 2.1. A Hausdorff, second-countable topological space M is said to be94

a smooth manifold of dimension n ∈ N if there exists an arbitrary index set A, a95

collection of open subsets {Uα}α∈A covering M, together with a collection of homeo-96

morphisms (continuous functions with continuous inverses) ϕα : Uα → ϕα(Uα) ⊂ Rn,97

such that the transition maps ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) are of class98

C∞ for all α, β ∈ A. A pair (Uα, ϕα) is called a smooth chart, and the collection99

{(Uα, ϕα)}α∈A is a smooth atlas.100

Well-known examples of smooth manifolds include Rn, spheres, tori, GL(n), SO(n),101

the Grassmannian manifold of k-dimensional subspaces of a given vector space, and102

the orthogonal Stiefel manifold of orthonormal rectangular matrices of a certain size;103

see for instance Absil, Mahony, Sepulchre, 2008. From now on, a smooth manifoldM104

will always be equipped with a given smooth atlas. In particular, Rn will be equipped105

with the standard atlas consisting of the single chart (Rn, id). Points on M will be106

denoted by bold-face letters such as p and q.107

Notions beyond continuity are defined by means of charts. In particular, the108

assumed C1-property of the objective f : M→ R means that f ◦ϕ−1
α , defined on the109

open subset ϕα(Uα) ⊂ Rn and mapping into R, is of class C1 for every chart (Uα, ϕα)110

from the smooth atlas. The C1-property of the constraint functions g and h is defined111

in the same way. Similarly, one may speak of C1-functions which are defined only in112

an open subset U ⊂M, by replacing Uα by Uα ∩ U .113

As is well known, tangential directions (to the feasible set) play a fundamental114

role in optimization. Tangential directions at a point can be viewed as derivatives of115

curves passing through that point. When M = Rn, these curves can be taken to be116

straight curves t 7→ p + tv of arbitrary velocity v ∈ Rn. This shows that Rn serves117

as its own tangent space. An adaptation to the setting of a smooth manifold leads to118

the following119

Definition 2.2 (Tangent space).120

(a) A function γ : (−ε, ε)→M is called a C1-curve about p ∈ M if γ(0) = p holds121

and ϕα ◦ γ is of class C1 for some (equivalently, every) chart (Uα, ϕα) about p.122
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4 R. BERGMANN, AND R. HERZOG

(b) Two C1-curves γ and ζ about p ∈M are said to be equivalent if123

(2.1)
d

dt
(ϕα ◦ γ)(t)

∣∣∣∣
t=0

=
d

dt
(ϕα ◦ ζ)(t)

∣∣∣∣
t=0

124

holds for some (equivalently, every) chart (Uα, ϕα) about p.125

(c) Suppose that γ is a C1-curve about p ∈ M and that [γ] is its equivalence class.126

Then the following linear map, denoted by [γ̇(0)] or [ d
dtγ(0)] and defined as127

(2.2) [γ̇(0)](f) :=
d

dt
(f ◦ γ)

∣∣∣∣
t=0

128

takes C1-functions f : U → R defined in some open neighborhood U ⊂ M of p129

into R. It is called the tangent vector to M at p along (or generated by) the130

curve γ.131

(d) The collection of all tangent vectors at p, i.e.,132

(2.3) TM(p) :=
{

[γ̇(0)] : [γ̇(0)] is generated by some C1-curve γ about p
}
,133

is termed the tangent space to M at p.134

Remark 2.3 (Tangent space).135

1. We infer from (2.2) that the tangent vector [γ̇(0)] along the curve γ about p136

generalizes the notion of the directional derivative operator, acting on C1-functions137

defined near p.138

2. It can be shown that the tangent space TM(p) to M at p is a vector space of139

dimension n under the operations α� [γ] and [γ]⊕ [ζ], defined in terms of140

α� γ : t 7→ γ(α t) ∈M for α ∈ R,(2.4a)141

γ ⊕ ζ : t 7→ ϕ−1
α

(
(ϕα ◦ γ)(t) + (ϕα ◦ ζ)(t)− ϕα(p)

)
∈M(2.4b)142143

for arbitrary representers of their respective equivalence classes. Here ϕα is an144

arbitrary chart about p, and its choice does not affect the definition of [γ]⊕ [ζ].145

Finally, we require the generalization of the notion of the derivative for functions146

f : M→ R.147

Definition 2.4 (Differential). Suppose that f : M → R is a C1-function and148

p ∈M. Then the following linear map, denoted by (df)(p) and defined as149

(2.5) (df)(p) [γ̇(0)] := [γ̇(0)](f)150

takes tangent vectors [γ̇(0)] into R. It is called the differential of f at p.151

By definition, the differential (df)(p) of a real-valued function is a cotangent vector,152

i.e., an element from the cotangent space T ∗M(p), the dual of the tangent space TM(p).153

In fact, every element of T ∗M(p) is the differential of a C1-function s at p. Therefore154

we denote, without loss of generality, generic elements of T ∗M(p) by (ds)(p).155
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INTRINSIC KKT CONDITIONS AND CQS ON SMOOTH MANIFOLDS 5

Remark 2.5. In the literature on differential geometry the tangent space is usually156

denoted by TpM and the cotangent space by T ∗pM. Moreover the differential of a157

real-valued function s at p is written as (ds)p. We hope that our slightly modified158

notation is more intuitive for readers familiar with nonlinear programming notation.159

In the following two sections, we are going to derive the KKT theory for (1.1)160

and associated constraint qualifications on smooth manifolds. We wish to point out161

that the above notions from differential geometry are sufficient for these purposes.162

In particular, we do not need to introduce a Riemannian metric (a smoothly varying163

collection of inner products on the tangent spaces), nor do we need to consider em-164

beddings of M into some RN for some N ≥ n. Moreover, we do not need to make165

further topological assumptions such as compactness, connectedness, or orientability166

of M.167

3. KKT Conditions and Constraint Qualifications. In this section we de-168

velop first-order necessary optimality conditions in KKT form for (1.1). To begin with,169

we briefly recall the arguments whenM = Rn; see for instance Nocedal, Wright, 2006,170

Chap. 12 or Forst, Hoffmann, 2010, Chap. 2.171

3.1. KKT Conditions in Rn. We define Ω :=
{
x ∈ Rn : g(x) ≤ 0, h(x) = 0

}
172

to be the feasible set and associate with (1.1) the Lagrangian173

(3.1) L(x, µ, λ) := f(x) + µ g(x) + λh(x),174

where µ ∈ Rm and λ ∈ Rq. Using Taylor’s theorem, one easily shows that a local175

minimizer x∗ satisfies the necessary optimality condition176

(3.2) f ′(x∗) d ≥ 0 for all d ∈ TΩ(x∗),177

where TΩ(x∗) denotes the tangent cone,178

(3.3)

TΩ(x∗) :=
{
d ∈ Rn : there exist sequences (xk) ⊂ Ω, xk → x∗, (tk)↘ 0,

such that d = lim
k→∞

xk − x∗

tk

}
.

179

This cone is also known as contingent cone or the Bouligand cone; compare Jiménez,180

Novo, 2006; Penot, 1985. Since TΩ(x∗) is inconvenient to work with, one introduces181

the linearizing cone182

(3.4)
T lin

Ω (x∗) :=
{
d ∈ Rn : g′i(x

∗) d ≤ 0 for all i ∈ A(x∗),

h′j(x
∗) d = 0 for all j = 1, . . . , q

}
.

183

Here A(x∗) :=
{

1 ≤ i ≤ m : gi(x
∗) = 0

}
is the index set of active inequalities at x∗.184

Moreover, I(x∗) := {1, . . . ,m} \ A(x∗) are the inactive inequalities. It is easy to see185

that TΩ(x∗) is a closed convex cone and that TΩ(x∗) ⊂ T lin
Ω (x∗) holds; see for instance186

Nocedal, Wright, 2006, Lem. 12.2.187

Using the definition of the polar cone of a set B ⊂ Rn,188

(3.5) B◦ := {s ∈ Rn : s d ≤ 0 for all d ∈ B},189
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6 R. BERGMANN, AND R. HERZOG

the first-order necessary optimality condition (3.2) can also be written as −f ′(x∗) ∈190

TΩ(x∗)◦. Since the polar of the tangent cone is often not easily accessible, one prefers191

to work with T lin
Ω (x∗)◦ instead, which has the representation192

(3.6)
T lin

Ω (x∗)◦ =
{
s =

m∑
i=1

µi g
′
i(x
∗) +

q∑
j=1

λj h
′
j(x
∗),

µi ≥ 0 for i ∈ A(x∗), µi = 0 for i ∈ I(x∗), λj ∈ R
}
⊂ Rn,

193

as can be shown by means of the Farkas lemma; compare Nocedal, Wright, 2006,194

Lem. 12.4. We state it here in a slightly more general (yet equivalent) form than195

usual, where V is a finite dimensional vector space and A ∈ L(V,Rq) is a linear map196

from V into Rq for some q ∈ N. The adjoint of A, denoted by A∗, then belongs to197

L(Rq, V ∗), where V ∗ is the dual space of V .198

Lemma 3.1 (Farkas). Suppose that V is a finite dimensional vector space, A ∈199

L(V,Rq) and b ∈ V ∗. The following are equivalent:200

(a) The system A∗y = b has a solution y ∈ Rq which satisfies y ≥ 0.201

(b) For any d ∈ Rq, Ad ≥ 0 implies b d ≥ 0.202

Continuing our review, we notice that TΩ(x∗) ⊂ T lin
Ω (x∗) entails T lin

Ω (x∗)◦ ⊂203

TΩ(x∗)◦, hence (3.2) does not imply204

(3.7) − f ′(x∗) ∈ T lin
Ω (x∗)◦.205

Enter constraint qualifications, the weakest of which (the Guignard qualification,206

GCQ; see Guignard, 1969) requires the equality T lin
Ω (x∗)◦ = TΩ(x∗)◦. Realizing that207

(3.7) is nothing but the KKT conditions,208

Lx(x∗, µ, λ) = f ′(x∗) + µ g′(x∗) + λh′(x∗) = 0,(3.8a)209

h(x∗) = 0,(3.8b)210

µ ≥ 0, g(x∗) ≤ 0, µ g(x∗) = 0,(3.8c)211212

we obtain the well known213

Theorem 3.2. Suppose that x∗ is a local minimizer of (1.1) for M = Rn and214

that the GCQ holds at x∗. Then there exist Lagrange multipliers µ ∈ Rm, λ ∈ Rq,215

such that the KKT conditions (3.8) hold.216

In practice one of course often works with stronger constraint qualifications, which217

are easier to verify. We are going to consider in subsection 3.3 the analogue of the218

classical chain LICQ ⇒ MFCQ ⇒ ACQ ⇒ GCQ on smooth manifolds.219

3.2. KKT Conditions for Optimization Problems on Smooth Mani-220

folds. In this section we adapt the argumentation sketched in subsection 3.1 to221

problem (1.1), where M is a smooth manifold. Our first result is the analogue of222

Theorem 3.2, showing that the GCQ renders the KKT conditions a system of first-223

order necessary optimality conditions for local minimizers. For convenience, we sum-224

marize in Table 1 how the relevant quantities need to be translated when moving from225

M = Rn to manifolds.226
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INTRINSIC KKT CONDITIONS AND CQS ON SMOOTH MANIFOLDS 7

M = Rn M smooth manifold

tangent space Rn tangent space TM(p) (2.2)
tangent cone TΩ(x) (3.3) tangent cone TM(Ω;p) (3.12)
linearizing cone T lin

Ω (x) (3.4) linearizing cone T lin
M (Ω;p) (3.14)

cotangent space Rn cotangent space T ∗M(p)
derivative f ′(x) ∈ Rn differential (df)(p) ∈ T ∗M(p) (2.5)
polar cone ⊂ Rn (3.6) polar cone T lin

M (Ω;p)◦ ⊂ T ∗M(p) (3.16)

Lagrange multipliers µ ∈ Rm, λ ∈ Rq same as for M = Rn

Table 1: Summary of concepts related to KKT conditions and constraint qualifica-
tions.

Let us denote by227

(3.9) Ω :=
{
p ∈M : g(p) ≤ 0, h(p) = 0

}
228

the feasible set of (1.1). As in Rn, Ω is a closed subset of M due to the continuity of229

g and h.230

A point p∗ ∈ Ω is a local minimizer of (1.1) if there exists a neighborhood U of231

p∗ such that232

f(p∗) ≤ f(p) for all p ∈ U ∩ Ω.233

The first notion of interest is the tangent cone at a feasible point. In view of234

(2.2), it may be tempting to consider235

(3.10)
T classical
M (Ω;p) :=

{
[γ̇(0)] ∈ TM(p) : [γ̇(0)] is generated by some C1-curve

γ about p which satisfies γ(t) ∈ Ω for all t ∈ [0, ε)
}
.

236

In fact this is the analogue of what is known as the cone of attainable directions and237

it was used in the original works of Karush, 1939; Kuhn, Tucker, 1951. However, as is238

well known, this cone is, in general, strictly smaller than the Bouligand tangent cone239

(3.3) when M = Rn; see for instance Penot, 1985; Jiménez, Novo, 2006, Bazaraa,240

Shetty, 1976, Ch. 3.5 and Aubin, Frankowska, 2009, Ch. 4.1.241

In order to properly generalize the Bouligand tangent cone (3.3) to the smooth242

manifold setting, we consider sequences rather than curves. This leads to the following243

Definition 3.3 ((Bouligand) tangent cone). Suppose that p ∈ Ω holds, and let244

(U,ϕ) be a chart about p.245

(a) A sequence (Γk) := (pk, tk) ⊂ (U ∩ Ω)× R is said to be a tangential sequence to246

Ω at p if pk → p, tk ↘ 0, and (ϕ(pk)− ϕ(p))/tk → d for some d ∈ Rn holds.247

(b) Two tangential sequences (pk, tk) and (qk, sk) to Ω at p are said to be equivalent248

if limk→∞(ϕ(pk)− ϕ(p))/tk = limk→∞(ϕ(qk)− ϕ(p))/sk holds.249
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8 R. BERGMANN, AND R. HERZOG

(c) Suppose that (Γk) is a tangential sequence to Ω at p and that [Γ] is its equivalence250

class. Then the following linear map, denoted by [Γ̇] and defined as251

(3.11) [Γ̇](f) := lim
k→∞

f(pk)− f(p)

tk
= (f ◦ ϕ−1)′(ϕ(p)) d252

takes C1-functions f : U → R defined in some open neighborhood U ⊂ M of p253

into R. It is called the sequential tangent vector to Ω at p along (or generated254

by) the tangential sequence (Γk).255

(d) The collection of all sequential tangent vectors to Ω at p, i.e.,256

(3.12)
TM(Ω;p) :=

{
[Γ̇] : [Γ̇] is generated by some tangential sequence

(pk, tk) to Ω at p
}
,

257

is termed the (Bouligand) tangent cone to Ω at p.258

Let us confirm that the tangent cone is an intrinsic concept.259

Lemma 3.4. The tangent cone (3.12) is independent of the chart about p selected.260

Proof. Suppose that (U,ϕ) is a chart about p and that (Γk) is a tangential se-261

quence to Ω at p w.r.t. ϕ, generating the sequential tangent vector [Γ̇]. Moreover, let262

(V, ψ) be another chart about p. Then by the chain rule,263

ψ(pk)− ψ(p)

tk
→ (ψ ◦ ϕ−1)′(ϕ(p)) d,264

so (Γk) is a tangential sequence w.r.t. the chart ψ as well. Let us also observe that265

the action of [Γ̇] on a C1-function f defined near p is independent of the chart; see266

(3.11). Indeed, the second equality in (3.11) amounts to267

(f ◦ ϕ−1)′(ϕ(p)) d = (f ◦ ψ−1)′(ψ(p)) (ψ ◦ ϕ−1)′(ϕ(p)) d,268

which agree due to the chain rule.269

Remark 3.5 (Tangent cone).270

1. Notice that although sequential tangent vectors are defined in terms of sequences,271

not curves, they can be understood as tangent vectors in the sense of Definition 2.2.272

Indeed, let (Γk) = (pk, tk) be a tangential sequence to Ω at p. Suppose that ϕ is273

a chart about p and (ϕ(pk)− ϕ(p))/tk → d for some d ∈ Rn. Define the curve274

t 7→ γ(t) := ϕ−1(ϕ(p) + t d)275

on a suitable open interval containing 0. Then it is easy to see that [γ̇(0)] = [Γ̇],276

i.e., (Γk) can be understood as the representer of a tangent vector and thus as an277

element from the tangent space TM(p). Notice that γ(t) is not necessarily feasible278

for some interval [0, ε), which confirms that (3.12) indeed contains T classical
M (Ω;p);279

see (3.10).280

2. The tangent cone TM(Ω;p) defined in (3.12) agrees with281

[(dϕ)(p)]−1Tϕ(U∩Ω)(ϕ(p)),282

which is how it was introduced in Yang, Zhang, Song, 2014, eq. (3.7).283
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INTRINSIC KKT CONDITIONS AND CQS ON SMOOTH MANIFOLDS 9

Lemma 3.6 (Properties of the tangent cone). For any p ∈ Ω, the tangent cone284

TM(Ω;p) is a cone in the tangent space TM(p).285

Proof. Let (Γk) = (pk, tk) be a tangential sequence to Ω at p. When tk is replaced286

by tk/α for some α > 0, then it is easy to see that the resulting sequence is a tangential287

sequence generating the sequential tangent vector α [Γ̇]. This shows that TM(Ω;p) is288

a cone.289

The analogue of (3.2) is the following290

Theorem 3.7 (First-order necessary optimality condition). Suppose that p∗ ∈ Ω291

is a local minimizer of (1.1). Then we have292

(3.13) [Γ̇](f) ≥ 0293

for all sequential tangent vectors [Γ̇] ∈ TM(Ω;p∗).294

Proof. Let (Γk) = (pk, tk) be a tangential sequence to Ω at p∗ w.r.t. some chart295

ϕ about p∗, generating the sequential tangent vector [Γ̇] ∈ TM(Ω;p∗). Suppose296

(ϕ(pk) − ϕ(p∗))/tk → d for some d ∈ Rn. Then, for some ε > 0, we have by local297

optimality of p∗298

0 ≤ f(pk)− f(p∗)

tk
for sufficiently large k

⇒ 0 ≤ [Γ̇](f) by (3.11).

299

This concludes the proof.300

Next we introduce the concept of the linearizing cone (3.4) in the tangent space.301

Definition 3.8 (Linearizing cone). For any p ∈ Ω, we define the linearizing302

cone to the feasible set Ω by303

(3.14)
T lin
M (Ω;p) :=

{
[γ̇(0)] ∈ TM(p) : [γ̇(0)](gi) ≤ 0 for all i ∈ A(p),

[γ̇(0)](hj) = 0 for all j = 1, . . . , q
}
.

304

As in subsection 3.1, A(p) :=
{

1 ≤ i ≤ m : gi(p) = 0
}

is the index set of active305

inequalities at p, and I(p) := {1, . . . ,m} \ A(p) are the inactive inequalities. Notice306

that, as is customary in differential geometry, we denote the components of the vector-307

valued functions g and h by upper indices.308

Lemma 3.9 (Relation between the cones). For any p ∈ Ω, T lin
M (Ω;p) is a convex309

cone, and TM(Ω;p) ⊂ T lin
M (Ω;p) holds.310

Proof. To show that T lin
M (Ω;p) is a convex cone, let γ1 and γ2 be two curves311

about p, generating the elements [γ̇1(0)] and [γ̇2(0)] in T lin
M (Ω;p), and let α1, α2 > 0.312

Since TM(p) is a vector space under � and ⊕, we have313

[(α1 � γ1)⊕ (α2 � γ2)](gi) = α1 [γ1](gi) + α2 [γ2](gi) ≤ 0 for i ∈ A(p),

[(α1 � γ1)⊕ (α2 � γ2)](hj) = α1 [γ1](hj) + α2 [γ2](hj) = 0 for j = 1, . . . , q,
314

hence [(α1 � γ1)⊕ (α2 � γ2)] belongs to T lin
M (Ω;p) as well.315

This manuscript is for review purposes only.



10 R. BERGMANN, AND R. HERZOG

Now let [Γ̇] ∈ TM(Ω;p) be generated by the tangential sequence (Γk) = (pk, tk)316

to Ω at p. Recall that the points pk are feasible. Consequently, for i ∈ A(p) and317

k ∈ N we have318

0 ≥ gi(pk)− gi(p)

tk
⇒ [Γ̇](gi) ≤ 0.319

Similarly, we get [Γ̇](hj) = 0 for j = 1, . . . , q. This shows [Γ̇] ∈ T lin
M (Ω;p).320

Similar to (3.5), the polar cone to a subset B ⊂ TM(p) of the tangent space is321

defined as322

(3.15) B◦ :=
{

(ds)(p) ∈ T ∗M(p) : (ds)(p) [γ̇(0)] ≤ 0 for all [γ̇(0)] ∈ B
}
.323

Let us calculate a representation of T lin
M (Ω;p)◦, similar to (3.6).324

Lemma 3.10. For any p ∈ Ω, we have325

T lin
M (Ω;p)◦ =

{
(ds)(p) =

m∑
i=1

µi (dgi)(p) +

q∑
j=1

λj (dhj)(p),326

µi ≥ 0 for i ∈ A(p), µi = 0 for i ∈ I(p), λj ∈ R
}
⊂ T ∗M(p),(3.16)327

328

Proof. When (ds)(p) belongs to the set on the right hand side of (3.16) and329

[γ̇(0)] ∈ T lin
M (Ω;p) is arbitrary, then330

(ds)(p) [γ̇(0)] =

m∑
i=1

µi (dgi)(p)[γ̇(0)] +

q∑
j=1

λj (dhj)(p)[γ̇(0)]

=

m∑
i=1

µi [γ̇(0)](gi) +

q∑
j=1

λj [γ̇(0)](hj)

331

by definition of the differential; see (2.5). Utilizing the sign conditions in (3.16) and the332

definition of T lin
M (Ω;p) in (3.14) shows (ds)(p) [γ̇(0)] ≤ 0, i.e., (ds)(p) ∈ T lin

M (Ω;p)◦.333

For the converse, consider the linear map334

A :=

 −(dgi)(p)
∣∣
i∈A(p)

−(dhj)(p)
∣∣
j=1,...,q

(dhj)(p)
∣∣
j=1,...,q

335

which maps the tangent space TM(p) into Rq, where q = |A(p)| + 2 q. By (3.14),336

[γ̇(0)] ∈ T lin
M (Ω;p) holds if and only if A [γ̇(0)] ≥ 0.337

Now let (ds)(p) ∈ T lin
M (Ω;p)◦, i.e., (ds)(p) [γ̇(0)] ≤ 0 holds for all [γ̇(0)] such that338

A [γ̇(0)] ≥ 0. The Farkas Lemma 3.1 (with V = TM(p) and b = −(ds)(p)) shows that339

A∗y = −(ds)(p) has a solution y ∈ Rq, y ≥ 0. Now split y =: (µ|A(p), λ
+, λ−), set340

λ := λ+ − λ− and pad µ by setting µ|I(p) := 0. This shows that (ds)(p) indeed has341

the representation postulated in (3.16).342

We associate with (1.1) the Lagrangian343

(3.17) L(p, µ, λ) := f(p) + µ g(p) + λh(p),344
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where µ ∈ Rm and λ ∈ Rq, and the KKT conditions345

(dL)(p, µ, λ) = (df)(p) + µ (dg)(p) + λ (dh)(p) = 0,(3.18a)346

h(p) = 0,(3.18b)347

µ ≥ 0, g(p) ≤ 0, µ g(p) = 0.(3.18c)348349

Here we introduced for convenience of notation the differential of the vector-valued350

functions g = (g1, . . . , gm)T351

(dg)(p) :=

 (dg1)(p)
...

(dgm)(p)

352

and similarly for h.353

Just as in the case of M = Rn, it is easy to see by Lemma 3.10 that the KKT354

conditions (3.18) are equivalent to355

(3.19) − (df)(p) ∈ T lin
M (Ω;p)◦.356

We thus obtain the analogue of Theorem 3.2:357

Theorem 3.11. Suppose that p∗ is a local minimizer of (1.1) and that the GCQ358

T lin
M (Ω;p∗)◦ = TM(Ω;p∗)◦ holds at p∗. Then there exist Lagrange multipliers µ ∈ Rm,359

λ ∈ Rq, such that the KKT conditions (3.18) hold.360

3.3. Constraint Qualifications for Optimization Problems on Smooth361

Manifolds. In this section we introduce the constraint qualifications (CQ) of linear362

independence (LICQ), Mangasarian–Fromovitz (MFCQ), Abadie (ACQ) and Guig-363

nard (GCQ) and show that the chain of implications364

(3.20) LICQ ⇒ MFCQ ⇒ ACQ ⇒ GCQ365

continues to hold in the smooth manifold setting.366

Definition 3.12 (Constraint qualifications). Suppose that p ∈ Ω holds. We367

define the following constraint qualifications at p.368

(a) The LICQ holds at p if {(dhj)(p)}qj=1∪{(dgi)(p)}i∈A(p) is a linearly independent369

set in the cotangent space T ∗M(p).370

(b) The MFCQ holds at p if {(dhj)(p)}qj=1 is a linearly independent set and if there371

exists a tangent vector [γ̇(0)] (termed an MFCQ vector) such that372

(3.21)
(dgi)(p)[γ̇(0)] < 0 for all i ∈ A(p),

(dhj)(p)[γ̇(0)] = 0 for all j = 1, . . . , q.
373

(c) The ACQ holds at p if T lin
M (Ω;p) = TM(Ω;p).374

(d) The GCQ holds at p if T lin
M (Ω;p)◦ = TM(Ω;p)◦.375

Proposition 3.13. LICQ implies MFCQ.376
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12 R. BERGMANN, AND R. HERZOG

Proof. Consider the linear system377

A [γ̇(0)] :=

(
(dgi)(p)

∣∣
i∈A(p)

(dhj)(p)
∣∣
j=1,...,q

)
[γ̇(0)] = (−1, . . . ,−1, 0, . . . , 0)T.378

Since the linear map A is surjective by assumption, this system is solvable, and [γ̇(0)]379

satisfies the MFCQ conditions.380

In order to show that MFCQ implies ACQ, we first prove the following result;381

compare Geiger, Kanzow, 2002, Lem. 2.37.382

Proposition 3.14. Suppose that p ∈ Ω and that the MFCQ holds at p with the383

MFCQ vector [γ̇(0)]. Then the curve γ about p which generates [γ̇(0)] can be chosen384

to satisfy the following:385

(a) hj(γ(t)) = 0 for all t ∈ (−ε, ε) and all j = 1, . . . , q.386

(b) γ(t) ∈ Ω for all t ∈ [0, ε) and even gi(γ(t)) < 0 for all t ∈ (0, ε) and all387

i = 1, . . . ,m.388

Proof. Choose a chart ϕ about p and set x0 := ϕ(p). We start with an arbitrary389

C1-curve ζ about p which generates the MFCQ vector [γ̇(0)]. We are going to define,390

in the course of the proof, an alternative C1-curve γ about p which generates the391

same tangent vector and which satisfies the conditions stipulated.392

In the absence of equality constraints (q = 0), we can simply take γ = ζ. Suppose393

now that q ≥ 1 holds. For some ε > 0, ζ(t) belongs to the domain of ϕ whenever394

t ∈ (−ε, ε). Define395

H(y, t) := (h ◦ ϕ−1)
(
(ϕ ◦ ζ)(t) + (h ◦ ϕ−1)′(x0)Ty

)
, (y, t) ∈ Rq × (−ε, ε).396

Then H(0, 0) = (h ◦ ϕ−1)(x0 + 0) = h(p) = 0 holds. Moreover, by the chain rule, the397

Jacobian of H w.r.t. y is398

Hy(y, t) = (h ◦ ϕ−1)′
(
(ϕ ◦ ζ)(t) + (h ◦ ϕ−1)′(x0)Ty

)
(h ◦ ϕ−1)′(x0)T399

and in particular, Hy(0, 0) = (h ◦ ϕ−1)′(x0) (h ◦ ϕ−1)′(x0)T. Since {(dhj)(p)}qj=1 is a400

linearly independent set of cotangent vectors, the q×n-matrix (h◦ϕ−1)′(x0) has rank401

q. To see this, consider the tangent vectors along the curves t 7→ γk(t) := ϕ−1(ϕ(p) +402

t ek) for k = 1, . . . , n. The entry (j, k) of (h ◦ ϕ−1)′(x0) equals (dhj)(p) [γ̇k(0)] =403
d
dt (h

j ◦ γk)(t)
∣∣
t=0

. Since the tangent vectors {[γ̇k]}nk=1 are linearly independent and404

the cotangent vectors {(dhj)(p)}qj=1 as well, the matrix (h ◦ ϕ−1)′(x0) has full rank405

as claimed. This shows that Hy(0, 0) is symmetric positive definite. Moreover,406

Ht(y, t) = (h ◦ ϕ−1)′
(
(ϕ ◦ ζ)(t) + (h ◦ ϕ−1)′(x0)Ty

)
(ϕ ◦ ζ)′(t),407

whence Ht(0, 0) = (h ◦ ϕ−1)′(x0) (ϕ ◦ ζ)′(0) = (h ◦ ζ)′(0). In particular, the j-th408

coordinate of Ht(0, 0) is equal to [ζ̇(0)](hj) = (dhj)(p) [ζ̇(0)] = 0 by the properties of409

the MFCQ vector [ζ̇(0)].410

The implicit function theorem ensures that there exists a function y : (−ε0, ε0)→411

Rq of class C1 such that H(y(t), t) = 0 and y(0) = 0 holds, and moreover, ẏ(0) =412

Hy(0, 0)−1Ht(0, 0) = 0.413
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Using y(·), we define, on a suitable open interval containing 0, the curve414

γ(t) := ϕ−1
(
(ϕ ◦ ζ)(t) + (h ◦ ϕ−1)′(x0)Ty(t)

)
∈M.415

This curve is of class C1 by construction, it satisfies γ(0) = ϕ−1(x0 + 0) = p and416

generates the same tangent vector as the original curve ζ. To see the latter, we417

consider an arbitrary C1-function f defined near p and calculate418

(f ◦ γ)′(t) = (f ◦ ϕ−1)′
(
(ϕ ◦ ζ)(t) + (h ◦ ϕ−1)′(x0)Ty(t)

)
·
[
(ϕ ◦ ζ)′(t) + (h ◦ ϕ−1)′(x0)Tẏ(t)

]
.

419

This implies420

[γ̇(0)](f) = (f ◦ γ)′(0) = (f ◦ ϕ−1)′(x0) (ϕ ◦ ζ)′(0) = (f ◦ ζ)′(0) = [ζ̇(0)](f).421

By construction, we have422

h(γ(t)) = (h ◦ ϕ−1)
(
(ϕ ◦ ζ)(t) + (h ◦ ϕ−1)′(x0)Ty(t)

)
= H(y(t), t) = 0423

on a suitable interval (−ε, ε). It remains to verify the conditions pertaining to the424

inequality constraints. When i ∈ I(p), then by continuity, gi(γ(t)) < 0 for all t ∈425

(−εi, εi). When i ∈ A(p), consider the auxiliary function φ(t) := gi(γ(t)), which426

satisfies φ(0) = gi(γ(0)) = 0 and φ̇(0) = (dgi)(p)[γ̇(0)] = (dgi)(p)[ζ̇(0)] < 0. An427

applications of Taylor’s theorem now implies that there exists εi > 0 such that φ(t) < 0428

holds for t ∈ (0, εi). Taking ε = min{εi : i = 1, . . . ,m} finishes the proof.429

Proposition 3.15. MFCQ implies ACQ.430

Proof. In view of Lemma 3.9, we only need to show TM(Ω;p) ⊃ T lin
M (Ω;p). To431

this end, suppose that [γ̇0(0)] is an element of T lin
M (Ω;p) defined in (3.14), generated432

by some C1-curve about p = γ0(0). Moreover, let γ be another C1-curve about p433

such that [γ̇(0)] is an MFCQ vector, see (3.21). Finally, choose an arbitrary chart ϕ434

about p.435

For any τ ∈ (0, 1], consider the curve436

γ0 ⊕ (τ � γ) : t 7→ ϕ−1
(
(ϕ ◦ γ0)(t) + (ϕ ◦ γ)(τ t)− ϕ(p)

)
∈M,437

which is defined on an interval (−ε, ε) where both γ and γ0 are defined. Moreover by438

reducing ε if necessary we achieve that γ(t) and γ(τ t) belong to the domain of the439

chosen chart ϕ when t ∈ (−ε, ε).440

We first show that [ d
dt (γ0 ⊕ (τ � γ))(0)] → [γ̇0(0)] as τ ↘ 0. Indeed, for any441

C1-function f defined near p, we have442

(df)(p)[ d
dt (γ0 ⊕ (τ � γ))(0)]443

= [ d
dt (γ0 ⊕ (τ � γ))(0)](f) by definition of (df)(p), see (2.5)444

=
d

dt

[
f ◦ (γ0 ⊕ (τ � γ))

]∣∣∣∣
t=0

by def. of tangent vectors, see (2.2)445

= (f ◦ ϕ−1)′(ϕ(p))

[
d

dt

(
(ϕ ◦ γ0) + τ (ϕ ◦ γ)

)∣∣∣∣
t=0

]
by the chain rule446
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=
d

dt
(f ◦ γ0)

∣∣∣∣
t=0

+ τ
d

dt
(f ◦ γ)

∣∣∣∣
t=0

by the chain rule447

= (df)(p)[γ̇0(0)] + τ (df)(p)[γ̇(0)],448449

and the right hand side converges to [γ̇0(0)](f) as τ ↘ 0.450

Next we show that the tangent vector along γ0 ⊕ (τ � γ) is an MFCQ vector for451

any τ ∈ (0, 1]. Similarly as above, we have452

(dgi)(p)[ d
dt (γ0 ⊕ (τ � γ))(0)] = (dgi)(p)[γ̇0(0)] + τ (dgi)(p)[γ̇(0)]453

which is negative for any i ∈ A(p) since τ > 0. Analogously, (dhj)(p)[ d
dt (γ0 ⊕ (τ �454

γ))(0)] = 0 follows for all j = 1, . . . , q. This confirms that γ0 ⊕ (τ � γ) is indeed an455

MFCQ vector.456

Finally, by virtue of Proposition 3.14, we may assume, without loss of generality,457

that γ0 ⊕ (τ � γ) is feasible for t ∈ [0, ε). In other words,458

h
(
(γ0 ⊕ (τ � γ))(t)

)
= (h ◦ ϕ−1) ◦

(
(ϕ ◦ γ0) + τ (ϕ ◦ γ)

)
(t) ≡ 0 for all t ∈ [0, ε).459

By continuity, we obtain in the limit τ ↘ 0 that h(γ0(t)) = 0 for t ∈ [0, ε) holds as460

well. Similarly, g(γ0(t)) ≤ 0 for t ∈ [0, ε) follows. This shows that [γ̇0(0)] ∈ TM(Ω;p)461

in the sense of Remark 3.5.462

Finally, the fact that ACQ implies GCQ is trivial, so (3.20) is proved.463

4. Constraint Qualifications and the Polyhedron of Lagrange Multi-464

pliers. In this section we consider a number of results relating various constraint465

qualifications to the set of KKT multipliers at a local minimizer of (1.1). To this end,466

we fix an arbitrary feasible point p ∈ Ω and consider the cone467

(4.1) F(p) := {f ∈ C1(M,R) : p is a local minimizer for (1.1)}468

of objective functions of class C1 attaining a local minimum at p. For f ∈ F(p), we469

denote by470

(4.2) Λ(f ;p) := {(µ, λ) ∈ Rm × Rp : (3.18) holds}471

the corresponding set of Lagrange multipliers. It is easy to see that Λ(f ;p) is a closed,472

convex (potentially empty) polyhedron.473

The following theorem is known in the case M = Rn; see Gauvin, 1977; Gould,474

Tolle, 1971 and Wachsmuth, 2013, Thms. 1 and 2. It continues to hold verbatim for475

(1.1).476

Theorem 4.1 (Connections between CQs and Lagrange Multipliers). Suppose477

that p ∈ Ω.478

(a) The set Λ(f ;p) is non-empty for all f ∈ F(p) if and only if (GCQ) holds at p.479

(b) Suppose (MFCQ) holds at p. Then the set Λ(f ;p) is compact for all f ∈ F(p).480

(c) If Λ(f ;p) is non-empty, compact for some f ∈ F(p), then (MFCQ) holds at p.481

(d) The set Λ(f ;p) is a singleton for all f ∈ F(p) if and only if (LICQ) holds at p.482
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In order to prove Theorem 4.1, we are going to work with some chart about p and483

apply the result in Rn. Therefore, a preparatory step is required in order to confirm484

that this transformation leaves the notion of local minimum intact.485

Lemma 4.2 (compare Yang, Zhang, Song, 2014, Sec. 4.1). Suppose that (U,ϕ)486

is a arbitrary chart about p∗. The following are equivalent:487

(a) p∗ is a local minimizer of (1.1).488

(b) ϕ(p∗) is a local minimizer of489

(4.3)


Minimize (f ◦ ϕ−1)(x), x ∈ ϕ(U) ⊂ Rn

s.t. (g ◦ ϕ−1)(x) ≤ 0

and (h ◦ ϕ−1)(x) = 0.

490

Proof. Suppose first that p∗ ∈ Ω is a local minimizer of (1.1), i.e., there exists491

an open neighborhood U1 of p∗ such that f(p∗) ≤ f(p) holds for all p ∈ U1 ∩ Ω.492

We can assume, by shrinking U1 if necessary, that U1 ⊂ U holds. This implies493

f(ϕ(p∗)) ≤ f(ϕ(p)) for all p ∈ U1 ∩ Ω. Since ϕ(U1) is an open neighborhood of494

ϕ(p∗), ϕ(p∗) is a minimizer of (4.3). The converse is proved similarly.495

Proof of Theorem 4.1.496

(a): Theorem 3.11 shows that (GCQ) implies Λ(f ;p) 6= ∅ for any f ∈ F(p).497

The converse is proved in Gould, Tolle, 1971, Sec. 4 for the case M = Rn; see also498

Bazaraa, Shetty, 1976, Thm. 6.3.2. We apply this result in the following way. Suppose499

that (ds)(p) ∈ TM(Ω;p)◦ ⊂ T ∗M(p) holds. Fix an arbitrary chart (U,ϕ) about p.500

Suppose that d is an arbitrary element from the tangent cone Tϕ(U∩Ω)(ϕ(p)), i.e.,501

there exist sequences (xk) ⊂ ϕ(U ∩ Ω) and tk ↘ 0 such that xk → x0 := ϕ(p) and502

(xk − x0)/tk → d. Define pk := ϕ(xk). Then clearly, (Γk) := (pk, tk) is a tangential503

sequence to Ω at p in the sense of Definition 3.3. When we denote the sequential504

tangent vector generated by (Γk) by [Γ̇], we have505

(ds)(p) [Γ̇] = (s ◦ ϕ−1)′(ϕ(p)) d ≤ 0.506

This shows (s ◦ ϕ−1)′(ϕ(p)) ∈ Tϕ(U∩Ω)(ϕ(p))◦.507

Using Bazaraa, Shetty, 1976, Thm. 6.3.2 we can construct a C1-function r : Rn →508

R such that r′(ϕ(p)) = −(s ◦ϕ−1)′(ϕ(p)) holds and ϕ(p) is a local minimizer of (4.3)509

but with the objective r in place of (f ◦ ϕ−1). By Lemma 4.2, p is a local minimizer510

of (1.1) with objective r ◦ϕ. By assumption, Λ(r ◦ϕ,p) is non-empty, i.e., there exist511

Lagrange multipliers µ and λ such that512

(d(r ◦ ϕ))(p) + µ (dg)(p) + λ (dh)(p) = 0513

and (3.18b), (3.18c) hold. In other words, −(d(r ◦ ϕ))(p) ∈ T lin
M (Ω;p)◦, see (3.19).514

Moreover, the differentials of r ◦ ϕ and −s at p coincide since515

(d(r ◦ ϕ))(p) [γ̇(0)]516

= [γ̇(0)](r ◦ ϕ) by definition (2.5) of the differential517

=
d

dt
(r ◦ ϕ ◦ γ)(t)

∣∣∣∣
t=0

by definition (2.2) of a tangent vector518

= r′(x0)
d

dt
(ϕ ◦ γ)(t)

∣∣∣∣
t=0

by the chain rule519
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= −(s ◦ ϕ−1)′(x0)
d

dt
(ϕ ◦ γ)(t)

∣∣∣∣
t=0

by construction of r520

= − d

dt
(s ◦ γ)(t)

∣∣∣∣
t=0

by the chain rule521

= −(ds)(p) [γ̇(0)] by (2.2), (2.5)522523

holds for arbitrary tangent vectors [γ̇(0)] in TM(p). This shows that TM(Ω;p)◦ ⊂524

T lin
M (Ω;p)◦ holds, i.e., the (GCQ) is satisfied.525

(b) and (c): a possible proof of these results is based on linear programming526

arguments in the Lagrange multiplier space and thus it is directly applicable here as527

well. We sketch the proof following Burke, 2014 for the reader’s convenience. One528

first observes that (MFCQ) is equivalent to the feasibility of the linear program529

(4.4)

Minimize 0, [γ̇(0)] ∈ TM(p),

s.t. (dgi)(p)[γ̇(0)] ≤ −1 for all i ∈ A(p),

and (dhj)(p)[γ̇(0)] = 0 for all j = 1, . . . , q.

530

Using strong duality, one shows that (MFCQ) is in turn equivalent to the system531

(4.5)

µ (dg)(p) + λ (dh)(p) = 0,

µi ≥ 0 for all i ∈ A(p),

µi = 0 for all i ∈ I(p),

λj = 0 for all j = 1, . . . , q

532

having the only solution (µ, λ) = 0.533

Now if f ∈ F(p) holds and Λ(f ;p) is not bounded, then there exists a non-zero534

direction (µ, λ) in Λ(f ;p) verifying (4.5), i.e., (MFCQ) does not hold. This shows535

(b). Conversely, if (MFCQ) does not hold, then there exists a non-zero vector (µ, λ)536

satisfying (4.5). When (µ0, λ0) ∈ Λ(f ;p), then (µ0, λ0) + t (µ, λ) belongs to Λ(f ;p)537

as well for any t ≥ 0, hence Λ(f ;p) is not compact. This confirms (c).538

(d): We have proved in section 3 that (LICQ) implies (GCQ), so Λ(f ;p) is non-539

empty. The uniqueness of the Lagrange multipliers then follows immediately from540

(3.18a). The converse statement is proved in Wachsmuth, 2013, Thm. 2, which applies541

without changes.542

5. Numerical Example. In this section we present a numerical example in543

which the fulfillment of the KKT conditions (3.18) is used as an algorithmic stopping544

criterion. While the framework of a smooth manifold was sufficient for the discus-545

sion of first-order optimality conditions, we require more structure for algorithmic546

purposes. Therefore we restrict the following discussion to complete Riemannian547

manifolds.548

A manifold is Riemannian if its tangent spaces are equipped with a smoothly549

varying metric 〈·, ·〉p. This allows the conversion of the differential of the objective f ,550

(df)(p) ∈ T ∗M(p), to the gradient ∇f(p) ∈ TM(p), which fulfills551

〈[γ̇(0)], ∇f(p)〉p,= (df)(p) [γ̇(0)] for all [γ̇(0)] ∈ TM(p).552553
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Completeness of a Riemannian manifold refers to the fact that there exists a geodesic554

between any two points p, q ∈M.555

The Riemannian center of mass, also known as (Riemannian) mean was intro-556

duced in Karcher, 1977 as a variational model. Given a set of points di, i = 1, . . . , N ,557

their Riemannian center is defined as the minimizer of558

f(p) :=
1

N

N∑
i=1

d2
M(p,di),(5.1)559

560

where dM : M×M→ R is the distance on the Riemannian manifold M.561

We extend this classical optimization problem on manifolds by adding the con-562

straint that the minimizer should lie within a given ball of radius r > 0 and center563

q ∈M. We obtain the following constrained minimization problem of the form (1.1),564

(5.2)

{
Minimize f(p), p ∈M,

s.t. d2
M(p, q)− r2 ≤ 0,

565

with associated Lagrangian566

L(p, µ) =
1

N

N∑
i=1

d2
M(p,di) + µ (d2

M(p, q)− r2).(5.3)567

568

It can be shown, see for example Bačák, 2014; Afsari, Tron, Vidal, 2013, that the569

objective and the constraint are C1-functions whose gradients are given by the tangent570

vectors571

(5.4) ∇f(p) = − 2

N

N∑
i=1

logp di and ∇g(p) = −2 logp q.572

Here log denotes the logarithmic (or inverse exponential) map onM. In other words,573

the geodesic curve starting in p with velocity logp q ∈ TM(p) reaches q at time 1.574

In view of (5.4), the KKT conditions (3.18) become575

0 = (dL)(p, µ)[ξ] =
1

N

N∑
i=1

〈ξ, −2 logp di〉p + µ 〈ξ, −2 logp q〉p for all ξ ∈ TM(p)576

µ ≥ 0, d2
M(p, q) ≤ r2, µ (d2

M(p, q)− r2) = 0.577578

In our example we choose M = S2 := {p ∈ R3 : |p|2 = 1} the two-dimensional579

manifold of unit vectors in R3 or 2-sphere. The Riemannian metric is inherited from580

the ambient space R3. Since the feasible set581

(5.5) Ω := {p ∈ S2 : dM(p, q) ≤ r}582

is compact, a global minimizer to (5.2) exists. Notice however, that unlike in the flat583

space R2, minimizers are not necessarily unique. Under the assumption of r < π/4,584

however, Ω is geodesically convex. In this case, there exists exactly one global (and585

no further local) solutions.586
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(a) Data points di and their mean p̄, the (un-
constrained) Riemannian center of mass.

(b) Constrained solutions of (5.2) (light
green) and projected unconstrained means
projΩ(p̄) (orange) for five different feasible
sets (blue).

(c) Same as Figure 1b, rotated by 180 degrees.

Fig. 1: Constrained centers of mass for five different feasible sets (centers and radii
shown in blue). Unlike in R2, the minimizers p∗ (light green) differ from the mean p̄
projected onto the feasible set (5.6) (orange).

Even in the absence of convexity, the LICQ is satisfied at every solution p∗ unless587

p∗ = q holds, which is equivalent to the unconstrained mean p̄ coinciding with the588

center q of the feasible set. This does not happen for the data we use. Consequently,589

the Lagrange multiplier is unique by Theorem 4.1.590

In our example, we choose a set of N = 120 data points di as shown in Figure 1a.591

Their unconstrained Riemannian center of mass p̄ is shown in blue. We then solve five592
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Algorithm 5.1 Projected gradient descent algorithm

Input: an objective function f : M → R; a closed and convex set Ω; a fixed step
size s > 0; and an initial value p(0) ∈M
k ← 0
repeat

p(k+1) ← projΩ
(
expp(k)(s∇f(p(k)))

)
k ← k + 1

until a convergence criterion is reached
return p∗ = p(k)

variants of problem (5.2) which differ w.r.t. the centers qi of the feasible set, and their593

radii ri. The boundaries of the respective feasible sets, which are spherical caps, are594

displayed in blue in Figure 1b (front view) and Figure 1c (back view). For the choice595

(q1, r1), the distance constraint is inactive at the solution, while it is active in the596

other four cases. The constrained solutions p∗ are shown in light green in Figures 1b597

and 1c.598

Each instance of problem (5.2) was solved using a projected gradient descent599

method. Since it is a rather straightforward generalization of an unconstrained gradi-600

ent algorithm, see for instance Absil, Mahony, Sepulchre, 2008, Ch. 4, Alg. 1, we only601

briefly sketch it here. We utilize the fact that the feasible set Ω is closed and geodesi-602

cally convex when r < π/4, i.e., for any two points p, q ∈ Ω, all (shortest) geodesics603

connecting these two points lie inside Ω. In this case the projection projΩ : M→ Ω604

onto Ω is defined by605

projΩ(p) := arg min
q∈Ω

dM(p, q).606

607

It can be computed in closed form, namely608

projΩ(p) = expq

(
b logq p

)
, where b = min

{ r

dM(p, q)
, 1
}
.(5.6)609

610

The projected gradient descent algorithm is given as pseudo code in Algorithm 5.1.611

The unconstrained problem with solution p̄ is solved similarly, omitting the projection612

step. This amounts to the classical gradient descent method on manifolds as given613

in Absil, Mahony, Sepulchre, 2008, Ch. 4, Alg. 1. In our experiments we set the614

step size to s = 1
2 and used the first data point as initial data p(0) = d1, which is615

the ’bottom left’ data point in Figure 1c, to solve the constrained instances. The616

algorithm was implemented within the Manifold-valued Image Restauration Toolbox617

(MVIRT)1 Bergmann, 2017, providing a direct access to the necessary functions for618

the manifold of interest and the required algorithms.619

Notice that in R2, the constrained mean of a set of points can simply be obtained620

by projecting the unconstrained mean p̄ onto the feasible disk. In S2, this would621

amount to projΩ(p̄), but this differs, in general, from the solution of (5.2) due to622

the curvature of S2. For comparison, we show the result of projΩ(p̄) in orange in623

Figures 1b and 1c.624

1available open source at http://ronnybergmann.net/mvirt/.
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By design, gradient type methods do not utilize Lagrange multiplier estimates. At625

an iterate p(k), we therefore estimate the Lagrange multiplier µ(k) by a least squares626

approach, which amounts to627

(5.7) µ(k) := −
〈∇g(p(k)), ∇f(p(k))〉p(k)

〈∇g(p(k)), ∇g(p(k))〉p(k)

.628

We then evaluate the gradient of the Lagrangian,629

(5.8) ∇pL(p(k), µ(k)) = − 2

N

N∑
i=1

logp(k) di − 2µ(k) logp(k) q630

and utilize its norm squared n(k) := 〈∇pL(p(k), µ(k)), ∇pL(p(k), µ(k))〉p(k) as a stop-631

ping criterion.632

For two of the five test cases we display the iteration history in Table 2. The633

first example is the large circle with center q1 ≈ (0.4319, 0.2592, 0.8639)T and radius634

r1 = π
6 . For this setup the constraint is inactive and p̄ = p∗ holds. The second635

example is shown to the right of Figure 1c and it is given by q2 ≈ (0,−0.5735, 0.8192)T636

and r2 = π
24 .637

Since the unconstrained Riemannian mean is within the feasible set for the first638

example of (q1, r1), the projection is the identity after the first iteration. Hence for this639

case, the (projected) gradient descent algoriothm computes the unconstrained mean640

similar to Afsari, Tron, Vidal, 2013. We obtain p∗ = p̄ = projΩ(p̄). Looking at the641

gradients ∇f and ∇g we see, cf. Figure 2a, that ∇f = 0 while the constraint function642

g yields a gradient pointing towards the boundary ∂Ω of the feasible set. Clearly, the643

optimal Lagrange multplier is zero in this case. The iterates (green points) follow a644

typical gradient descent path of a Riemannian center of mass computation. Notice645

that the Lagrange multiplier approaches zero from below in this case. In view of (5.7),646

this is a result of the fact that the minimizer is approached from within the feasible647

set. While the objective decreases, the distance from q1 and thus g increases, leading648

to a negative multiplier estimate µ(k).649

For the second case, (q2, r2) the unconstrained mean lies outside the feasible set650

and the constraint g is strongly active, which in turn yields a nonzero value for µ. As651

we mentioned earlier, the optimal solution p∗ is different from projΩ(p̄), their distance652

is 0.0409 , which is due to the curvature of the manifold.653
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Table 2: Iteration history of Algorithm 5.1 for two instances of problem (5.2).

Results for (q1, r1).

k f(p(k)) n(k) µ(k)

1 1.9129 0.6540 1.1722
2 1.4172 0.1243 0.2755
3 1.3754 0.0169 −0.0847
4 1.3695 0.0029 −0.0811
5 1.3684 0.0005 −0.0403
6 1.3682 0.0001 −0.0180
7 1.3682 1.18× 10−5 −0.0078
8 1.3682 3.26× 10−6 −0.0034
9 1.3682 6.02× 10−7 −0.0014

10 1.3682 1.11× 10−7 −0.0006
11 1.3682 2.05× 10−8 −0.0003
12 1.3682 3.79× 10−9 −0.0001
13 1.3682 6.99× 10−10 −4.94× 10−5

14 1.3682 1.29× 10−10 −2.12× 10−5

15 1.3682 2.38× 10−11 −9.13× 10−6

16 1.3682 4.40× 10−12 −3.93× 10−6

17 1.3682 8.13× 10−13 −1.69× 10−6

18 1.3682 1.50× 10−13 −7.25× 10−7

19 1.3682 2.77× 10−14 −3.11× 10−7

20 1.3682 5.12× 10−15 −1.34× 10−7

21 1.3682 9.45× 10−16 −5.75× 10−8

22 1.3682 1.74× 10−16 −2.47× 10−8

Results for (q2, r2).

k f(p(k)) n(k) µ(k)

1 2.2190 2.1771 1.3833
2 2.0215 0.0011 1.2454
3 2.0214 5.04× 10−6 1.2475
4 2.0214 2.40× 10−8 1.2476
5 2.0214 1.15× 10−10 1.2477
6 2.0214 5.50× 10−12 1.2477
7 2.0214 2.63× 10−15 1.2477
8 2.0214 1.25× 10−17 1.2477

(a) Constraint data (q1, r1). (b) Constraint data (q2, r2).

Fig. 2: Iterates (green) of the projected gradient method and the final gradients of
the objective f (orange) as well as the contraint g (blue).
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