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HIGHER REGULARITY FOR SOLUTIONS TO ELLIPTIC
SYSTEMS IN DIVERGENCE FORM SUBJECT TO MIXED
BOUNDARY CONDITIONS

ROBERT HALLER-DINTELMANN, HANNES MEINLSCHMIDT,
AND WINNIFRIED WOLLNER

ABsTRrRACT. This note combines some known results from operator- and inter-
polation theory to show that elliptic systems in divergence form admit maxi-
mal elliptic regularity on the Bessel potential scale H%, () for s > 1 sufficiently
close to 1, if the coefficient in the main part satisfies a certain multiplier prop-
erty on the spaces H*~1(Q). Ellipticity is enforced by assuming a Garding
inequality and the result is established for spaces incorporating mixed bound-
ary conditions with very low regularity requirements for the underlying spatial
set. Finally, a phase-field damage model is given as a practical application
where higher differentiability results are obtained as a corollary to our find-
ings.

1. INTRODUCTION

In this paper, we consider elliptic systems in divergence form for an unknown
function u: @ — C™ (or R™). We consider the weak form of a system of elliptic
(n x n) operators A in divergence form induced by the tensor A for a function
u: Q — C™:

d n
(Au)r == Y Y 0a(A3%05u;)

a,f=1j=1

d n
(Au)p == > > 0a(AL%0pu;).

a,B=1j=1
Each equation j € {1,...,n} in this system is subject to possibly mixed boundary
conditions with a Dirichlet boundary part D; and we set D := X?:1 D;. Precise
assumptions on A, the domain §2, and the Dirichlet boundary parts D; are given

below in Assumption [7}

As a motivation for our results, let us assume for the moment that the operator
A defines an isomorphism between the Sobolev Hilbert spaces H}, () — Hp (),
as it can be asserted by the notorious Lax-Milgram theorem in many cases. It is
known under mild assumptions on 2 and D that if Azofﬂ € L>(Q), then A remains
an isomorphism for small perturbations in the integrability scale, i.e., there exists
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€ > 0 such that the mapping
A HEP(Q) — HS P(Q)

remains an isomorphism for all p satisfying 2 —e < p <2+ ¢, see e.g. [11].

We will show that such a result is also true on the differentiability scale: Indeed,
if A is a multiplier on HE for some 0 < € < %, then we prove that there exists § > 0
such that the mapping

A:HL(Q) - HSH(Q)

is still an isomorphism for any 6 satisfying —f < § < 6. The multiplier property
is in particular satisfied if A is o-Holder-continuous for ¢ > ¢. In this case, the
norm of the inverse of A is uniform in its coercivity constant and the bound on the
multiplier norm; in particular, it does not depend explicitly on the actual multiplier
at hand. Similar results have been obtained by Jochmann in [I2] for the case of a
scalar elliptic problem with piecewise smooth boundary. Our work can therefore
be seen as an extension to elliptic systems, thereby permitting much less regular
geometries for {2 and the boundary parts D;.

Such results are interesting, firstly because they provide a sharp maximal elliptic
regularity result for the abstract equation Au = f. Further, they are of interest
if compactness properties in the space HL(f2) are needed, for instance if weakly
converging data f — f in H?{l(ﬂ) needs to give rise to strongly convergent states
ur — u in HL (). Such a property is particularly useful in the analysis of opti-
mization problems, where typically only weak convergence of the data is available.
Moreover, in the analysis of discretization errors for such equations, certain con-
vergence rates can be obtained only if a gap in differentiability is present. Finally,
the fact that the norm of the inverse of A is uniform for all multipliers with a cer-
tain coercivity constant and multiplier norm makes the result attractive to use in
a nonlinear setting, e.g. for fixed-point techniques.

Throughout the paper, the considered Banach spaces are in general complex vec-
tor spaces. By = we understand that two normed spaces are equal up to equivalent
norms. Moreover, The restriction of f: U — C to A (U 2 A) will be denoted by
fia and we use B, (x) for the ball of radius r around x in R?.

The rest of the paper is structured as follows: We will start by stating our
main result in Section [2] and will properly introduce the notation of the subsequent
sections. In Section [3] we will give the details on the assumed regularity of the
domain: we assume that (the closure of) the non-Dirichlet boundary parts admit
bi-Lipschitz boundary charts and allow the Dirichlet parts of the domain to be
(d—1)-sets. In Section we will define the Bessel potential function spaces needed
in the statement of our result. The collection of preliminaries ends in Section [5]
where we briefly introduce the concept of a multiplier space and provide some more
accessible examples for when a coefficient function is in fact a multiplier. After these
preparations, we come to the proof of the main result in Section [} We conclude
the paper by an application of our results to a phase-field fracture/damage model
in Section

2. MAIN RESULT

We first give our main result. All occurring spaces and the notion of a multiplier
are formally introduced and defined below (cf. Definitions [0} [L1] and [L3).
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Assumption 1. For 4,5 € {1,...,n}, each matrix A%/ is a real (d x d) matrix
satisfying (A7) T = A7 with Ay e L(Q) for o, B € {1,...,d}.

To formulate the weak form of the elliptic system operator , let

=111, @)

and let H ;' (Q) be the anti-dual space of H1 (). For a tensor A satisfying Assump-
tion [1} we define the form a: H},(Q) x Hl H(©) — C and the divergence-gradient
system operator —V - AV: H}D(Q) — H;'(Q) by

(=V - AVu,v) := a(u,v)

2
Z/ A"IVu;) - Vopdx  for u,v € HE(Q) )

i,j=1

We extend this slightly by defining —V - AV +~: H}(Q) — H'(Q) for v > 0 by
((-V - AV +7y)u,v) :=(-V - AVu,v) + Z/ yu;v7 dx
—1JQ

and formulate our main result as follows:

Theorem 2. Let Assumptions and@ be satisfied and suppose that the system
is elliptic in the sense that it satisfies a Géarding inequality, i.e., there exist A > 0
and p > 0 such that

Re (a(u,u)) > Z /\||Vui||ig(9;cn) - M||Ui||i2(g) for all u € HL(Q).
i=1
Assume further that each matriz A is a multiplier on H%(Q)? for some 0 < e < %
Then there exist v > 0 large enough and 0 < 6 < € such that

— VAV + 7 € Liso (HY (Q);HY Q) for all 6] < 6, (3)

—V - AV + v is a topological isomorphism between HO ™ (Q) and HY, 1 (Q) for
every —) < 0 < 6.

Remark 3. (i) The need for the perturbation v > 0 in Theorem [2|is due to the
possibility that 0 might be an eigenvalue of A. If this is not the case, v =0
can be chosen. In particular, v = 0 is allowed if 4 = 0 and if a Poincaré
inequality holds true for HL(Q2). The latter is already satisfied for D # () in
our geometric setting as given in Section (3 below, cf. [1, Rem. 3.4].

(i) We give sufficient conditions for the matrix functions A%/ to be multipliers
on H*(Q)? in Lemma |14 below. A particular case is when Am e C(Q)
fore <o < 1foral a,f € {1,...,n}, where C7(Q) is the space of Hoélder
continuous functions on . This also implies that C2(Q) is always a suitable
multiplier space for Theorem 2]

(iii) We consider the Garding inequality as the adequate abstract tool to enforce
coercivity in our context since it is known that if A satisfies the Legendre-
Hadamard condition and the coefficient functions are uniformly continuous
(cf. the previous point), then the Gérding inequality is indeed satisfied at
least for D = 0 (see [6, Ch. 3.4.3]). Coercivity of system operators —V - AV
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in the setting D # () without a very strong ellipticity assumption in the form
of a Legendre condition is both an interesting and (very) difficult topic, see
e.g. [16, 20] and the references therein.

Theorem [2] yields the following corollary:

Corollary 4. In the situation of Theorem@ let f € HY,H(Q) for some 0 < 6 < 6.
Then the elliptic system

—V-AVu+yu=f inHL Q) (4)
has a unique solution u € H™(Q) satisfying
HUHH%‘H(Q) < CH.f”H%_l(Q)

for some constant C > 0 independent of f. Moreover, for all 0 < n < 0 there exist
p>2 and C* > 0 such that u € HE " () and

||UHHlD+”'p(Q) < C.Hf”Hf’D—l(Q)-

Remark 5. There exist qualitative estimates on the size of § in Theorem[2] These
show e.g. that § is uniform in the multiplier norm of the matrices A%/ and the
constants from Garding’s inequality together with . The same is true for the
norm of the inverse of —V - AV + v (and thus the constant C in Corollary ; in
particular, the norm does not depend on the actual multiplier at hand. We refer
to [4, Ch. 1.3.5] and Remark [16] below.

3. ASSUMPTIONS ON THE DOMAIN

We formulate the assumptions on the spatial domain © C R? and its boundary.
As part of the assumptions on Theorem [2| these are supposed to be valid in all of
the following. A preliminary definition we need is the following:

Definition 6 ((d—1)-set). Let F' C R? be a Borel set. We say that F is a (d—1)-set
or that I satisfies the Ahlfors-David condition if there is ¢ > 1 such that

Tt < ’Hd_l(F N BT(X)) <cr® ! forallx € F 0o<r<i,

where H?~! is the (d — 1)-dimensional Hausdorff measure and B,.(x) the ball of
radius r around x.

The assumptions on Q and D; for j € {1,...,n} are then as follows, where we
set ®:=N7_,D;:
Assumption 7. The set Q C R? is a bounded domain and each D; C 09, where
je{l,...,n}, is either empty or a closed (d — 1)-set. For every point x € 9Q \ ©
there are Lipschitz boundary charts available, that is, there exists an open neigh-

borhood Uy of x and a bi-Lipschitz map ¢y: Uy — (—1,1)% such that ¢.(x) = 0
and

o (UxNQ) = {x € (-1,1)%: x4 < 0},

Px(UxNOQ) = {x € (—-1,1)%: x4 = 0}.
Remark 8. (i) For © = (), the assumptions on 2 fall back to that of a classical
Lipschitz domain (cf. [8]). On the other side of the spectrum, for © = 99,

so pure Dirichlet conditions for every equation in the system , we do not
require local descriptions of 02 by boundary charts at all.
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(i) If QU Dy is regular in the sense of Groger (cf. [9, [I0]) for some j € {1,...,n},
then Assumption |Z| is already satisfied. Indeed, in this case D; is already a
(d — 1)-set, and there are already bi-Lipschitz charts available for the whole
99, so Q is again a Lipschitz domain. This follows from the facts that the
concept of Groger requires that D; 2 © is also described by local bi-Lipschitz
charts as 902\ © is in Assumption that such a local bi-Lipschitz description
of Dj implies that D; is a (d — 1)-set by [13, Ch. IL.1.1, Ex. 1], and that finite
unions of (d — 1)-sets are again (d — 1)-sets. Clearly, Assumption (7] is also
satisfied if Q U Dj is regular in the sense of Groger for every j € {1,...,n}.

(iii) With the same argument as in the previous point, we find that under Assump-
tion [7] the whole boundary 9 is always a (d — 1)-set.

4. DEFINITIONS AND BASICS

We move to formal definitions of the fundamental function spaces. Here, we
mostly work only with the scalar-valued spaces H3" () for (d —1)-sets F satisfying
D C F C 09 since their properties translate to n-fold products of such spaces
immediately. Note that under Assumption m every D, is a valid choice for such F,
as is 902 by Remark [8][ii]

Definition 9 (Bessel potential spaces). For —oo < t < oo and 1 < p < oo, let
H'?(R?) be the classical Bessel potential spaces with H*(R?) := H“2(R9), cf. [I7,
Ch. 2.3.1/Thm. 2.3.3]. Consider 1 < s < 2 and a (d —1)-set F such that ® C F C
0f). Then we define as follows:

(i) Set
H3P(RY) := {f € HP(RY):

1
lim ——— f(y)dy =0 for HI lae x € F}
™0 [Br(x)] /B, x)
Wlth H%(Rd) = HSF’vQ(Rd) and || . | H';Jp(]Rd) = || . ||Hs~p(]Rd)~
(ii) Further, set HEF () := {fio: f € HZP(R?)}, equipped with the factor space
norm

£ iz ) == inf{[|gllr(re): 9 € HEP(RY), g0 = f}.

We set, again, Hi(Q) := H3?(Q), and for F = (), we write H>P(Q) := Hy " (€).
(iii) Denote by H,*(R?) and H,*(£2) the space of antilinear continuous functionals
acting on H%(R?) and H%(Q), respectively. We agree that the convention
H™3(Q) := H,*(Q2) still applies.
(iv) Finally, for A € {Q,R?} and D, from Assumption set HpP(A) =[]}, HE"(A),
with all the previous conventions for p = 2, and let H,;*(A) be the space of
continuous antilinear functionals on H$, (A), so H5*(A) == H?Zl HBj (A).

Remark 10. (i) For 1 < s < 2, it is easy to see that HzP(R?) = HpP(RY) N
H*?(R?) and H3P(Q) C HRP(Q) NH*P(Q). If there exists an operator E
which maps Hp?(Q2) into Hp”(R%) and H*P(Q) into H*?(R?) at the same
time such that E fiq = f, then the reverse inclusion and thus

H(2) = H(9) NHO7(©)
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follows. A particular case in which this extension property for 2 is satisfied
is when QU D; is regular in the sense of Groger for some j € {1,...,n}
(cf. Remark because () is then a Lipschitz domain for which the H*?-
extension property is classical ([7, Thm. 7.25]), and the preservation of the
zero trace on F for the H!'P-extension follows as in [4, Cor. 2.2.13].

(ii) Many authors commonly use H§(€2) instead of Hj,(22) and H™*(Q) instead of
Hgflz (€2). We feel that while this is adequate as long as only one fixed part of
the boundary, e.g. F' = 912, is considered, a more careful notation is needed
in view of the importance of both the sets D; and 0f.

The rather abstract definition of H}(£2) turns out to be equivalent to the nowa-
days classical Sobolev space with partially vanishing trace W}Q(Q) which we for-
mally define as follows.

Definition 11 (Sobolev spaces with partially vanishing trace). Let F' be a (d—1)-
set satisfying ©® C F C 99 and let A C R? be a domain. Then we set

CF(A) 1= {fias f € C2(RY), supp SN F =0}
and
Wh2(4) == O () e
for

[ fllwrzay = </A If1? + ||Vf||§dx> ©

Proposition 12 ([5, Cor. 3.8]). Let F be a (d — 1)-set satisfying © C F C 9.
Then there holds W},z(Q) =~ HL(Q).

Using Proposition we easily verify that —V - AV as in is indeed well
defined as an operator from H}, () to Hp' ().

5. MULTIPLIERS
We finally turn to the notion of a multiplier.

Definition 13 (Multiplier). Let X and Y be Banach spaces whose elements are
functions on a common domain of definition A. We say that Y is a multiplier
space of X if for every p € Y the pointwise multiplication operator T}, defined by
(T, f)(x) :== p(x)f(x) for x € A is a continuous linear operator from X into itself.
In this case, the functions p € Y are called multipliers for X.

We give a sufficient condition on when a matrix function is in fact a multiplier
on spaces of the type H5(Q)? for 0 < ¢ < %, as required in Theorem [2, We do so
using Besov spaces of (non-standard) type BS, ,(£2), which however for 0 < s < 1

and ¢ = oo coincide with the Holder spaces; see [I8] or [I5] for definitions and more.

Lemma 14. Let 0 < ¢ < % be given and let S: Q — R4 be a matriz-valued
function. Then the following conditions are sufficient for S to be a multiplier on
HE(Q)d:
(i) There exists 1 < q < 2 such that S p € BS, () for every o, B € {1,...,d}.
(i) There exists & > € and 1 < ¢ < oo such that Sa 5 € Bgqu(Q) for every
a,Be{l,...,d}.
(iii) There exists € < § < 1 such that S, 5 € C°(Q) for every a, B € {1,...,d}.
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Here, C2(Q) is the space of Holder continuous functions on Q. In particular, C2 ()
is always a multiplier on H*(Q) for 0 <e < %

Proof. Note that the results from [I5] and [18] in the following proof are originally
stated only for function spaces on R%. The occurring function spaces on § are
defined as restrictions of the ones on R? (cf. Definition E[) which however allows to
transfer the results from R? to Q by considering functions in the function spaces
on R? whose restriction is the function of interest defined on €.

The multiplier property for BS_ 5(€2) on H*(Q2) is stated in [I5, Ch. 4.7.1] (note
that H*(Q) = W*2(Q) = B3 ,(€2)). The first assertion now follows from the em-
bedding

Bio)q(Q) — BZO}Q(Q) for1 <g<2,
cf. [I8, p. 78], whereas the second assertion is a consequence of the foregoing em-
bedding and

BY, ,(Q) = B () < B () for1<g<ooandd>e.

Note that the last embedding is not explicitly stated in [18], but follows immediately
from the definition of the Besov space there, see [I8, Def. 1]. Finally, from [I8]
Thm. 4], we have

Co(Q) 2B, () for0<d<1,
which then together with the previously established embeddings gives the claim. [

See also [12, Lem. 2] for a similar multiplier result.

6. PROOF OF THE MAIN RESULTS

The proof of Theoremrests on the following fundamental theorem by Sneiberg [19],
cf. also [4, Ch. 1.3.5]. For the notions from interpolation theory we refer to [I7,
Ch. 1.2, 1.9].

Theorem 15 (Stability theorem). Let (Xo, X1) and (Yp, Y1) be interpolation cou-
ples of Banach spaces and let T be a continuous linear operator compatible with that
interpolation couple. Then the set

{9 € (0,1): T € Liso([Xo, X1o; [Yo, Yl]g)} (5)
1S open.

Remark 16. Given a number ¥ which is an element of the set in Theorem
there exist estimates on the size of the open set , see [4, Ch. 1.3.5]. These show
that the size depends on the operator norms of T as a linear operator from X; to Y;
for i = 1,2, and the operator norm of T~! between [Yp, Y1]y and [Xo, X1]y. This is
in fact the connection to the claim about the norm of the inverses of —V - AV +
being uniform in the multiplier norms in Remark [

In order to use Theorem [I5 we need to have a suitable interpolation scale at
hand. For this, we rely on [5, Ch. 7] from which we cite

Theorem 17 (|5, Thm. 7.1]). Let F' be a (d — 1)-set satisfying ©® C F C 9. Let
further 0 < 6 <1 and % < 80,81 < % and put sg := (1 — 0)sg + 0s1. Then

[ (), H ()], = H2 ()
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and
HE.(Q) if 6> 3,

[L*(Q),Hk(Q)], = {He(g) if 0 < 3.

Before we prove our main result, we establish a few preparatory lemmas building
upon Theorem [I7]

Lemma 18. In the situation of Theorem[I7, we also have
[HE™(Q), Hp™ ()], = Hz™ (2)

and
H(Q) if 6> 4,

[L2(9), Hz'(9)], = {H—9(Q) if0 < 3.

Proof. This follows quite immediately from the result that the H%,(Q2) spaces are
reflexive [B, Cor. 5.3] and general interpolation duality properties [I7, Ch. 1.11.3].
Here, density of H?(2) N HZ () = H?ax(so’sl)(ﬂ) in H?(©2) and H} () follows
from density of H™x(s0-51)(R?) in H* (R%) and H*'(R%) and the characterization
H3.(R?Y) = PrH*(R?) for a bounded linear projection Pr as proven in [5, Cor. 3.5].

(Il

Now it only remains to set the stage for the extension of —V - AV to H$,(Q) for
s # 1 before we can give the proof of the main results.

Lemma 19. Let F be a (d — 1)-set satisfying ® C F C 92 and let 0 < 0 < %
Then the weak gradient V € L(HL(Q);L2(Q)%) maps HLM(Q) continuously into
H(Q)? and admits a unique continuous linear extension V: Hy 7 (Q) — H=7(Q)%.

Proof. The first assertion follows from the corresponding property of H°*1(R%) and
the definition of the H%™(Q) spaces. For the second assertion, observe that the

distributional gradient G: L2(Q) — H;4(2)? is a continuous linear operator, as
(recall Proposition

—/ pdivEdx
Q

Moreover, the distributional gradient G restricted to H!(£2) agrees exactly with the
weak gradient V on H'({)) per partial integration and the fundamental lemma of
the calculus of variations. Hence, we are able to interpolate the operator (which we
agree to call V from now on) which by Theorem [17| and Lemma [18| yields that

(G, &)| == < OllellLz @l o)« for all £ € ().

Ve £([LA0), 1H@)],_; [H@4 2@, ) = £(k7 (@) H(9)7).

Here, we have used coordinate-wise interpolation in the second component (cf. [4,
Cor. 1.3.8]) and the fundamental interpolation property [Xo, X1]o = [X1, Xo]1—0
for any interpolation couple (Xg, X7) and 0 < 6 < 1, see [I7, Thm. 1.9.3 b)]. O

We finally prove the main theorem.
Proof of Theorem[3 We had already noted below Proposition[I2]that the operators

Hp, (@) x Hp,(Q) 3 (¢,§) = (=V - AV Vg, &) == (AVVp, VE) 1,
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are continuous for 4, j € {1,...,n}. We extend them to H‘Hl(Q) X HH‘E(Q) using
Lemma thereby also extending —V - AV to a continuous operator from H% ()
to H3; (), cf. (@). N

So, let i,j € {1,...,n} be given and denote by M; ; the norm of A"/ when
the latter is considered as a multiplier acting on H*(2)¢. Since H*(Q2)¢ is dense in
L2(Q)?, we estimate

‘<_v . AZ’JV@a&N = ’(Ai,jv@avé-)Lz Q)d’ < ||Aljv50||H5(Q vanH c(Q)d
< M j[[Vellne @[ VElla-2 () < CMW||50||H§)f1(9)‘|5|‘H1DiE(Q)
ki i

for all p € HED";l(Q) and ¢ € Hp, () using Lemma As Hp, () is again dense
in HHE(Q), we obtain a unique continuous linear extension of —V - A%V to a
mapping from HED'EI(Q) to HED_ZI(Q) By definition (see (2)), this also gives a unique
continuous linear extension of —V - AV to a mapping from H5, ™ (Q) to H5; 1 (Q).

From the assumption (A%)T = A7 and due to the matrices A*/ being real, we
further find that the adjoint operator (—V-AV)* is a continuous linear extension of
—V - AV to an operator Hp; () — Hp,' (). Hence the operator is compatible
with the interpolation couples (HL™ (), H}, ©(2)) and (HS; (), H5' () which
is then clearly also true for —V - AV + « for any v > 0.

Now observe that —V - AV +v € L (HL (Q); H,' (Q)) for v > p by the Garding
inequality assumption and the Lax-Milgram lemmaﬂ and that

[H5(9), Hp *(Q)], =Hp(2) and [H5(Q),Hp'*(Q)], = H5'(Q)

1 1
2 2

due to Theorem [I7 and Lemma[I8] (and again coordinate-wise interpolation, see [4}
Cor. 1.3.8]). But then the stability result of Sneiberg as in Theorem [15] tells us
that there exists 0 < § < ¢ such that —V - AV 4 v € Lo (HS™ (Q); HY 1(Q)) for
all |0| < §. This was the claim. O

Proof of Corollary[] It is a mere reformulation of assertion in Theorem [2| that
for every f € HODA(Q) there exists a unique u € H0D+1(Q) satisfying the elliptic
system equation (4]) with Hu||H%+1(Q) < C|\f||H%71(Q), where C' is independent of f.

Now let » > 0 and p > 2 be such that § > n + d(% - %), and consider
j € {1,...,n}. Then, for every function U; € HeDtl(Rd) with the property that
(Uj)io = u; we use the well known (generalized) Sobolev embeddings (cf. [17,
Ch. 2.8.1]) as follows:

||“j||Hg;"’P(Q) < ”UJHH}D';"“'(]Rd) < C*HUJHH?;;l(]Rd)'

But this implies that Hu]HHHw(Q) < Cr Hu]HHeH(Q and of course accordingly

||u||H1+n wig < CF ||u||He+1(Q) so the claim follows by observing that if we choose

0 < n < 6, then we are also allowed to choose p > 2 while still obeying the inequality
0>n+d(l— ) O

INote that if D # (), then v = p is also allowed due to the Poincaré inequality, cf. Remark
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7. APPLICATION

As an application, we consider a standard phase-field model for brittle fracture
as given in [2]. For the following exposition, we consider the formulation given
in [14], where the fracture irreversibility is relaxed by a penalty approach. After
introduction of a time-discretization, the evolution is given by a sequence of prob-
lems associated to each time-step. Namely, for a bounded domain ) C R? satisfying
Assumption m one searches for a (vector-valued) displacement u € H},(Q) and a
(scalar) phase-field ¢ € H(£2) solving the system of equations

(9()e(u) : e(v)) = £(v),
(e_l(d) -1+ (1-k) (¢>e(u) : e(u)) (6)
+’Y[(¢ - ¢_)+]3a ¢)L2(Q) + <_v : EV(b, 1/)> =0

for all v € H}(Q) and ¢ € H'(Q), with given loads £ € HY%~(Q) for some 6y > 0,
¢~ satisfying 0 < ¢~ <1, with 0 < k < e < 1 and g(¢) = (1 —k)d? + K where e(u)
and e(v) denotes the symmetric gradient of u and v, respectively. It has been shown
in [I4] that this problem admits a Hilbert space solution (u, ) € HL(Q) x H'(Q)
with the additional regularity u € WP(Q) for some p > 2 and ¢ € L°°(Q); in fact,
0 < ¢(x) < 1 holds for almost all x € 2.

With the results obtained in this work, we can now show the following improved
differentiability result.

Corollary 20. There exists 0 < § < 0y such that the solution (u,¢) € (WHP(Q) N
HE () x (HY(Q) NL>2(Q)) of (6) admits the additional regularity u € HYH(Q)
and ¢ € HOHL(Q) for any 0 satisfying 0 < § < 0. Moreover we obtain the estimate

lllisto @y < Cllelgo—s

with a constant C = C(HEHHQ_H_LP(Q),%E),
D

Proof. Slightly rewriting the second equation in @, we see that ¢ satisfies
(=V-eV+ 6_1)</> =e 4 (k- 1) (de(u) : e(u) —[(¢ — )P in H Q).

By the regularity ¢ € L>°(2) and v € W1P(Q) it is clear that the right hand side
is in fact an element of LP/2(£2). Consequently, by Sobolev embedding, there exists
some 9 > 0 such that it is an element of H”~*(Q). Theorem [2| then shows that
we have ¢ € HT1(Q) for all 0 < 6 < ¥ for some ¥ < ¥, and standard Sobolev
embedding theorems assert that ¢ € C7(Q) for 0 = 146 — %. Moreover, by [14,
Corollary 4.2, we have that [[¢e(u) : e(u)|| /20y < CHEH]%I_LP(Q) for some constant
¢ >0, and thus i
2 -1
H¢”C‘7(52) < C(H[HHBLP(Q) +’V + € )

But then, by definition, g(¢) € C7(2) too and Lemma [14] (iii) shows that this
is indeed a multiplier on H?(Q2). Now another application of Theorem [2| to the
equation

(9(p)e(u) : e(v)) = £(v) for all v € H} ()
yields the claimed regularity. For the stability estimate, we utilize the above bound
on |¢||ce () together with Remark O
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Remark 21. In the case where the irreversibility of the fracture is not relaxed via
a penalization approach, the equation for ¢ becomes an obstacle problem where the
term involving ([(¢—¢~)*]? is replaced by the requirement ¢ < ¢~. If the domain
is sufficiently regular, then classical W2?/2(Q)-regularity of the obstacle problem,
ie., o € W2P/2(Q) as long as ¢~ € W*P/2(Q), can be used to show that ¢ is again
a multiplier (see e.g. [3, Corollary IL.3]).
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