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HIGHER REGULARITY FOR SOLUTIONS TO ELLIPTIC
SYSTEMS IN DIVERGENCE FORM SUBJECT TO MIXED

BOUNDARY CONDITIONS

ROBERT HALLER-DINTELMANN, HANNES MEINLSCHMIDT,
AND WINNIFRIED WOLLNER

Abstract. This note combines some known results from operator- and inter-
polation theory to show that elliptic systems in divergence form admit maxi-
mal elliptic regularity on the Bessel potential scale Hs

D(Ω) for s > 1 sufficiently
close to 1, if the coefficient in the main part satisfies a certain multiplier prop-
erty on the spaces Hs−1(Ω). Ellipticity is enforced by assuming a Gårding
inequality and the result is established for spaces incorporating mixed bound-
ary conditions with very low regularity requirements for the underlying spatial
set. Finally, a phase-field damage model is given as a practical application
where higher differentiability results are obtained as a corollary to our find-
ings.

1. Introduction

In this paper, we consider elliptic systems in divergence form for an unknown
function u : Ω → Cn (or Rn). We consider the weak form of a system of elliptic
(n × n) operators A in divergence form induced by the tensor A for a function
u : Ω→ Cn:

(Au)1 = −
d∑

α,β=1

n∑
j=1

∂α
(
A1,j
α,β∂βuj

)
...

...
...

(Au)n = −
d∑

α,β=1

n∑
j=1

∂α
(
An,jα,β∂βuj

)
.

(1)

Each equation j ∈ {1, . . . , n} in this system is subject to possibly mixed boundary
conditions with a Dirichlet boundary part Dj and we set D :=×nj=1Dj . Precise
assumptions on A, the domain Ω, and the Dirichlet boundary parts Dj are given
below in Assumption 7.

As a motivation for our results, let us assume for the moment that the operator
A defines an isomorphism between the Sobolev Hilbert spaces H1

D(Ω) → H−1
D (Ω),

as it can be asserted by the notorious Lax-Milgram theorem in many cases. It is
known under mild assumptions on Ω and D that if Ai,jα,β ∈ L∞(Ω), then A remains
an isomorphism for small perturbations in the integrability scale, i.e., there exists
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ε > 0 such that the mapping

A : H1,p
D (Ω)→ H−1,p

D (Ω)

remains an isomorphism for all p satisfying 2− ε ≤ p ≤ 2 + ε, see e.g. [11].
We will show that such a result is also true on the differentiability scale: Indeed,

if A is a multiplier on Hε for some 0 < ε < 1
2 , then we prove that there exists θ̄ > 0

such that the mapping
A : H1+θ

D (Ω)→ Hθ−1
D (Ω)

is still an isomorphism for any θ satisfying −θ̄ ≤ θ ≤ θ̄. The multiplier property
is in particular satisfied if A is σ-Hölder-continuous for σ > ε. In this case, the
norm of the inverse of A is uniform in its coercivity constant and the bound on the
multiplier norm; in particular, it does not depend explicitly on the actual multiplier
at hand. Similar results have been obtained by Jochmann in [12] for the case of a
scalar elliptic problem with piecewise smooth boundary. Our work can therefore
be seen as an extension to elliptic systems, thereby permitting much less regular
geometries for Ω and the boundary parts Dj .

Such results are interesting, firstly because they provide a sharp maximal elliptic
regularity result for the abstract equation Au = f . Further, they are of interest
if compactness properties in the space H1

D(Ω) are needed, for instance if weakly
converging data fk ⇀ f in Hθ−1

D (Ω) needs to give rise to strongly convergent states
uk → u in H1

D(Ω). Such a property is particularly useful in the analysis of opti-
mization problems, where typically only weak convergence of the data is available.
Moreover, in the analysis of discretization errors for such equations, certain con-
vergence rates can be obtained only if a gap in differentiability is present. Finally,
the fact that the norm of the inverse of A is uniform for all multipliers with a cer-
tain coercivity constant and multiplier norm makes the result attractive to use in
a nonlinear setting, e.g. for fixed-point techniques.

Throughout the paper, the considered Banach spaces are in general complex vec-
tor spaces. By ∼= we understand that two normed spaces are equal up to equivalent
norms. Moreover, The restriction of f : U → C to Λ (U ⊇ Λ) will be denoted by
f�Λ and we use Br(x) for the ball of radius r around x in Rd.

The rest of the paper is structured as follows: We will start by stating our
main result in Section 2 and will properly introduce the notation of the subsequent
sections. In Section 3, we will give the details on the assumed regularity of the
domain: we assume that (the closure of) the non-Dirichlet boundary parts admit
bi-Lipschitz boundary charts and allow the Dirichlet parts of the domain to be
(d−1)-sets. In Section 4, we will define the Bessel potential function spaces needed
in the statement of our result. The collection of preliminaries ends in Section 5,
where we briefly introduce the concept of a multiplier space and provide some more
accessible examples for when a coefficient function is in fact a multiplier. After these
preparations, we come to the proof of the main result in Section 6. We conclude
the paper by an application of our results to a phase-field fracture/damage model
in Section 7.

2. Main result

We first give our main result. All occurring spaces and the notion of a multiplier
are formally introduced and defined below (cf. Definitions 9, 11 and 13).
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Assumption 1. For i, j ∈ {1, . . . , n}, each matrix Ai,j is a real (d × d) matrix
satisfying (Ai,j)> = Aj,i with Ai,jα,β ∈ L∞(Ω) for α, β ∈ {1, . . . , d}.

To formulate the weak form of the elliptic system operator (1), let

H1
D(Ω) :=

n∏
j=1

H1
Dj (Ω),

and let H−1
D (Ω) be the anti-dual space of H1

D(Ω). For a tensor A satisfying Assump-
tion 1, we define the form a : H1

D(Ω) × H1
D(Ω) → C and the divergence-gradient

system operator −∇ ·A∇ : H1
D(Ω)→ H−1

D (Ω) by〈
−∇ ·A∇u, v

〉
:= a(u, v)

:=

n∑
i,j=1

∫
Ω

(
Ai,j∇uj) · ∇vi dx for u, v ∈ H1

D(Ω)
. (2)

We extend this slightly by defining −∇ ·A∇+ γ : H1
D(Ω)→ H−1

D (Ω) for γ ≥ 0 by〈(
−∇ ·A∇+ γ

)
u, v
〉

:=
〈
−∇ ·A∇u, v

〉
+

n∑
j=1

∫
Ω

γujvj dx

and formulate our main result as follows:

Theorem 2. Let Assumptions 1 and 7 be satisfied and suppose that the system (1)
is elliptic in the sense that it satisfies a Gårding inequality, i.e., there exist λ > 0
and µ ≥ 0 such that

Re
(
a(u, u)

)
≥

n∑
i=1

λ‖∇ui‖2L2(Ω;Cn) − µ‖ui‖
2
L2(Ω) for all u ∈ H1

D(Ω).

Assume further that each matrix Ai,j is a multiplier on Hε(Ω)d for some 0 ≤ ε < 1
2 .

Then there exist γ ≥ 0 large enough and 0 < δ ≤ ε such that

−∇ ·A∇+ γ ∈ Liso

(
Hθ+1
D (Ω);Hθ−1

D (Ω)
)

for all |θ| < δ, (3)

i.e., −∇ · A∇+ γ is a topological isomorphism between Hθ+1
D (Ω) and Hθ−1

D (Ω) for
every −δ < θ < δ.

Remark 3. (i) The need for the perturbation γ ≥ 0 in Theorem 2 is due to the
possibility that 0 might be an eigenvalue of A. If this is not the case, γ = 0
can be chosen. In particular, γ = 0 is allowed if µ = 0 and if a Poincaré
inequality holds true for H1

D(Ω). The latter is already satisfied for D 6= ∅ in
our geometric setting as given in Section 3 below, cf. [1, Rem. 3.4].

(ii) We give sufficient conditions for the matrix functions Ai,j to be multipliers
on Hε(Ω)d in Lemma 14 below. A particular case is when Ai,jαβ ∈ Cσ(Ω)

for ε < σ < 1 for all α, β ∈ {1, . . . , n}, where Cσ(Ω) is the space of Hölder
continuous functions on Ω. This also implies that C

1
2 (Ω) is always a suitable

multiplier space for Theorem 2.
(iii) We consider the Gårding inequality as the adequate abstract tool to enforce

coercivity in our context since it is known that if A satisfies the Legendre-
Hadamard condition and the coefficient functions are uniformly continuous
(cf. the previous point), then the Gårding inequality is indeed satisfied at
least for D = ∅ (see [6, Ch. 3.4.3]). Coercivity of system operators −∇ · A∇
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in the setting D 6= ∅ without a very strong ellipticity assumption in the form
of a Legendre condition is both an interesting and (very) difficult topic, see
e.g. [16, 20] and the references therein.

Theorem 2 yields the following corollary:

Corollary 4. In the situation of Theorem 2, let f ∈ Hθ−1
D (Ω) for some 0 < θ < δ.

Then the elliptic system

−∇ ·A∇u+ γu = f in Hθ−1
D (Ω) (4)

has a unique solution u ∈ Hθ+1
D (Ω) satisfying

‖u‖Hθ+1
D (Ω) ≤ C‖f‖Hθ−1

D (Ω)

for some constant C ≥ 0 independent of f . Moreover, for all 0 < η < θ there exist
p > 2 and C• ≥ 0 such that u ∈ H1+η,p

D (Ω) and

‖u‖H1+η,p
D (Ω) ≤ C

•‖f‖Hθ−1
D (Ω).

Remark 5. There exist qualitative estimates on the size of δ in Theorem 2. These
show e.g. that δ is uniform in the multiplier norm of the matrices Ai,j and the
constants from Gårding’s inequality together with γ. The same is true for the
norm of the inverse of −∇ · A∇ + γ (and thus the constant C in Corollary 4); in
particular, the norm does not depend on the actual multiplier at hand. We refer
to [4, Ch. 1.3.5] and Remark 16 below.

3. Assumptions on the domain

We formulate the assumptions on the spatial domain Ω ⊂ Rd and its boundary.
As part of the assumptions on Theorem 2, these are supposed to be valid in all of
the following. A preliminary definition we need is the following:

Definition 6 ((d−1)-set). Let F ⊂ Rd be a Borel set. We say that F is a (d−1)-set
or that F satisfies the Ahlfors-David condition if there is c ≥ 1 such that

c−1rd−1 ≤ Hd−1
(
F ∩Br(x)

)
≤ crd−1 for all x ∈ F, 0 < r ≤ 1,

where Hd−1 is the (d − 1)-dimensional Hausdorff measure and Br(x) the ball of
radius r around x.

The assumptions on Ω and Dj for j ∈ {1, . . . , n} are then as follows, where we
set D := ∩nj=1Dj :

Assumption 7. The set Ω ⊂ Rd is a bounded domain and each Dj ⊆ ∂Ω, where
j ∈ {1, . . . , n}, is either empty or a closed (d− 1)-set. For every point x ∈ ∂Ω \D
there are Lipschitz boundary charts available, that is, there exists an open neigh-
borhood Ux of x and a bi-Lipschitz map φx : Ux → (−1, 1)d such that φx(x) = 0
and

φx(Ux ∩ Ω) =
{

x ∈ (−1, 1)d : xd < 0
}
,

φx(Ux ∩ ∂Ω) =
{

x ∈ (−1, 1)d : xd = 0
}
.

Remark 8. (i) For D = ∅, the assumptions on Ω fall back to that of a classical
Lipschitz domain (cf. [8]). On the other side of the spectrum, for D = ∂Ω,
so pure Dirichlet conditions for every equation in the system (1), we do not
require local descriptions of ∂Ω by boundary charts at all.
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(ii) If Ω∪Dj is regular in the sense of Gröger (cf. [9, 10]) for some j ∈ {1, . . . , n},
then Assumption 7 is already satisfied. Indeed, in this case Dj is already a
(d − 1)-set, and there are already bi-Lipschitz charts available for the whole
∂Ω, so Ω is again a Lipschitz domain. This follows from the facts that the
concept of Gröger requires that Dj ⊇ D is also described by local bi-Lipschitz
charts as ∂Ω \D is in Assumption 7, that such a local bi-Lipschitz description
of Dj implies that Dj is a (d− 1)-set by [13, Ch. II.1.1, Ex. 1], and that finite
unions of (d − 1)-sets are again (d − 1)-sets. Clearly, Assumption 7 is also
satisfied if Ω ∪Dj is regular in the sense of Gröger for every j ∈ {1, . . . , n}.

(iii) With the same argument as in the previous point, we find that under Assump-
tion 7, the whole boundary ∂Ω is always a (d− 1)-set.

4. Definitions and basics

We move to formal definitions of the fundamental function spaces. Here, we
mostly work only with the scalar-valued spaces Hs,p

F (Ω) for (d−1)-sets F satisfying
D ⊆ F ⊆ ∂Ω since their properties translate to n-fold products of such spaces
immediately. Note that under Assumption 7, every Dj is a valid choice for such F ,
as is ∂Ω by Remark 8 iii.

Definition 9 (Bessel potential spaces). For −∞ < t < ∞ and 1 < p < ∞, let
Ht,p(Rd) be the classical Bessel potential spaces with Ht(Rd) := Ht,2(Rd), cf. [17,
Ch. 2.3.1/Thm. 2.3.3]. Consider 1

2 < s < 3
2 and a (d− 1)-set F such that D ⊆ F ⊆

∂Ω. Then we define as follows:
(i) Set

Hs,p
F (Rd) :=

{
f ∈ Hs,p(Rd) :

lim
r↘0

1

|Br(x)|

∫
Br(x)

f(y) dy = 0 for Hd−1-a.e. x ∈ F
}

with Hs
F (Rd) := Hs,2

F (Rd) and ‖ · ‖Hs,pF (Rd) = ‖ · ‖Hs,p(Rd).
(ii) Further, set Hs,p

F (Ω) :=
{
f�Ω : f ∈ Hs,p

F (Rd)
}
, equipped with the factor space

norm

‖f‖Hs,pF (Ω) := inf
{
‖g‖Hs,p(Rd) : g ∈ Hs,p

F (Rd), g�Ω = f
}
.

We set, again, Hs
F (Ω) := Hs,2

F (Ω), and for F = ∅, we write Hs,p(Ω) := Hs,p
∅ (Ω).

(iii) Denote by H−sF (Rd) and H−sF (Ω) the space of antilinear continuous functionals
acting on Hs

F (Rd) and Hs
F (Ω), respectively. We agree that the convention

H−s(Ω) := H−s∅ (Ω) still applies.
(iv) Finally, for Λ ∈ {Ω,Rd} andDj from Assumption 7, setHs,pD (Λ) :=

∏n
j=1 Hs,p

Dj
(Λ),

with all the previous conventions for p = 2, and let H−sD (Λ) be the space of
continuous antilinear functionals on HsD(Λ), so H−sD (Λ) :=

∏n
j=1 H−sDj (Λ).

Remark 10. (i) For 1 ≤ s < 3
2 , it is easy to see that Hs,p

F (Rd) = H1,p
F (Rd) ∩

Hs,p(Rd) and Hs,p
F (Ω) ⊆ H1,p

F (Ω) ∩Hs,p(Ω). If there exists an operator E
which maps H1,p

F (Ω) into H1,p
F (Rd) and Hs,p(Ω) into Hs,p(Rd) at the same

time such that Ef�Ω = f , then the reverse inclusion and thus

Hs,p
F (Ω) = H1,p

F (Ω) ∩Hs,p(Ω)
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follows. A particular case in which this extension property for Ω is satisfied
is when Ω ∪ Dj is regular in the sense of Gröger for some j ∈ {1, . . . , n}
(cf. Remark 8 ii) because Ω is then a Lipschitz domain for which the Hs,p-
extension property is classical ([7, Thm. 7.25]), and the preservation of the
zero trace on F for the H1,p-extension follows as in [4, Cor. 2.2.13].

(ii) Many authors commonly use Hs
0(Ω) instead of Hs

∂Ω(Ω) and H−1(Ω) instead of
H−1
∂Ω(Ω). We feel that while this is adequate as long as only one fixed part of

the boundary, e.g. F = ∂Ω, is considered, a more careful notation is needed
in view of the importance of both the sets Dj and ∂Ω.

The rather abstract definition of H1
F (Ω) turns out to be equivalent to the nowa-

days classical Sobolev space with partially vanishing trace W1,2
F (Ω) which we for-

mally define as follows.

Definition 11 (Sobolev spaces with partially vanishing trace). Let F be a (d−1)-
set satisfying D ⊆ F ⊆ ∂Ω and let Λ ⊆ Rd be a domain. Then we set

C∞F (Λ) :=
{
f�Λ : f ∈ C∞c (Rd), supp f ∩ F = ∅

}
and

W1,2
F (Λ) := C∞F (Λ)

‖·‖W1,2(Λ)

for

‖f‖W1,2(Λ) :=

(∫
Λ

|f |2 + ‖∇f‖22 dx

) 1
2

.

Proposition 12 ([5, Cor. 3.8]). Let F be a (d − 1)-set satisfying D ⊆ F ⊆ ∂Ω.
Then there holds W1,2

F (Ω) ∼= H1
F (Ω).

Using Proposition 12, we easily verify that −∇ · A∇ as in (2) is indeed well
defined as an operator from H1

D(Ω) to H−1
D (Ω).

5. Multipliers

We finally turn to the notion of a multiplier.

Definition 13 (Multiplier). Let X and Y be Banach spaces whose elements are
functions on a common domain of definition Λ. We say that Y is a multiplier
space of X if for every ρ ∈ Y the pointwise multiplication operator Tρ defined by
(Tρf)(x) := ρ(x)f(x) for x ∈ Λ is a continuous linear operator from X into itself.
In this case, the functions ρ ∈ Y are called multipliers for X.

We give a sufficient condition on when a matrix function is in fact a multiplier
on spaces of the type Hε(Ω)d for 0 ≤ ε < 1

2 , as required in Theorem 2. We do so
using Besov spaces of (non-standard) type Bs∞,q(Ω), which however for 0 < s < 1
and q =∞ coincide with the Hölder spaces; see [18] or [15] for definitions and more.

Lemma 14. Let 0 ≤ ε < 1
2 be given and let S : Ω → Rd×d be a matrix-valued

function. Then the following conditions are sufficient for S to be a multiplier on
Hε(Ω)d:
(i) There exists 1 ≤ q ≤ 2 such that Sα,β ∈ Bε∞,q(Ω) for every α, β ∈ {1, . . . , d}.
(ii) There exists δ > ε and 1 ≤ q ≤ ∞ such that Sα,β ∈ Bδ∞,q(Ω) for every

α, β ∈ {1, . . . , d}.
(iii) There exists ε < δ < 1 such that Sα,β ∈ Cδ(Ω) for every α, β ∈ {1, . . . , d}.
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Here, Cδ(Ω) is the space of Hölder continuous functions on Ω. In particular, C
1
2 (Ω)

is always a multiplier on Hε(Ω) for 0 ≤ ε < 1
2 .

Proof. Note that the results from [15] and [18] in the following proof are originally
stated only for function spaces on Rd. The occurring function spaces on Ω are
defined as restrictions of the ones on Rd (cf. Definition 9) which however allows to
transfer the results from Rd to Ω by considering functions in the function spaces
on Rd whose restriction is the function of interest defined on Ω.

The multiplier property for Bε∞,2(Ω) on Hε(Ω) is stated in [15, Ch. 4.7.1] (note
that Hs(Ω) = Ws,2(Ω) = Bs2,2(Ω)). The first assertion now follows from the em-
bedding

Bε∞,q(Ω) ↪→ Bε∞,2(Ω) for 1 ≤ q ≤ 2,

cf. [18, p. 78], whereas the second assertion is a consequence of the foregoing em-
bedding and

Bδ∞,q(Ω) ↪→ Bδ∞,∞(Ω) ↪→ Bε∞,1(Ω) for 1 ≤ q ≤ ∞ and δ > ε.

Note that the last embedding is not explicitly stated in [18], but follows immediately
from the definition of the Besov space there, see [18, Def. 1]. Finally, from [18,
Thm. 4], we have

Cδ(Ω) ∼= Bδ∞,∞(Ω) for 0 < δ < 1,

which then together with the previously established embeddings gives the claim. �

See also [12, Lem. 2] for a similar multiplier result.

6. Proof of the main results

The proof of Theorem 2 rests on the following fundamental theorem by Šnĕıberg [19],
cf. also [4, Ch. 1.3.5]. For the notions from interpolation theory we refer to [17,
Ch. 1.2, 1.9].

Theorem 15 (Stability theorem). Let (X0, X1) and (Y0, Y1) be interpolation cou-
ples of Banach spaces and let T be a continuous linear operator compatible with that
interpolation couple. Then the set{

θ ∈ (0, 1) : T ∈ Liso

(
[X0, X1]θ; [Y0, Y1]θ

)}
(5)

is open.

Remark 16. Given a number ϑ which is an element of the set (5) in Theorem 15,
there exist estimates on the size of the open set (5), see [4, Ch. 1.3.5]. These show
that the size depends on the operator norms of T as a linear operator from Xi to Yi
for i = 1, 2, and the operator norm of T−1 between [Y0, Y1]ϑ and [X0, X1]ϑ. This is
in fact the connection to the claim about the norm of the inverses of −∇ ·A∇+ γ
being uniform in the multiplier norms in Remark 5.

In order to use Theorem 15 we need to have a suitable interpolation scale at
hand. For this, we rely on [5, Ch. 7] from which we cite

Theorem 17 ([5, Thm. 7.1]). Let F be a (d− 1)-set satisfying D ⊆ F ⊆ ∂Ω. Let
further 0 < θ < 1 and 1

2 < s0, s1 <
3
2 and put sθ := (1− θ)s0 + θs1. Then[

Hs0
F (Ω),Hs1

F (Ω)
]
θ

= Hsθ
F (Ω)
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and [
L2(Ω),H1

F (Ω)
]
θ

=

{
Hθ
F (Ω) if θ > 1

2 ,

Hθ(Ω) if θ < 1
2 .

Before we prove our main result, we establish a few preparatory lemmas building
upon Theorem 17.

Lemma 18. In the situation of Theorem 17, we also have[
H−s0F (Ω),H−s1F (Ω)

]
θ

= H−sθF (Ω)

and [
L2(Ω),H−1

F (Ω)
]
θ

=

{
H−θF (Ω) if θ > 1

2 ,

H−θ(Ω) if θ < 1
2 .

Proof. This follows quite immediately from the result that the Hs
F (Ω) spaces are

reflexive [5, Cor. 5.3] and general interpolation duality properties [17, Ch. 1.11.3].
Here, density of Hs0

F (Ω) ∩ Hs1
F (Ω) = H

max(s0,s1)
F (Ω) in Hs0

F (Ω) and Hs1
F (Ω) follows

from density of Hmax(s0,s1)(Rd) in Hs0(Rd) and Hs1(Rd) and the characterization
Hs
F (Rd) = PFHs(Rd) for a bounded linear projection PF as proven in [5, Cor. 3.5].

�

Now it only remains to set the stage for the extension of −∇ ·A∇ to HsD(Ω) for
s 6= 1 before we can give the proof of the main results.

Lemma 19. Let F be a (d − 1)-set satisfying D ⊆ F ⊆ ∂Ω and let 0 ≤ σ < 1
2 .

Then the weak gradient ∇ ∈ L(H1
F (Ω); L2(Ω)d) maps Hσ+1

F (Ω) continuously into
Hσ(Ω)d and admits a unique continuous linear extension ∇ : H1−σ

F (Ω)→ H−σ(Ω)d.

Proof. The first assertion follows from the corresponding property of Hσ+1(Rd) and
the definition of the Hσ+1

F (Ω) spaces. For the second assertion, observe that the
distributional gradient G : L2(Ω) → H−1

∂Ω(Ω)d is a continuous linear operator, as
(recall Proposition 12)∣∣〈Gϕ, ξ〉∣∣ :=

∣∣∣∣−∫
Ω

ϕdiv ξ dx

∣∣∣∣ ≤ C‖ϕ‖L2(Ω)‖ξ‖H1(Ω)d for all ξ ∈ C∞c (Ω)d.

Moreover, the distributional gradient G restricted to H1(Ω) agrees exactly with the
weak gradient ∇ on H1(Ω) per partial integration and the fundamental lemma of
the calculus of variations. Hence, we are able to interpolate the operator (which we
agree to call ∇ from now on) which by Theorem 17 and Lemma 18 yields that

∇ ∈ L
([

L2(Ω),H1
F (Ω)

]
1−σ;

[
H−1
∂Ω(Ω)d,L2(Ω)d

]
1−σ

)
= L

(
H1−σ
F (Ω); H−σ(Ω)d

)
.

Here, we have used coordinate-wise interpolation in the second component (cf. [4,
Cor. 1.3.8]) and the fundamental interpolation property [X0, X1]θ = [X1, X0]1−θ
for any interpolation couple (X0, X1) and 0 < θ < 1, see [17, Thm. 1.9.3 b)]. �

We finally prove the main theorem.

Proof of Theorem 2. We had already noted below Proposition 12 that the operators

H1
Dj (Ω)×H1

Di(Ω) 3 (ϕ, ξ) 7→
〈
−∇ ·Ai,j∇ϕ, ξ

〉
:=
(
Ai,j∇ϕ,∇ξ

)
L2(Ω)



HIGHER REGULARITY FOR ELLIPTIC SYSTEMS 9

are continuous for i, j ∈ {1, . . . , n}. We extend them to Hε+1
Dj

(Ω) × H1−ε
Di

(Ω) using
Lemma 19, thereby also extending −∇·A∇ to a continuous operator from Hε+1

D (Ω)

to Hε−1
D (Ω), cf. (2).

So, let i, j ∈ {1, . . . , n} be given and denote by Mi,j the norm of Ai,j when
the latter is considered as a multiplier acting on Hε(Ω)d. Since Hε(Ω)d is dense in
L2(Ω)d, we estimate∣∣〈−∇ ·Ai,j∇ϕ, ξ〉∣∣ =

∣∣(Ai,j∇ϕ,∇ξ)
L2(Ω)d

∣∣ ≤ ‖Ai,j∇ϕ‖Hε(Ω)d‖∇ξ‖H−ε(Ω)d

≤Mi,j‖∇ϕ‖Hε(Ω)d‖∇ξ‖H−ε(Ω)d ≤ CMi,j‖ϕ‖Hε+1
Dj

(Ω)‖ξ‖H1−ε
Di

(Ω)

for all ϕ ∈ Hε+1
Dj

(Ω) and ξ ∈ H1
Di

(Ω) using Lemma 19. As H1
Di

(Ω) is again dense
in H1−ε

Di
(Ω), we obtain a unique continuous linear extension of −∇ · Ai,j∇ to a

mapping from Hε+1
Dj

(Ω) to Hε−1
Di

(Ω). By definition (see (2)), this also gives a unique
continuous linear extension of −∇ ·A∇ to a mapping from Hε+1

D (Ω) to Hε−1
D (Ω).

From the assumption (Ai,j)> = Aj,i and due to the matrices Ai,j being real, we
further find that the adjoint operator (−∇·A∇)? is a continuous linear extension of
−∇ · A∇ to an operator H1−ε

D (Ω) → H−1−ε
D (Ω). Hence the operator is compatible

with the interpolation couples (H1+ε
D (Ω),H1−ε

D (Ω)) and (Hε−1
D (Ω),H−1−ε

D (Ω)) which
is then clearly also true for −∇ ·A∇+ γ for any γ ≥ 0.

Now observe that −∇·A∇+γ ∈ Liso(H1
D(Ω);H−1

D (Ω)) for γ > µ by the Gårding
inequality assumption and the Lax-Milgram lemma1, and that[

H1+ε
D (Ω),H1−ε

D (Ω)
]

1
2

= H1
D(Ω) and

[
Hε−1
D (Ω),H−1−ε

D (Ω)
]

1
2

= H−1
D (Ω)

due to Theorem 17 and Lemma 18 (and again coordinate-wise interpolation, see [4,
Cor. 1.3.8]). But then the stability result of Šnĕıberg as in Theorem 15 tells us
that there exists 0 < δ ≤ ε such that −∇ · A∇ + γ ∈ Liso(Hθ+1

D (Ω);Hθ−1
D (Ω)) for

all |θ| < δ. This was the claim. �

Proof of Corollary 4. It is a mere reformulation of assertion (3) in Theorem 2 that
for every f ∈ Hθ−1

D (Ω) there exists a unique u ∈ Hθ+1
D (Ω) satisfying the elliptic

system equation (4) with ‖u‖Hθ+1
D (Ω) ≤ C‖f‖Hθ−1

D (Ω), where C is independent of f .
Now let η ≥ 0 and p ≥ 2 be such that θ ≥ η + d( 1

2 −
1
p ), and consider

j ∈ {1, . . . , n}. Then, for every function Uj ∈ Hθ+1
Dj

(Rd) with the property that
(Uj)�Ω = uj we use the well known (generalized) Sobolev embeddings (cf. [17,
Ch. 2.8.1]) as follows:

‖uj‖H1+η,p
Dj

(Ω) ≤ ‖Uj‖H1+η,p
Dj

(Rd) ≤ C
?‖Uj‖Hθ+1

Dj
(Rd).

But this implies that ‖uj‖H1+η,p
Dj

(Ω) ≤ C?‖uj‖Hθ+1
Dj

(Ω) and of course accordingly

‖u‖H1+η,p
D (Ω) ≤ C?‖u‖Hθ+1

D (Ω), so the claim follows by observing that if we choose
0 < η < θ, then we are also allowed to choose p > 2 while still obeying the inequality
θ ≥ η + d( 1

2 −
1
p ). �

1Note that if D 6= ∅, then γ = µ is also allowed due to the Poincaré inequality, cf. Remark 3.
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7. Application

As an application, we consider a standard phase-field model for brittle fracture
as given in [2]. For the following exposition, we consider the formulation given
in [14], where the fracture irreversibility is relaxed by a penalty approach. After
introduction of a time-discretization, the evolution is given by a sequence of prob-
lems associated to each time-step. Namely, for a bounded domain Ω ⊂ R2 satisfying
Assumption 7, one searches for a (vector-valued) displacement u ∈ H1

D(Ω) and a
(scalar) phase-field φ ∈ H1(Ω) solving the system of equations(

g(φ)e(u) : e(v)
)

= `(v),(
ε−1(φ− 1) + (1− κ)

(
φe(u) : e(u)

)
+γ[(φ− φ−)+]3, ψ

)
L2(Ω)

+
〈
−∇ · ε∇φ, ψ

〉
= 0

(6)

for all v ∈ H1
D(Ω) and ψ ∈ H1(Ω), with given loads ` ∈ Hθ0−1

D (Ω) for some θ0 > 0,
φ− satisfying 0 ≤ φ− ≤ 1, with 0 < κ� ε� 1 and g(φ) = (1−κ)φ2 +κ where e(u)
and e(v) denotes the symmetric gradient of u and v, respectively. It has been shown
in [14] that this problem admits a Hilbert space solution (u, ϕ) ∈ H1

D(Ω) × H1(Ω)
with the additional regularity u ∈W1,p(Ω) for some p > 2 and φ ∈ L∞(Ω); in fact,
0 ≤ φ(x) ≤ 1 holds for almost all x ∈ Ω.

With the results obtained in this work, we can now show the following improved
differentiability result.

Corollary 20. There exists 0 < θ̄ ≤ θ0 such that the solution (u, φ) ∈
(
W1,p(Ω) ∩

H1
D(Ω)

)
×
(
H1(Ω) ∩ L∞(Ω)

)
of (6) admits the additional regularity u ∈ Hθ+1

D (Ω)

and φ ∈ Hθ+1(Ω) for any θ satisfying 0 < θ ≤ θ̄. Moreover we obtain the estimate

‖u‖H1+θ
D (Ω) ≤ C‖`‖Hθ0−1

D (Ω)

with a constant C = C(‖`‖2H−1,p
D (Ω)

, γ, ε).

Proof. Slightly rewriting the second equation in (6), we see that φ satisfies(
−∇ · ε∇+ ε−1

)
φ = ε−1 + (κ− 1)

(
φe(u) : e(u)

)
− γ[(φ− φ−)+]3 in H−1(Ω).

By the regularity φ ∈ L∞(Ω) and u ∈ W1,p(Ω) it is clear that the right hand side
is in fact an element of Lp/2(Ω). Consequently, by Sobolev embedding, there exists
some ϑ > 0 such that it is an element of Hϑ−1(Ω). Theorem 2 then shows that
we have φ ∈ Hθ+1(Ω) for all 0 < θ ≤ ϑ̄ for some ϑ̄ ≤ ϑ, and standard Sobolev
embedding theorems assert that φ ∈ Cσ(Ω) for σ = 1 + θ − 2

p . Moreover, by [14,
Corollary 4.2], we have that ‖φe(u) : e(u)‖Lp/2(Ω) ≤ c‖`‖2H−1,p

D (Ω)
for some constant

c ≥ 0, and thus
‖φ‖Cσ(Ω) ≤ c

(
‖`‖2H−1,p

D (Ω)
+ γ + ε−1

)
.

But then, by definition, g(φ) ∈ Cσ(Ω) too and Lemma 14 (iii) shows that this
is indeed a multiplier on Hθ(Ω). Now another application of Theorem 2 to the
equation (

g(φ)e(u) : e(v)
)

= `(v) for all v ∈ H1
D(Ω)

yields the claimed regularity. For the stability estimate, we utilize the above bound
on ‖φ‖Cσ(Ω) together with Remark 5. �
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Remark 21. In the case where the irreversibility of the fracture is not relaxed via
a penalization approach, the equation for φ becomes an obstacle problem where the
term involving γ([(φ−φ−)+]3 is replaced by the requirement φ ≤ φ−. If the domain
is sufficiently regular, then classical W2,p/2(Ω)-regularity of the obstacle problem,
i.e., φ ∈W2,p/2(Ω) as long as φ− ∈W2,p/2(Ω), can be used to show that φ is again
a multiplier (see e.g. [3, Corollary II.3]).
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