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Usually, control functions in control constrained optimal control are chosen from

a Lebesgue space which leads to phenomena like bang-bang controls. However,

such controls often cannot be realized in practice due to their inherently discon-

tinuous behavior. In order to overcome this shortcoming, a natural assumption

would be to demand at least order one Sobolev regularity for control functions. This

choice allows additional restrictions on the growth of the control’s weak gradient

which seems to be practically relevant as well. The present paper is devoted to the

study of elliptic optimal control problems whose control function is chosen from a

Sobolev space and has to satisfy additional equality constraints on its weak gradi-

ent. The Karush-Kuhn-Tucker conditions for this problem class are presented and

discussed. They do not provide a necessary optimality condition for the underlying

optimal control problem in general which is why a penalization procedure for the

computational solution is suggested. Furthermore, the numerical treatment of such

problems is studied in more detail. Especially, some essential di�culties arising

from the gradient constraint which do not appear in standard optimal control are

discussed.
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1 Introduction

Commonly, control functions are demanded to come from a Lebesgue space, usually L2(Ω),
see De los Reyes [2015], Hinze et al. [2009], Tröltzsch [2009] and the references therein for an

introduction to optimal control. This conservative regularity requirement promotes so-called

bang-bang controls. In the one-dimensional case, this means that the optimal control function is

piecewise constant, possesses at most countably many jumps, and hits the boundary of the set

of feasible controls almost everywhere on the underlying domain, see e.g. the classical papers

Bellman et al. [1956], Glasho� and Sachs [1977], Mizel and Seidman [1997], Schmidt [1980].

However, the physical realization of such discontinuous bang-bang controls is not technically

possible in real-world applications in many situations.

Recently, optimal control problems with switching constraints on control functions were

considered in Clason et al. [2016a,b, 2017]. Due to the nonconvexity of the switching constraints,

these optimization problems do not generally possess optimal solutions as long as the controls

are chosen from a Lebesgue space. The authors overcame this di�culty by considering controls

from a �rst order Sobolev space. Similarly, one may ensure the existence of optimal controls for

optimal control problems with complementarity constraints on the control function, see Guo

and Ye [2016], Mehlitz and Wachsmuth [2016].

In this paper, a setting where the controls are chosen from a �rst order Sobolev space is

studied. If the underlying domain is of dimension one, then this restriction forces optimal

controls to be continuous and, thus, suppresses bang-bang phenomena, see Adams and Fournier

[2003]. Even in higher-dimensional situations where order one Sobolev regularity does not imply

continuity, this choice leads to optimal controls which seem to be much more practically relevant.

Furthermore, this choice for the control space enables us to postulate additional requirements

on the control’s weak gradient. This way, it is possible to in�uence the slope of control functions

which might be another advantage when modeling real-world applications. Especially, a setting

is considered where the control’s weak gradient vanishes w.r.t. one variable. This allows us to

model practical situations where the control has to be constant in e.g. time.

This paper is devoted to the optimal control of a linear, elliptic partial di�erential equation. In

contrast to the usual setting, the control comes from an order one Sobolev space which allows

us to postulate additional equality constraints on the control’s weak gradient. To the best of the

author’s knowledge, such problems have not yet been considered in the literature. Karush-Kuhn-

Tucker (KKT for short) -type conditions for the problem are derived, which are su�cient but, in

general, not necessary for optimality. The underlying lack of regularity is visualized by means

of several examples. Thus, a penalization procedure is suggested which can be used to solve

the underlying optimal control problem. Moreover, the numerical treatment of the problem is

investigated. As it will become clear in the paper, the appearance of the gradient constraint

causes some essential di�culties which are not known in standard control theory.

The paper is organized as follows: In Section 2, a precise formulation of the model problem

is presented and the associated assumptions are summarized. Furthermore, some comments

on the existence of optimal solutions are given. The notation exploited in this paper as well

as some fundamentals of Banach space programming are discussed in Section 3. Section 4 is

dedicated to the theoretical investigation of control gradient constraints. KKT-type optimality

conditions for the problem of interest are derived. By means of examples, it is shown that
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their necessity is not inherent, neither theoretically nor numerically. Afterwards, the special

setting where the control function’s weak gradient w.r.t. one variable has to vanish is studied in

Section 5. Here, it is possible to derive necessary and su�cient optimality conditions without

further assumptions. In Section 6, a penalization method is proposed which can be used to

solve the gradient constrained optimal control problem numerically. Section 7 deals with the

computational treatment of the optimal control problem, where, �nally, a model problem is

solved numerically. Moreover, some numerical issues are discussed, especially the problem of

choosing the right �nite element space for the considered problem class.

2 Problem statement

For a given bounded domain Ω ⊂ Rd
with boundary Γ satisfying the cone condition, see [Adams

and Fournier, 2003, Section 4], the following elliptic optimal control problem is considered:

1

2
‖y − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω) → min

y,u

−∇ · (C(x)∇y(x)) + a(x)y(x) = u(x) a.e. on Ω

®n · (C(x)∇y(x)) + d(x)y(x) = 0 a.e. on Γ

®b(x) · ∇u(x) = g(x) a.e. on Ω.

(OCGC)

Note that H 1(Ω) is used for state and control space. The special features of (OCGC) comprise

an H 1
-penalty-term w.r.t. the control in the objective functional and some control constraints

addressing the control function’s weak gradient. The precise assumptions on the problem are

stated below.

Assumption 2.1. Let C ∈ L∞(Ω;Rd×d ) possesses symmetric images in Rd×d on Ω and let the
subsequent condition of uniform ellipticity be satis�ed for some constant c0 > 0:

∀x ∈ Ω ∀ξ ∈ Rd
: ξ>C(x)ξ ≥ c0 |ξ |22 .

The data functions a ∈ L∞(Ω) and d ∈ L∞(Γ) are chosen such that ‖a‖L∞(Ω) + ‖d‖L∞(Γ) > 0 is
valid. The target state yd ∈ L2(Ω), a Tikhonov regularization parameter λ > 0, as well as functions
®b ∈ L∞(Ω;Rd ) and g ∈ L2(Ω) are �xed.

Due to these assumptions, for any source from L2(Ω), the given elliptic PDE possesses a

unique weak solution in H 1(Ω) and the associated solution operator is linear and continuous,

see [Evans, 2010, Section 6] for the details. Since the controls are chosen from H 1(Ω) which is

continuously embedded into L2(Ω), the solution operator of the PDE can be interpreted as a

bounded, linear operator mapping from H 1(Ω) to H 1(Ω) as well. Consequently, the state-reduced

problem associated with (OCGC) is still convex and possesses a continuous objective. Due to the

appearance of the regularization term
λ
2
‖u‖2H 1(Ω) in the reduced objective, it is coercive. Note

that a standard regularization w.r.t. the L2(Ω)-norm does not yield this property for functions

from H 1(Ω).
The following result follows from standard arguments.
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Proposition 2.2. The optimal control problem (OCGC) possesses a unique optimal solution pro-
vided it possesses a feasible point.

The feasibility of (OCGC) is discussed in Section 4. Especially, take a look at Examples 4.3,

4.4, and 4.5.

3 Notation and preliminary results

3.1 Basic notation

For some Banach spaceX, ‖·‖X denotes its norm. Especially, |·|
2

is exploited in order to represent

the Euclidean norm in Rn
. Furthermore, x · y expresses the common Euclidean inner product

of two vectors x ,y ∈ Rn
. Moreover, for d ∈ N, Ed ∈ Rd×d

represents the unit matrix in

Rd×d
while N and n are used to express the zero matrix and the zero vector of appropriate

dimensions and length, respectively. For any m ∈ {1, . . . ,n}, enm ∈ Rn
is the m-th unit vector in

Rn
. The (topological) dual space of X is denoted by X?

. The associated dual pairing is given

by 〈·, ·〉X : X? × X → R. The Banach space X is called re�exive if the canonical embedding

x 7→ 〈·,x〉X , which maps X to its associated bidual space X??
, is surjective. In this case,

X � X??
is valid. Note that any Hilbert space is re�exive.

A sequence {xk }k ∈N ⊂ X is said to converge to some x̄ ∈ X (xk → x̄ for short) whenever

the real sequence {‖xk − x̄ ‖X}k ∈N converges to zero. On the other hand, {xk }k ∈N converges

weakly to x̄ (xk ⇀ x̄ for short) if

〈
x?,xk

〉
X →

〈
x?, x̄

〉
X holds true for all x? ∈ X?

.

Next, let Y be another Banach space. The set L [X,Y] is used to represent the Banach space

of all continuous linear operators mapping from X to Y. For brevity, its norm is represented by

‖·‖X→Y . For any A ∈ L [X,Y], A? ∈ L
[
Y?,X?

]
denotes its adjoint. Supposing that X ⊂ Y is

valid, X is called continuously embedded into Y (X ↪→ Y for short) if the identical mapping

from X to Y is an element of L [X,Y]. The generic operator E ∈ L [X,Y] will be used in

order to represent the continuous embedding X ↪→ Y. If, additionally, the closure of the unit

ball

{
x ∈ X | ‖x ‖X ≤ 1

}
w.r.t. the norm ‖·‖Y is compact in Y, then X is said to be compactly

embedded into Y.

Let X be re�exive. An operator A ∈ L
[
X,X?

]
is said to be elliptic (or coercive) whenever

there exists a constant α > 0, such that the relation

∀x ∈ X : 〈A[x],x〉X ≥ α ‖x ‖2X

is valid. By de�nition, the adjoint of any elliptic operator is elliptic as well. Furthermore, any

elliptic operator is an isomorphism, see e.g. [Werner, 1995, Lemma IV.5.3].

A functional j : X → R is referred to as weakly lower semicontinuous at x̄ ∈ X if the

following condition is valid:

∀{xk }k ∈N ⊂ X : xk ⇀ x̄ =⇒ j(x̄) ≤ lim inf

k→∞
j(xk ).

It is well known from e.g. [Tröltzsch, 2009, Theorem 2.12] that any convex and continuous

functional is weakly lower semicontinuous.
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Recall that a function J : X → Y is called Fréchet di�erentiable at x̄ ∈ X if there exists a

bounded, linear operator J ′(x̄) ∈ L [X,Y] which satis�es

lim

‖d ‖X↘0

‖ J (x̄ + d) − J (x̄) − J ′(x̄)[d]‖Y
‖d ‖X

= 0.

In this case, J ′(x̄) is called the Fréchet derivative of J at x̄ . Suppose that x 7→ J ′(x) is a well-

de�ned mapping from X to L [X,Y] which is continuous in a neighborhood of x̄ . Then, J is

said to be continuously Fréchet di�erentiable at x̄ .

3.2 Function spaces

For a bounded domain Ω ⊂ Rd
, a real number p ∈ [1,∞], and some re�exive Banach space B,

Lp (Ω;B) denotes the common order p Lebesgue space of all (equivalence classes of) measurable

functions mapping from Ω to B. Recall that the norm in Lp (Ω;B) is given by

∀u ∈ Lp (Ω;B) : ‖u‖Lp (Ω;B) :=

(∫
Ω
‖u(x)‖pB dx

)
1/p

for all p ∈ [1,∞) and by

∀u ∈ L∞(Ω;B) : ‖u‖L∞(Ω;B) := inf

N ⊂Ω, |N |=0

(
sup

x ∈Ω\N
‖u(x)‖B

)
for p = ∞. Therein, |M | denotes the Lebesgue measure of a measurable set M ⊂ Ω. For brevity,

let Lp (Ω) := Lp (Ω;R) hold for all p ∈ [1,∞]. Recall that L2(Ω) is a Hilbert space whose dual can

be identi�ed with L2(Ω) with the aid of Riesz’s representation theorem. The associated dual

pairing is given by

∀u,v ∈ L2(Ω) : 〈v,u〉L2(Ω) =

∫
Ω
u(x)v(x)dx .

Following standard notions, C(Ω), C1(Ω), and C∞(Ω) represent the Banach spaces of all real-

valued functions which are continuous, continuously di�erentiable, and arbitrarily often di�er-

entiable on the closure of Ω, respectively, which are equipped with the usual supremum norms.

Furthermore, C∞
0
(Ω) denotes the set of all functions which are arbitrarily often continuously

di�erentiable on Ω and whose support is a compactum in Ω.

The Banach space of all order one weakly di�erentiable functions from L2(Ω) whose weak

derivatives come from L2(Ω) as well is denoted by H 1(Ω). As it is usual, H 1(Ω) is equipped with

the following norm:

∀y ∈ H 1(Ω) : ‖y ‖H 1(Ω) :=
(
‖y ‖2L2(Ω) +

∑d
i=1

∂xiy2

L2(Ω)

)
1/2
.

Obviously, H 1(Ω) ↪→ L2(Ω) holds true, and this embedding is compact as long as Ω satis�es at

least the so-called cone condition, see [Adams and Fournier, 2003, Sections 4 and 6].

Note that H 1(Ω) is a Hilbert space. However, for the well-known reasons, H 1(Ω)? is not

identi�ed with H 1(Ω). Instead, H 1(Ω)? is interpreted as the Banach space L2(Ω(d )) where Ω(d )
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is a domain which is composed of Ω0
:= Ω and d additional mutually disjoint copies Ω1, . . . ,Ωd

of Ω, i.e. Ω(d ) :=
⋃d

i=0
Ωi

. For any µ ∈ H 1(Ω)?, there exists a not necessarily unique function

ν ∈ L2(Ω(d )) such that

∀y ∈ H 1(Ω) : 〈µ,y〉H 1(Ω) = 〈ν0,y〉L2(Ω) +
∑d

i=1

〈
νi , ∂xiy

〉
L2(Ω)

is valid. Therein, νi ∈ L2(Ω) denotes the restriction of ν to Ωi
for all i = 0, 1, . . . ,d . Note that

the Banach spaces H 1(Ω), L2(Ω), and H 1(Ω)? form a so-called Gelfand triple, i.e. they satisfy

H 1(Ω) ↪→ L2(Ω) ↪→ H 1(Ω)?. More information on duality in Sobolev spaces can be found in

[Adams and Fournier, 2003, Section 3].

3.3 Fundamental KKT-theory

In this section, an abstract framework for optimality conditions will be recalled. Therefore, the

model problem

J (y,u) → min

y,u

G[y] − H[u] = 0

K[u] = q

(P)

will be considered where the following standing assumptions hold.

Assumption 3.1. Let Y as well asU be Hilbert spaces. Furthermore, letZ be a Banach space.
The functional J : Y ×U → R is assumed to be convex and continuously Fréchet di�erentiable.
Continuous, linear operators G ∈ L

[
Y,Y?

]
, H ∈ L

[
U,Y?

]
, and K ∈ L [U,Z] are �xed.

Furthermore, G is assumed to be elliptic. Finally, q ∈ Z is a �xed vector.

Below, optimality conditions associated with (P) are presented, which arise from the funda-

mental theory of optimization in Banach spaces, see Bonnans and Shapiro [2000] and Zowe

and Kurcyusz [1979] for details.

Lemma 3.2. Let (ȳ , ū) ∈ Y ×U be a feasible point of (P).
Suppose that there are multipliers p ∈ Y and ζ ∈ Z? which solve the system

J ′y (ȳ , ū) − G?[p] = 0

J ′u (ȳ , ū) + H?[p] + K?[ζ ] = 0.
(1)

Then, (ȳ, ū) is a global minimizer of (P).
On the other hand, if (ȳ , ū) is a minimizer of (P), and if K is surjective, then there are uniquely

determined multipliers p ∈ Y and ζ ∈ Z? which solve (1).

Proof. First, observe that (1) is the KKT-system of (P), see [Bonnans and Shapiro, 2000, Section 3].

Noting that (P) is a convex optimization problem, the su�ciency of the KKT-conditions follows

e.g. from [Jahn, 1996, Corollary 5.15].

Recall that the ellipticity of G implies that this operator is surjective. Thus, if K is surjective

as well, then Robinson’s constraint quali�cation, see [Bonnans and Shapiro, 2000, Section 2.3.4],
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is valid at all the feasible points of (P). Especially, the KKT-conditions of (P) are necessary

optimality conditions by means of [Bonnans and Shapiro, 2000, Theorem 3.9]. The uniqueness

of the multipliers follows from the injectivity of G?
and K?

. �

Following [Kurcyusz, 1976, Theorem 3.2], it is possible to weaken the surjectivity assumption

on K such that the KKT conditions (1) are still necessary optimality conditions for (P) while the

associated Lagrange multipliers do not need to be unique anymore.

Lemma 3.3. Let (ȳ, ū) ∈ Y ×U be a minimizer of (P). If K[U] is a closed subspace ofZ, then
there are multipliers p ∈ Y and ζ ∈ Z? which solve (1).

4 Gradient constraints on the control function

In this section, the gradient constraint

®b(x) · ∇u(x) = g(x) a.e. on Ω

will be studied in detail. Note that it is nothing else but a linear partial di�erential equation

of �rst order without any boundary conditions. In order to deal with the gradient constraint

theoretically, a linear operator A(®b) : H 1(Ω) → L2(Ω) is de�ned as given below:

∀u ∈ H 1(Ω) : A(®b)[u] := ®b · ∇u .

Consequently, the gradient constraint is equivalent to A(®b)[u] = g.

The �rst result of this section shows that A(®b) is continuous.

Lemma 4.1. The linear operator A(®b) is continuous, i.e. A(®b) ∈ L
[
H 1(Ω),L2(Ω)

]
holds true.

Proof. For any u ∈ H 1(Ω), the estimateA(®b)[u]
L2(Ω)

=

®b · ∇u
L2(Ω)

≤ ∑d
i=1

®bi∂xiuL2(Ω)
≤ ∑d

i=1

®bi
L∞(Ω)

∂xiuL2(Ω)

≤
®b

L∞(Ω;Rd )

∑d
i=1

∂xiuL2(Ω) ≤
®b

L∞(Ω;Rd )

(
‖u‖L2(Ω) +

∑d
i=1

∂xiuL2(Ω)

)
≤

®b
L∞(Ω;Rd )

√
d + 1 ‖u‖H 1(Ω)

holds. This shows the boundedness and, thus, the continuity of the linear operator A(®b). �

The following corollary will be useful when a penalization approach is considered in order to

deal with the gradient constraint numerically, see Section 6.

Corollary 4.2. Themappingu 7→
A(®b)[u] − g

L2(Ω)
is weakly lower semicontinuous as a function

from H 1(Ω) to R.
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Proof. For the proof, it is su�cient to show that the mapping of interest is convex and continuous.

Its convexity is obvious. For the proof of continuity, choose a sequence {uk }k ∈N ⊂ H 1(Ω) such

that it converges to ū ∈ H 1(Ω). Exploiting Lemma 4.1,����A(®b)[uk ] − gL2(Ω)
−

A(®b)[ū] − g
L2(Ω)

���� ≤ A(®b)[uk ] − A(®b)[ū]
L2(Ω)

≤
A(®b)

H 1(Ω)→L2(Ω)
‖uk − ū‖H 1(Ω) → 0

holds as k →∞. This yields the claim. �

Depending on the regularity of
®b, g, and the underlying domain Ω, it is possible to �nd

solutions of A(®b)[u] = g analytically using standard methods.

Example 4.3. Fix d ≥ 2, Ω := (0, 2)d , and g ∈ C(Ω), and let ®b ∈ Rd be a constant vector such
that ®b1 , 0 holds.
Using the method of characteristics, see [Evans, 2010, Section 3.2], it is possible to construct a

strong solution ū (i.e. a C1(Ω)-solution) of the Cauchy problem∑d
i=1

®bi∂xiu(x) = g(x) a.e. on Ω

u(1,x2, . . . ,xd ) = 0 f.a.a. (x2, . . . ,xd ) ∈ (0, 2)d−1,

since the Jacobian which is assigned to the corresponding ODE-system is given by

©«
®b1 0 . . . 0

®b2 1 0

...
. . .

®bd 0 1

ª®®®®®¬
and is regular since ®b1 does not vanish. Clearly, ū ∈ H 1(Ω) now satis�es the operator equation
A(®b)[ū] = g. Note that a di�erent choice for the characteristic manifold may lead to a solution of
A(®b)[u] = g which is di�erent from ū, i.e. A(®b) is not injective.

The upcoming examples indicate that the operator A(®b) is neither surjective nor it possesses a

closed range in general. Example 4.4 presents a setting in the one-dimensional case where A(®b)
is not surjective. Example 4.5 indicates that surjectivity of A(®b) cannot be guaranteed even if

®b
is a constant vector. Note that we need to consider d ≥ 2 here since for d = 1 and any nonzero

number β , A(β) is surjective. Finally, it is shown in Example 4.6 that the range of A(®b) does not

need to be closed.

Example 4.4. For Ω := (0, 1) and β > 0, consider the gradient constraint

x β ∂xu(x) = 1 a.e. on Ω.
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A solution ū ∈ H 1(Ω) needs to satisfy ∂xū(x) = x−β for almost every x ∈ Ω and ∂xū ∈ L2(Ω). The
squared norm of the �rst order derivative ∂xū is given by

‖∂xū‖2L2(Ω) =

∫
1

0

x−2β
dx =

{
1

1−2β if β ∈
(
0, 1

2

)
+∞ if β ≥ 1

2
.

Thus, for any β ∈ (0, 1

2
) and arbitrary c ∈ R, ū(x) := 1

1−β x
1−β +c provides a solution of the gradient

constraint which lies in H 1(Ω). On the other hand, there does not exist a solution of the gradient
constraint in H 1(Ω) if β ≥ 1

2
is valid, i.e. the associated operator A(®b) is not surjective in this case.

Example 4.5. For Ω := (0, 2)2 and ®b := e2

1
, the operator A(®b) is considered. Set

∀(x1,x2) ∈ Ω : g(x1,x2) :=

{
1 if 1 < x2

0 if x2 ≤ 1.

Next, it will be shown that the operator equation A(®b)[u] = g, i.e. ∂x1
u = g, does not possess a

solution in H 1(Ω). This shows that A(®b) is not surjective.
Therefore, a function ū ∈ L2(Ω) is introduced as stated below:

∀(x1,x2) ∈ Ω : ū(x1,x2) :=

{
x1 if 1 < x2

0 if x2 ≤ 1.

It can be easily checked that ū possesses a weak derivative w.r.t. x1 which equals g. Thus, it is a
solution of ∂x1

u = g.
Set D := (0, 2). Exploiting the Gaussian integral theorem and the density of C∞(D) in L2(D), it

can be shown that any function of the form

∀(x1,x2) ∈ Ω : ūv (x1,x2) := ū(x1,x2) +v(x2),

where v ∈ L2(D) is arbitrarily chosen, solves the gradient constraint ∂x1
u = g as well. Note that

the functions ūv for v ∈ L2(D) are precisely those functions in L2(Ω) which solve this gradient
constraint.
Fix v ∈ L2(D) arbitrarily and suppose that ūv possesses a weak derivative ∂x2

ūv ∈ L2(Ω) as
well. Then, v ∈ H 1(D) must hold true and h := ∂x2

ū ∈ L2(Ω) needs to exist. This implies

−
∫
Ω
h(x)φ(x)dx =

∫
Ω
ū(x)∂x2

φ(x)dx =
∫

bd Ω1

x1φ(x1,x2)n2(x1,x2)ds = −
∫

2

0

t φ(t , 1)dt

for all φ ∈ C∞
0
(Ω), where Ω1 := (0, 2) × (1, 2) holds and n2(x1,x2) denotes the second component of

the normal vector at (x1,x2) ∈ bd Ω1 pointing out of Ω1. However, the relation

∀φ ∈ C∞
0
(Ω) :

∫
Ω
h(x)φ(x)dx =

∫
2

0

t φ(t , 1)dt

cannot be satis�ed for some function h ∈ L2(Ω). Thus, the function ūv is no element ofH 1(Ω). Since
v ∈ H 1(D) was chosen arbitrarily, the gradient constraint ∂x1

u = g does not possess a solution in
H 1(Ω).
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Example 4.6. As in Example 4.5, Ω := (0, 2)2 and ®b := e2

1
are �xed. De�ne

∀k ∈ N∀(x1,x2) ∈ Ω : gk (x1,x2) :=


1 if 1 < x2

k
(
x2 − 1) + 1 if 1 − 1

k ≤ x2 ≤ 1

0 if x2 < 1 − 1

k .

It can be easily checked that {gk }k ∈N ⊂ C(Ω) converges w.r.t. the L2(Ω)-norm to the 0-1-function
g ∈ L2(Ω) de�ned in Example 4.5. Due to Example 4.3, {gk }k ∈N ⊂ A(®b)[H 1(Ω)] is valid. On the
other hand, it was shown in Example 4.5 that g does not belong to A(®b)[H 1(Ω)]. Thus, the latter set
cannot be closed.

The above examples as well as Lemmas 3.2 and 3.3 indicate the following observation.

Remark 4.7. Since the operator A(®b) is neither surjective nor it possesses a closed range in general,
the KKT-conditions of (OCGC) do not yield an applicable necessary optimality criterion for this
problem.

However, due to the inherent convexity of problem (OCGC), the associated KKT-conditions

provide a su�cient criterion for optimality. In order to derive the KKT-conditions of (OCGC),

the actual form of the adjoint operator of A(®b) is of interest.

Lemma 4.8. The adjoint operator A(®b)? ∈ L
[
L2(Ω),H 1(Ω)?

]
of A(®b) is given as stated below:

∀φ ∈ L2(Ω)∀u ∈ H 1(Ω) :
〈
A(®b)?[φ],u

〉
H 1(Ω)

=
∑d

i=1

〈
®biφ, ∂xiu

〉
L2(Ω)

.

Proof. For arbitrary u ∈ H 1(Ω) and φ ∈ L2(Ω), the equivalences〈
A(®b)?[φ],u

〉
H 1(Ω)

=
〈
φ,A(®b)[u]

〉
L2(Ω)

=

∫
Ω
φ(x)

(®b(x) · ∇u(x))dx
=

∑d
i=1

∫
Ω
φ(x)®bi (x)∂xiu(x)dx =

∑d
i=1

〈
®biφ, ∂xiu

〉
L2(Ω)

hold by de�nition of the adjoint. Exploiting the de�nition of the dual pairing in H 1(Ω) yields

the claim. �

For the purpose of completeness, the KKT-conditions of (OCGC) are presented below.

Corollary 4.9. Let (ȳ, ū) ∈ H 1(Ω) × H 1(Ω) be a feasible point of (OCGC). Furthermore, assume
that there exist functions p ∈ H 1(Ω) and φ ∈ L2(Ω) which satisfy the following conditions:

−∇ · (C(x)∇p(x)) + a(x)p(x) = ȳ(x) − yd(x) a.e. on Ω

®n · (C(x)∇p(x)) + d(x)p(x) = 0 a.e. on Γ

〈λū + p,v〉L2(Ω) +
∑d

i=1

〈
λ∂xi ū +

®biφ, ∂xiv
〉
L2(Ω)

= 0 for all v ∈ H 1(Ω).
(2)

Therein, the elliptic PDE has to be understood in weak sense. Then, (ȳ, ū) is an optimal solution of
(OCGC).

10



Proof. Using Green’s formula, the di�erential operator which describes the weak formulation

of the PDE in (OCGC) is given by

〈G[y],v〉H 1(Ω) :=

∫
Ω
(C(x)∇y(x)) · ∇v(x)dx +

∫
Ω
a(x)y(x)v(x)dx +

∫
Γ
d(x)y(x)v(x)ds

for all y ∈ H 1(Ω) and v ∈ H 1(Ω). Note that G is a linear, continuous, self-adjoint, and elliptic

operator which maps from H 1(Ω) to H 1(Ω)?, see [Evans, 2010, Section 6]. The source term of

the PDE can be modelled by the self-adjoint, linear operator H ∈ L
[
H 1(Ω),H 1(Ω)?

]
de�ned

below:

∀u ∈ H 1(Ω)∀v ∈ H 1(Ω) : 〈H[u],v〉H 1(Ω) :=

∫
Ω
u(x)v(x)dx .

Thus, the proof follows from Lemmas 3.2 and 4.8. �

In the �nal example of this section, it is depicted that in the KKT-conditions (2) indeed do not

provide a necessary optimality condition for (OCGC) in general.

Example 4.10. Choose Ω := (0, 1) and consider the optimal control problem

1

2
‖y − yd‖2L2(Ω) +

1

2
‖u‖2H 1(Ω) → min

y,u

−∆y(x) = u(x) a.e. on Ω

∂xy(x) + y(x) = 0 x ∈ {0, 1}
x 1/3∂xu(x) = 2

3
a.e. on Ω

with
∀x ∈ Ω : yd(x) := − 9

40
x8/3 + 33

40
x − 33

40
.

Similar as in Example 4.4, the set of feasible controls is given by {uc | c ∈ R} where uc ∈ H 1(Ω) is
de�ned by uc (x) := x2/3 + c for all x ∈ Ω. A simple calculation shows that the associated solution
of the state equation is

∀x ∈ Ω : yc (x) := − 9

40
x8/3 − 1

2
cx2 +

(
33

40
+ 3

2
c
)
(x − 1).

Thus, one can check that the minimal objective value is attained for c̄ := − 24

77
. Set ȳ := yc̄ and

ū := uc̄ . Then, (ȳ, ū) solves the above optimal control problem globally.
Now, it is shown that the necessary optimality conditions cannot hold at (ȳ , ū). Suppose that
(p,φ) ∈ H 1(Ω) × L2(Ω) solves the KKT-system (2). The third condition in (2) implies the validity of
∂xū(x) + x 1/3φ(x) = 0 for almost all x ∈ Ω which yields

φ(x) = −x−1/3∂xū(x) a.e. on Ω.

Since φ ∈ L2(Ω) shall hold, the map x 7→ −x−1/3∂xū(x) must belong to L2(Ω), too. Recalling that
∂xū(x) = 2

3
x−1/3 is valid for almost every x ∈ Ω, the latter cannot be true since x 7→ x−2/3 does

not belong to L2(Ω). Consequently, the KKT-conditions are not valid in the present situation.
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5 Vanishing control gradients w.r.t. one variable

In this paragraph, it is assumed that Ω := I × D holds true where I ⊂ R and D ⊂ Rd−1
are a

bounded interval and a bounded domain with su�ciently smooth boundary, respectively. For

simplicity, elements of Ω are denoted by x = (x1,ω) where x1 ∈ I and ω = (x2, . . . ,xd ) ∈ D hold.

In order to deal with the special gradient constraint

∂x1
u(x1,ω) = 0 f.a.a. (x1,ω) ∈ Ω,

it is also possible to change the control space from H 1(Ω) to H 1(D) and to interpret all functions

in H 1(D) as those functions in H 1(Ω) which are constant in variable x1. This way, one can

eliminate the gradient constraint but has to face a di�erent source term w.r.t. the restricting

PDE since control and state space are not longer the same. To be exact, the source term can be

modeled by a linear operator B : H 1(D) → H 1(Ω)? given by

∀u ∈ H 1(D)∀v ∈ H 1(Ω) : 〈B[u],v〉H 1(Ω) :=

∫
Ω
u(ω)v(x1,ω)d(x1,ω).

This means that the PDE is still tested with functions from H 1(Ω) w.r.t. the L2(Ω)-pairing.

Noting that

∀w ∈ L2(D) : ‖w ‖2L2(Ω) =

∫
Ω
w2(ω)d(x1,ω) =

∫
I

∫
D
w2(ω)dωdx1 = |I | ‖w ‖2L2(D) (3)

follows from Fubini’s theorem,

〈B[u],v〉H 1(Ω) ≤ ‖u‖L2(Ω) ‖v ‖L2(Ω) =
√
|I | ‖u‖L2(D) ‖v ‖L2(Ω) ≤

√
|I | ‖u‖H 1(D) ‖v ‖H 1(Ω)

is obtained for all u ∈ H 1(D) and v ∈ H 1(Ω), i.e. B is bounded and, thus, an element of

L
[
H 1(D),H 1(Ω)?

]
.

Exploiting Fubini’s theorem once more,〈
B?[v],u

〉
H 1(D) = 〈B[u],v〉H 1(Ω) =

∫
D
u(ω)

(∫
I
v(x1,ω)dx1

)
dω

can be derived for all u ∈ H 1(D) and v ∈ H 1(Ω).
Due to the obvious existence of feasible controls (such as the constant functions) in this situa-

tion, the following necessary and su�cient optimality condition is obtained which characterizes

the unique minimizer of the underlying optimal control problem.

Theorem 5.1. In the situation described above, the underlying optimal control problem (OCGC)

possesses a unique optimal solution. A feasible point (ȳ, ū) ∈ H 1(Ω) × H 1(D) is globally optimal if
and only if there exist p ∈ H 1(Ω) and q ∈ L2(D) which satisfy the following conditions:

−∇ · (C(x)∇p(x)) + a(x)p(x) = ȳ(x) − yd(x) a.e. on Ω

®n · (C(x)∇p(x)) + d(x)p(x) = 0 a.e. on Γ

λ |I |ū +
∫
I
p(x1, ·)dx1 − q = 0

〈q,w〉L2(D) + λ |I |
∑d

i=2

〈
∂xi ū, ∂xiw

〉
L2(D) = 0 for allw ∈ H 1(D).

(4)

12



Proof. Consider the functional f : H 1(D) → R given by f (u) := λ
2
‖u‖2H 1(Ω). If it is possible to

show that the Fréchet derivative f ′(ū) is given by

∀u ∈ H 1(D) : f ′(ū)[u] = λ |I |
(
〈ū,u〉L2(Ω) +

∑d
i=2

〈
∂xi ū, ∂x2

u
〉
L2(Ω)

)
,

then the proof would follow by standard arguments from optimal control theory, see Lemma

3.2, together with the above representation of B?
.

Denote by L : H 1(D) → H 1(Ω) the operator which interprets any function from H 1(D) as a

H 1(Ω)-function which is constant in the variable x1. Due to

∀u ∈ H 1(D) : ‖L[u]‖2H 1(Ω) = ‖u‖
2

L2(Ω) +
∑d

i=2

∂xiu2

L2(Ω)

= |I |
(
‖u‖2L2(D) +

∑d
i=2

∂xiu2

L2(D)

)
= |I | ‖u‖2H 1(D) ,

see (3), the linear operator L is a bounded and, thus, an element of L
[
H 1(D),H 1(Ω)

]
.

Since f = λ
2
‖·‖2H 1(Ω) ◦ L holds true, f ′(ū) = λL?[L[ū]] is obtained from the chain rule, see

[Tröltzsch, 2009, Theorem 2.20]. A simple calculation shows〈
L?[L[ū]],u

〉
H 1(D) = 〈L[ū],L[u]〉H 1(Ω)

=

∫
Ω
ū(ω)u(ω)d(x1,ω) +

∑d
i=2

∫
Ω
∂xi ū(ω)∂xiu(ω)d(x1,ω)

=

∫
I

∫
D
ū(ω)u(ω)dωdx1 +

∑d
i=2

∫
I

∫
D
∂xi ū(ω)∂xiu(ω)dωdx1

= |I |
(
〈ū,u〉L2(D) +

∑d
i=2

〈
∂xi ū, ∂xiu

〉
L2(D)

)
for all u ∈ H 1(D). Now, the claim follows from f ′(ū)[u] = λ

〈
L?[L[ū]],u

〉
H 1(D) which holds for

all u ∈ H 1(D). �

Note that there is a relation between the general KKT-system (2) of (OCGC) and the necessary

optimality condition in (4).

Corollary 5.2. Let (ȳ, ū) ∈ H 1(Ω) × H 1(Ω) be a feasible point of (OCGC) where ®b := ed
1
is �xed

and Ω := I × D holds for a bounded interval I ⊂ R and a bounded domain D ⊂ Rd−1.
Suppose that the optimality condition (2) is valid for (ȳ, ū). Then, the optimality condition

provided in Theorem 5.1 holds true as well.

Proof. Let p ∈ H 1(Ω) and φ ∈ L2(Ω) be the Lagrange multipliers which satisfy the KKT-

conditions (2). Transferring the last condition of (2) into the space H 1(D) yields

〈λū + p,w〉L2(Ω) +
∑d

i=2

〈
λ∂xi ū, ∂xiw

〉
L2(Ω) = 0 for all w ∈ H 1(D) (5)

since the functions w ∈ H 1(D) can be interpreted as those functions from H 1(Ω) whose weak

derivative w.r.t. x1 vanishes. Using Fubini’s theorem,

〈λū + p,w〉L2(Ω) = λ

∫
I

∫
D
ū(ω)w(ω)dωdx1 +

∫
D
w(ω)

(∫
I
p(x1,ω)dx1

)
dω

= λ |I | 〈ū,w〉L2(D) +

〈∫
I
p(x1, ·)dx1,w

〉
L2(D)
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is obtained for all w ∈ H 1(D). Similarly, one can check that∑d
i=2

〈
λ∂xi ū, ∂xiw

〉
L2(Ω) = λ |I |

∑d
i=2

〈
∂xi ū, ∂xiw

〉
L2(D)

is valid for all w ∈ H 1(D). Inserting these formulas into (5) and de�ning q ∈ L2(D) as stated in

the third condition of the system (4) completes the proof. �

The converse statement of Corollary 5.2 does not seem to be true in general since H 1(D)
can be interpreted a strict closed subspace of H 1(Ω). Thus, due to the possibility to replace the

gradient constraint ∂x1
u = 0 by demanding the controls to come from H 1(D), it was possible to

obtain a suitable optimality condition which is not only su�cient but also necessary, cf. Section

4 for the case of arbitrary gradient constraints.

6 A penalization technique

Let {γk }k ∈N ⊂ R be a sequence of positive penalization parameters tending to∞ as k →∞. In

this section, (OCGC) is replaced by the following penalized surrogate problem:

1

2
‖y − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω) +

γk
2

®b · ∇u − g2

L2(Ω)
→ min

y,u

−∇ · (C(x)∇y(x)) + a(x)y(x) = u(x) a.e. on Ω

®n · (C(x)∇y(x)) + d(x)y(x) = 0 a.e. on Γ.

(OCGC(γk ))

Note that the use of other penalty terms in the objective of (OCGC(γk )) is possible as well.

In order to solve (OCGC) numerically, one may solve the sequence of surrogate problems

(OCGC(γk )) as k → ∞ since it does not seem to be wise to rely on the KKT-conditions of

(OCGC) as necessary optimality conditions, see Remark 4.7. As it will turn out, the suggested

penalization method can be used to compute the global optimal solution of (OCGC) provided

this problem is feasible, cf. Proposition 2.2 and Theorem 6.2.

Using standard arguments, the following result is obtained.

Proposition 6.1. For any k ∈ N, (OCGC(γk )) possesses a unique optimal solution.

In the upcoming theorem, the convergence properties of the sequence of minimizers corre-

sponding to (OCGC(γk )) are investigated.

Theorem 6.2. Assume that (OCGC) is feasible. For any k ∈ N, let (ȳk , ūk ) ∈ H 1(Ω)×H 1(Ω) be the
unique minimizer of (OCGC(γk )). Then, {(ȳk , ūk )}k ∈N possesses a weakly convergent subsequence
(without relabeling) whose weak limit (ȳ , ū) ∈ H 1(Ω) × H 1(Ω) is a globally optimal solution of
(OCGC). Especially, it holds ȳk → ȳ in H 1(Ω) and ūk → ū in L2(Ω).

Proof. Since (OCGC) is feasible, there exists a feasible point (ỹ, ũ) ∈ H 1(Ω) × H 1(Ω) of this

problem. Since this point is also feasible to (OCGC(γk )) for any k ∈ N, the estimate

1

2
‖ȳk − yd‖2L2(Ω) +

λ
2
‖ūk ‖2H 1(Ω) +

γk
2

®b · ∇ūk − g2

L2(Ω)
≤ 1

2
‖ỹ − yd‖2L2(Ω) +

λ
2
‖ũ‖2H 1(Ω) (6)
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holds for any k ∈ N. Especially,

∀k ∈ N : ‖ūk ‖2H 1(Ω) ≤
1

λ

(
‖ỹ − yd‖2L2(Ω) + λ ‖ũ‖

2

H 1(Ω)

)
is obtained, i.e. {ūk }k ∈N ⊂ H 1(Ω) is bounded and, therefore, possesses a weakly convergent

subsequence (without relabeling) with weak limit ū ∈ H 1(Ω). Noting that H 1(Ω) ↪→ L2(Ω) is

compact since Ω satis�es the cone condition, {uk }k ∈N converges strongly to ū w.r.t. the L2(Ω)-
norm. Let ȳ ∈ H 1(Ω) be the solution of the state equation associated with ū. Since the solution

operator of the underlying state equation is an element of L
[
L2(Ω),H 1(Ω)

]
and, therefore,

continuous, cf. Section 2, {ȳk }k ∈N ⊂ H 1(Ω) converges strongly to ȳ w.r.t. the norm in H 1(Ω).
On the other hand, (6) leads to

0 ≤ lim

k→∞

®b · ∇ūk − g2

L2(Ω)
≤ lim

k→∞
1

γk

(
‖ỹ − yd‖2L2(Ω) + λ ‖ũ‖

2

H 1(Ω)

)
= 0.

Noting that the functional u 7→
®b · ∇u − g

L2(Ω)
which maps H 1(Ω) to R is weakly lower

semicontinuous, see Corollary 4.2, yields

0 ≤
®b · ∇ū − g

L2(Ω)
≤ lim inf

k→∞

®b · ∇ūk − g
L2(Ω)

= 0,

i.e. ū satis�es the gradient constraint which means that (ȳ, ū) is feasible to (OCGC).

If (y,u) ∈ H 1(Ω) × H 1(Ω) is an arbitrary feasible point of (OCGC), one obtains

∀k ∈ N :
1

2
‖ȳk − yd‖2L2(Ω)+

λ
2
‖ūk ‖2H 1(Ω)+

γk
2

®b · ∇ūk − g2

L2(Ω)
≤ 1

2
‖y − yd‖2L2(Ω)+

λ
2
‖u‖2H 1(Ω)

since (y,u) is feasible to (OCGC(γk )) for any k ∈ N, too. Exploiting the weak lower semiconti-

nuity of the functionals y 7→ ‖y − yd‖2L2(Ω) and u 7→ ‖u‖2H 1(Ω) which map H 1(Ω) to R,

1

2
‖ȳ − yd‖2L2(Ω) +

λ
2
‖ū‖2H 1(Ω)

≤ lim inf

k→∞
1

2
‖ȳk − yd‖2L2(Ω) + lim inf

k→∞
λ
2
‖ūk ‖2H 1(Ω)

≤ lim inf

k→∞

(
1

2
‖ȳk − yd‖2L2(Ω) +

λ
2
‖ūk ‖2H 1(Ω)

)
≤ lim inf

k→∞

(
1

2
‖ȳk − yd‖2L2(Ω) +

λ
2
‖ūk ‖2H 1(Ω) +

γk
2

®b · ∇ūk − g2

L2(Ω)

)
≤ 1

2
‖y − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω)

is derived, which means that (ȳ, ū) is globally optimal to (OCGC). This completes the proof. �

Note that the proposed penalization method can be used to compute the global optimal

solution of (OCGC) even in the absence of a constraint quali�cation.

For sure, the unique minimizer of the convex problem (OCGC(γk )) can be characterized by

means of the associated KKT-system since the penalty term is smooth while the elliptic operator

which determines the state equation is trivially surjective.
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Proposition 6.3. Fix k ∈ N. A feasible point (ȳk , ūk ) ∈ H 1(Ω) × H 1(Ω) of (OCGC(γk )) is a
globally optimal solution of this problem if and only if there exist functions pk ∈ H 1(Ω) and
φk ∈ L2(Ω) which satisfy the following conditions:

−∇ · (C(x)∇pk (x)) + a(x)pk (x) = ȳk (x) − yd(x) a.e. on Ω

®n · (C(x)∇pk (x)) + d(x)pk (x) = 0 a.e. on Γ

γk (®b · ∇ūk − g) − φk = 0

〈λūk + pk ,v〉L2(Ω) +
∑d

i=1

〈
λ∂xi ūk +

®biφk , ∂xiv
〉
L2(Ω)

= 0 for all v ∈ H 1(Ω).

Remark 6.4. Assume that (OCGC) is feasible. Let {(ȳk , ūk )} ⊂ H 1(Ω)×H 1(Ω) be the sequence of
minimizers corresponding to (OCGC(γk )) and assume w.l.o.g. that ȳk → ȳ and ūk ⇀ ū hold true
in H 1(Ω), see Theorem 6.2. Furthermore, let {(pk ,φk )}k ∈N be the sequence of associated multipliers
which solve the optimality system from Proposition 6.3. Then, it is easy to see that {pk }k ∈N converges
in H 1(Ω) to some function p ∈ H 1(Ω) which satis�es the �rst two conditions in (2). However, it is
not possible to infer that {φk }k ∈N is bounded in L2(Ω). Especially, this sequence does not need to
possess a weak accumulation point φ ∈ L2(Ω) playing the role of the second Lagrange multiplier
appearing in (2).

7 Numerical treatment

7.1 Discrete optimality system

For simplicity, let d = 0 and g = 0 be �xed. The penalized surrogate problem of interest is given

as

1

2
‖y − yd‖2L2(Ω) +

λ
2
‖u‖2H 1(Ω) +

γk
2

®b · ∇u2

L2(Ω)
→ min

y,u

−∇ · (C(x)∇y(x)) + a(x)y(x) = u(x) a.e. on Ω

®n · (C(x)∇y(x)) = 0 a.e. on Γ.

(7)

After multiplying with test functionsv ∈ V := H 1(Ω) and elimination of the boundary conditions

by applying Green’s formula, the weak formulation of the PDE reads as follows:∫
Ω
(C(x)∇y(x)) · ∇v(x)dx +

∫
Ω
a(x)y(x)v(x)dx =

∫
Ω
u(x)v(x)dx for all v ∈ V .

The next step is to approximate Ω by a tessellation Ω∆ (e.g. a triangulation in case d = 2), and,

afterwards, to choose a discrete subspace Vh of V . Let np be the number of nodes and ne be the

number of elements of Ω∆. The associated discrete state and control are de�ned by

∀x ∈ Ω∆ : yh(x) :=
∑np

k=1
ykϕk (x) and uh(x) :=

∑np
k=1

ukϕk (x),

respectively, where ϕ1, . . . ,ϕnp are the basis functions of Vh . In the following, ®y := (yk )k=1, ...np
and ®u := (uk )k=1, ...np denote the coe�cient vectors associated with yh and uh , respectively.

Moreover, the coe�cient functions must be discretized. An adequate choice for the discretiza-

tion space is given by the space of piecewise constant functions on Ω∆, which will be denoted
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by P0(Ω∆), since C = (ci, j )i, j=1, ...,d ∈ L∞(Ω;Rd×d ) and a ∈ L∞(Ω) hold true. The associated

discrete coe�cient functions are de�ned by

∀x ∈ Ω∆ : (ci, j )h(x) :=
∑ne

k=1
(ci, j )kψk (x), i, j = 1, . . . ,d and ah(x) :=

∑ne
k=1

akψk (x),

whereψ1, . . . ,ψne are the characteristic functions associated with the elements in Ω∆. Since all

considered bases are nodal bases, the weights (ci, j )k , i, j = 1, . . . ,d and k = 1, . . . ,ne , equal the

values ci, j (ξk )where ξk is the barycenter of the k-th element of Ω∆. Similarly, the coe�cients ak ,

k = 1, . . .ne , and (yd)k , k = 1, . . . ,ne , for the discretized representation of a and yd are computed.

For brevity, set ®yd := ((yd)k )k=1, ...,ne . The matrix-valued function Ch ∈ L∞(Ω∆;Rd×d ) is de�ned

by Ch := ((ci, j )h)i, j=1, ...,d . Eventually, the discretized version of the PDE’s weak formulation

reads now∫
Ω∆

(∑np
k=1

ykCh(x)∇ϕk (x)
)
· ∇ϕl (x)dx

+

∫
Ω∆

(∑ne
k=1

akψk (x)
) (∑np

k=1
ykϕk (x)

)
ϕl (x)dx l = 1, . . . ,np

=

∫
Ω∆

(∑np
k=1

ukϕk (x)
)
ϕl (x)dx ,

where the test functions are as usual the basis functions of Vh . Note that this formula simpli�es

dramatically if the functions C and a are constant.

Evaluating all integrals, the linear system

(K(C) +M1(a))®y = M1(1)®u

is obtained. The somehow unusual notation of the mass matrices is used to indicate the related

function space (subscript) and the related coe�cient function (in brackets). For example, let

M1(a) := (mi, j )i, j=1, ...,np be the mass matrix that results from evaluatingmi, j :=
〈
ahϕi ,ϕ j

〉
L2(Ω∆),

i, j = 1, . . . ,np , where ϕ1, . . .ϕnp are the basis functions of Vh ⊂ H 1(Ω∆). For a ≡ 1, the mass

matrix M1(1) is obtained. Later, M0(1) ∈ Rne×ne
, the mass matrix related to the space L2(Ω∆)

with coe�cient function a ≡ 1, will be used as well. Since sti�ness matrices K(·) only exist w.r.t.

functions from H 1(Ω∆), a subscript is not necessary, but the coe�cient function (later it will

be C, B, or Ed ) will be indicated. Note that the subscripts do not specify the exploited basis

functions of the underlying �nite element space.

Exploiting the L2(Ω)-pairing, the objective function of (7) can be written as stated below:

1

2
〈E[y] − yd,E[y] − yd〉L2(Ω) +

λ
2

(
〈u,u〉L2(Ω) + 〈∇u,∇u〉L2(Ω;Rd )

)
+

γk
2

〈
®b · ∇u, ®b · ∇u

〉
L2(Ω)

.

Therein, E : H 1(Ω) → L2(Ω) is, in contrast to its use in Section 5, the (formal) embedding

operator representing H 1(Ω) ↪→ L2(Ω). The last term can be written as

γk
2

〈
®b · ∇u, ®b · ∇u

〉
L2(Ω)

=
γk
2

〈(
®b ®b>

)
∇u,∇u

〉
L2(Ω;Rd )

=
γk
2
〈B∇u,∇u〉L2(Ω;Rd )
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with B := ®b ®b> ∈ Rd×d
. The discretized objective function reads now

1

2

∫
Ω∆

(
E

[∑np
k=1

ykϕk (x)
]
−∑ne

k=1
(yd)kψk (x)

)
2

dx

+ λ
2

∫
Ω∆

(∑np
k=1

ukϕk (x)
)

2

dx + λ
2

∫
Ω∆

(∑np
k=1

uk∇ϕk (x)
)
·
(∑np

k=1
uk∇ϕk (x)

)
dx

+
γk
2

∫
Ω∆

(∑np
k=1

ukB∇ϕk (x)
)
·
(∑np

k=1
uk∇ϕk (x)

)
dx .

Evaluating the integrals, the discretized objective of (7) can be written in matrix-vector-form as

1

2
(E10®y − ®yd)>M0(1)(E10®y − ®yd) + λ

2
®u>M1(1)®u + λ

2
®u>K(Ed )®u + γk

2
®u>K(B)®u .

Here, E10 is the transformation matrix from H 1
- to L2

-elements. This is, in some sense, the

discrete counterpart of the formal embedding operator E. Roughly speaking, the matrix E10 is

used to transform yh in a (non-conform) representation by L2
-elements for easier numerical

handling.

From the discretized state equation and the discretized objective function, the following

discrete optimality system can be derived exploiting the fact that the appearing sti�ness and

mass matrices are symmetric:

©«
E>

10
M0(1)E10 N −(K(C) +M1(a))
N λ(K(Ed ) +M1(1)) + γkK(B) M1(1)

−(K(C) +M1(a)) M1(1) N

ª®¬ ©«
®y
®u
®p

ª®¬ = ©«
E>

10
M0(1)®yd

n
n

ª®¬ . (8)

Note that the optimality system is obtained by the so-called direct method or �rst-discretize-then-

optimize approach. In contrast, the indirect method or �rst-optimize-then-discretize approach

would allow more freedom to discretize the individual equations. For instance, state and adjoint

equation could be discretized on di�erent meshes by di�erent �nite elements. However, in

practice, this is rather unusual and a “one grid, same elements for all equations” approach is

more common. In this case, the discrete systems obtained by direct and by indirect method

would be almost the same, only E>
10
M0(1)E10 needs to be replaced by M1(1) while E>

10
M0(1)®yd

needs to be replaced by M1(1)E01®yd, where E01 extrapolates ®yd from L2
- to H 1

-elements. For a

discussion of pros and cons of both approaches, see Gunzburger [2003].

The linear system (8) contains the three di�erent sti�ness matrices K(C), K(B), and K(Ed )
as well as the three di�erent mass matrices M1(a), M1(1), and M0(1). Note that up to now, the

choice of a concrete �nite element space Vh ⊂ H 1(Ω∆) is still open. A common approach would

be to choose the space P0(Ω∆) of piecewise constant basis functions to deal with functions

from L2(Ω), whereas functions from H 1(Ω) are usually approximated by piecewise a�ne basis

function in P1(Ω∆).
In this paper, the object oriented Matlab class library OOPDE, see Prüfert [2015], is used to

perform the numerical experiments. This software allows to discretize all involved functions by

basis functions from P0(Ω∆), P1(Ω∆), or P2(Ω∆), if applicable, and solves mixed �nite element

systems numerically in an easy way. Here, P2(Ω∆) represents the �nite element space of

piecewise polynomials with maximum degree two.
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7.2 An issue with the finite element space

To minimize the complexity of the notation, d = 2 is �xed, i.e. Ω ⊂ R2
holds true. However, the

argumentation in the following section is not restricted to problems in two space dimensions.

The standard class of �nite elements suitable for the overall-H 1(Ω)-setting (w.r.t. the non-

data functions y and u) is P1(Ω∆), the space of piecewise a�ne elements on Ω∆. However, the

gradient constraint cannot be handled properly by P1(Ω∆)-elements as the following example

shows.

Example 7.1. Let Ω := (0, 1)2 be the unit square and consider the gradient constraint

∂x2
u(x1,x2) = 0 a.e. on Ω.

Clearly, two of its solutions are given by

∀(x1,x2) ∈ Ω : ū(x1,x2) := sin(πx1), ũ(x1,x2) := 1

2
x1.

Note that ū and ũ belong to C∞(Ω). For some generic triangulation Ω∆ of Ω speci�ed below, let
ūh ∈ P1(Ω∆) and ũh ∈ P1(Ω∆) be the �nite element approximations of ū and ũ, respectively.

On a structured grid Ω∆, the gradient constraint w.r.t. the nonlinear function ū is ful�lled exactly,
see Figure 1. On an unstructured grid Ω∆, there may appear a discretization error, see Figure 2.

Figure 1: Left ūh , right ∂x2
ūh . The derivative ∂x2

ū is a function from L2(Ω) and is discretized by

piecewise constant �nite elements, i.e. P0(Ω∆)-elements.

Figure 2: Left ūh , right ∂x2
ūh . Since the mesh width of the grid is rather large, the error is

signi�cant.

On the other hand, if a�ne functions like ũ are under consideration on an unstructured grid Ω∆,
the approximation of the discretized gradient constraint can be exact (up to machine accuracy eps),
see Figure 3.
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Figure 3: Left ũh , right ∂x2
ũh . The error in ∂x2

ũh is near eps ≈ 10
−16

.

The following result restricts the use of P1(Ω∆)-elements for the considered problem class.

Lemma 7.2. Choose Ω ⊂ R2 arbitrarily, let Ω∆ be a triangulation of Ω, and �x uh ∈ P1(Ω∆)
which satis�es the discrete gradient constraint ∂x2

uh(x1,x2) = 0 on Ω∆. Finally, assume that any
two neighbored triangles in Ω∆ do not possess a common edge paralleling the x2-axis.

Then, ∂x1
uh is constant on Ω∆, i.e. uh is a�ne on Ω∆.

Proof. Let ∂x2
uh(x1,x2) = 0 be valid on Ω∆, let ∆1,∆2 ⊂ Ω∆ be two neighbored triangles, and let

ξ 1
and ξ 2

be their respective barycenters. Let the triangle ∆1 consist of the nodes x 1
, x2

, and x3
,

and let ∆2 consist of the nodes x2
, x3

, and x4
. Furthermore, de�ne uk := uh(xk ), k ∈ {1, 2, 3, 4},

as well as

du1
:= ∂x1

uh(ξ 1

1
, ξ 1

2
), du2

:= ∂x1
uh(ξ 2

1
, ξ 2

2
), dxk,l := xk

1
− x l

1
, k, l ∈ {1, 2, 3, 4}.

Following the edges of the triangles ∆1 and ∆2 while observing that ∂x2
uh vanishes on Ω∆,

the relations

u4 = u1 + du1
dx2,1 + du2

dx4,2, u4 = u1 + du1
dx3,1 + du2

dx4,3

are obtained. This yields

u1 + du1
dx2,1 + du2

dx4,2 = u1 + du1
dx3,1 + du2

dx4,3

which implies

du1(dx2,1 − dx3,1) = du2(dx4,3 − dx4,2).

From their de�nition, it follows dx2,1−dx3,1 = dx2,3
as well as dx4,3−dx4,2 = dx2,3

. Consequently,

du1 = du2
holds since dx2,3 , 0 is valid due to the geometric requirement on the triangulation

Ω∆. This result is independent of the actual choice of neighbored triangles and, hence, uh must

have a constant partial derivative w.r.t. x1. �

Remark 7.3. Note that the geometric property on Ω∆ demanded in the assumptions of Lemma
7.2 is likely to hold for unstructured grids. Depending on the structure of Ω∆, the result can also
be satis�ed even in the case, where some neighbored triangles in Ω∆ possess a respective common
edge which parallels the x2-axis.
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Note that similar results as described above hold for the gradient constraint which forces the

weak derivative of u w.r.t. x1 to be constantly zero on Ω.

Suppose that the gradient constraint is given by ∂x2
u(x1,x2) = 0 almost everywhere on

Ω ⊂ R2
, let Ω∆ be an unstructured triangulation of Ω, and choose P1(Ω∆) as the �nite element

space for the discretization of the variables. As a consequence of Lemma 7.2 and Remark 7.3, the

numerical solution of the problem is likely to produce a (globally) a�ne optimal control which

may have nothing to do with the correct optimal solution of the underlying optimal control

problem. Hence, the use of P1(Ω∆)-elements is (if at all) restricted to structured grids.

Using higher order �nite elements, the e�ect described in Lemma 7.2 is not present, but the

discretization error w.r.t. the �rst order derivative of the �nite element function a�ects the

solution process as well. Especially, the choice of the penalty parameter directly in�uences the

necessary quality of the approximation of the derivative, a problem that can be overcome by

the choice of a �ner mesh or, more sophisticated, by adaptive error control.

7.3 Numerical experiments

Fix d = 2 and Ω := (0, 1)2. The desired state yd ∈ L2(Ω) is given by

∀(x1,x2) ∈ Ω : yd(x1,x2) := (x1 + x2) sin(2πx1) sin(2πx2).

Of course, yd is already a function from C∞(Ω). Nevertheless, in the following, yd will be

considered as L2(Ω)-function, i.e. it will be discretized by piecewise constant �nite elements,

see Figure 4. The Tikhonov regularization parameter for the norm of the control is �xed to

Figure 4: Desired state yd , discretized as an L2(Ω)-function by piecewise constant basis functions.

λ := 10
−6

. The gradient constraint of interest is given by

∂x1
u(x1,x2) = 0 a.e. on Ω.

Exploiting the paper’s notion,
®b := e2

1
holds. For simplicity, the functions C ≡ E2 and a ≡ 1 are

chosen to be constants.

In the �rst experiment, Ω∆ is a regular so-called “cross discretization” or “structured grid“ of

Ω, and to discretize all non-data functions, a�ne basis functions from P1(Ω∆) are used. In order

to show the di�erence of the development of the calculated control, let the penalty parameter

γk increase from 10
−3

to 10
3
. The maximal mesh width is set to 0.03125. The associated solutions

are computed on a well-structured mesh. The results are presented in Figure 5. Increasing the

penalty parameter, the control converges to a certain function which satis�es the gradient

constraint.
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Figure 5: Control depending on the penalty parameter γk , computed on a structured grid. From

top left to down right, γk is 10
−3

, 10
−2

, 10
−1

, 1, 10, and 10
3
.

Figure 6: Control depending on the penalty parameter γk , computed on an unstructured grid.

From top left to down right, γk is 10
−3

, 10
−2

, 10
−1

, 1, 10, and 10
3
.
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For the second experiment, the setting is changed slightly. The domain Ω is now discretized

by an unstructured grid, i.e. in general, the edges of the triangles are not parallel to the canonic

coordinate directions of R2
. All other parameters remain the same. The OOPDE software

discretizes rectangular domains (by default) by structured meshes. Unstructured meshes can

be created by local re�nement of an arbitrary set of triangles of a structured mesh, followed

by a ”jiggling“ procedure that deforms the mesh in order to create triangles with inner angles

near π/3, where the global mesh-width remains unchanged. The results di�er signi�cantly,

see Figure 6. Obviously, for increasing γk , the solution converges to an a�ne function which

satis�es the gradient constraint. This (discrete) control together with the associated state and

the adjoint state solves the (discrete) optimality system (8). However, from the results of the �rst

experiment, it can be inferred that the computed control is not related to the optimal control of

the underlying in�nite-dimensional optimization problem.

This failure is caused by the choice of piecewise a�ne basis function from P1(Ω∆) which

enforces the resulting control to be a�ne, see Lemma 7.2. Consequently, the computed numerical

solution is optimal w.r.t. this special choice of basis functions but does not approximate the

actual optimal control. However, the dependency of the solution from the grid (via the basis

function of the �nite element space) is a serious issue. To overcome it, elements of class P2(Ω∆)
can be used. Keeping the setting of the second experiment but discretizing all non-data functions

using basis functions from P2(Ω∆), the results shown in Figure 7 are obtained.

Figure 7: Control discretized by P2(Ω∆)-elements, depending on the penalty parameter γk ,

computed on an unstructured grid. From top left to down right, γk is 10
−3

, 10
−2

, 10
−1

, 1,

10, and 10
3
.

As expected, using P2(Ω∆)-elements instead of P1(Ω∆)-elements, a more convincing solution

is obtained. However, this method possesses a weak point as well. By increasing the penalty

parameter, the numerical error will be penalized as well. Depending on the local error in the

23



gradient of u and the penalty parameter, the solution becomes a�ne again. On the other hand,

by decreasing the mesh-width with increasing penalty parameter, this issue can be solved.
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