
Priority Programme 1962

Hadamard Differentiability of the Solution Map in Thermoviscoplasticity

Roland Herzog, Ailyn Stötzner
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HADAMARD DIFFERENTIABILITY OF THE SOLUTION

MAP IN THERMOVISCOPLASTICITY

ROLAND HERZOG AND AILYN STÖTZNER

Abstract. We investigate the solution map of a quasistatic, thermo-
viscoplastic model at small strains with linear kinematic hardening, von
Mises yield condition and mixed boundary conditions. The local Lip-
schitz continuity as well as the directional differentiability of the solution
map are proved by the reformulation of the viscoplastic flow rule as a Ba-
nach space-valued ODE with nonsmooth right hand side, and employing
maximal parabolic regularity theory. As a consequence it follows that
the solution map is Hadamard differentiable.

Elastoplastic deformations play a tremendous role in industrial forming.
Moreover, many of these processes happen at non-isothermal conditions.
Therefore, the investigation of such systems is of interest not only mathe-
matically but also with regard to applications.

The aim of this work is to prove the Hadamard differentiability of the
solution map related to the following quasistatic, thermovisco(elasto)plastic
model at small strains with linear kinematic hardening and von Mises yield
condition:

stress-strain relation: σ = C (ε(u)− p− t(θ)) ,(0.1)

conjugate forces: χ = −Hp,(0.2)

viscoplastic flow rule: ε ṗ+ ∂ṗD(ṗ, θ) 3 [σ + χ] ,(0.3)

balance of momentum: − div (σ + γ ε(u̇)) = `,(0.4)

and the heat equation: % cp θ̇ − div(κ∇θ) = r + γ ε(u̇) : ε(u̇)(0.5)

+ (σ + χ) : ṗ− θ t′(θ) : C(ε(u̇)− ṗ).

The unknowns are the stress σ, back-stress χ, plastic strain p, displacement
u and temperature θ. Further, C and H denote the elastic and hardening
moduli, respectively. ε(u) denotes the symmetrized gradient or linearized
strain associated with u. The temperature dependent term t(θ) expresses
thermally induced strains. D denotes the dissipation function. The right
hand sides ` and r represent mechanical and thermal loads, respectively,
which may act in the volume or on the boundary or both. The constants %,
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2 R. HERZOG AND A. STÖTZNER

cp and κ describe the density, specific heat capacity and thermal conductivity
of the material. The positive parameters ε and γ represent viscous effects in
the evolution of the plastic strain and in the balance of momentum. For the
derivation of the system (0.1)–(0.5) and more on its physical background,
we refer the reader to [13, Chapter 22 and 23].

The analysis of thermoplastic models poses numerous mathematical chal-
lenges, mainly due to the low integrability of the nonlinear terms on the
right hand side of the heat equation. Several approaches have been consid-
ered in the literature to deduce the existence and uniqueness of a solution,
and we mention [5, 3, 4, 14] and [10]. We follow in this work the techniques
developed in [10] which make use of the theory of maximal parabolic reg-
ularity. This will also be of major importance in order to show the local
Lipschitz continuity of the solution map in Proposition 3.1.

Additionally, the main difficulty w.r.t. the differentiability properties of
the solution map is the non-smooth dissipation function D appearing in the
viscoplastic flow rule (0.3). The aim of this work is to prove the Hadamard
differentiability of the solution map as a consequence of its local Lipschitz
continuity and directional differentiability, see Corollary 4.6. We recall the
following definition of Hadamard differentiability.

Definition 0.1 (Hadamard differentiability). Let V,W be normed vector
spaces. A function f : V → W is said to be Hadamard differentiable in
u ∈ V if

f ′H(u;h) = lim
t↓0

f(u+ th+ r(t))− f(u)

t
∈W

exists for every h ∈ V and every function r(t) : (0,∞) → V satisfying

r(t) = o(t), i.e., limt↓0
r(t)
t = 0. A function f : V → W is said to be

Hadamard differentiable if it is Hadamard differentiable in all u ∈ V .

We remark that the following equivalent definition for Hadamard differ-
entiability is often found in the literature, which requires that

f ′H(u;h) = lim
t↓0, h̃→h

f(u+ th̃)− f(u)

t
∈W

exists for every h ∈ V , independently of the sequence h̃ → h in V ; see for
example in [16, eq.(6)]. The main advantage of Definition 0.1 is that we
have to handle just one limit process.

Since the Hadamard differentiability of the solution map is a direct con-
sequence of its local Lipschitz continuity and directional differentiability,
compare Lemma 2.9, the main Theorem 4.2 of this work is to establish
the directional differentiability of the solution map. We remark that our
approach is close to [12] where the Hadamard differentiability of the solu-
tion map related to a semilinear operator with directionally differentiable
semilinear part has been proven with a similar strategy.

Nevertheless, our system is more complicated compared to the semilinear
operator in [12]. The proof of the directional differentiability of the solution
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map is based on a reformulation of the viscoplastic flow rule as a Banach
space-valued ODE (2.2), see Proposition 2.5. Moreover, we will exploit
the property of Hadamard differentiability since there exists a chain rule,
and Lebesgue’s dominated convergence theorem in order to show that all
nonlinear term appearing in the thermoviscoplastic system (0.1)–(0.5) are
directionally differentiability. This will be the other key element in the proof
of the directional differentiability of the solution map.

The motivation behind our study is two-fold. On the one hand, weakened
differentiability properties of non-smooth maps between infinite-dimensional
spaces are of intrinsic interest. On the other hand, these properties are the
basis for the derivation of first-order optimality conditions for optimization
problems subject to the forward system (0.1)–(0.5), as well as tailored non-
smooth optimization algorithms.

The paper is organized as follows. We start in Section 1 with some no-
tation and general assumptions in order to garantuee the existence of the
solution map related to the thermoviscoplastic system (0.1)–(0.5). Next, in
Section 2 we give the notion of a weak solution and summarize some facts
related to the thermoviscoplastic system and the property Hadamard dif-
ferentiability. We prove in Section 3 the local Lipschitz continuity of the
solution map, see Proposition 3.1. Finally, we obtain the directional differ-
entiability of the solution map in Section 4, see Theorem 4.2. By combining
this with the local Lipschitz continuity, Hadamard differentiability follows,
see Corollary 4.6.

1. Notation and General Assumptions

In what follows, Ω denotes a bounded domain in R3 and T > 0 is a given
final time. The spaces Lp(Ω) and W k,p(Ω) denote Lebesgue and Sobolev
spaces, respectively. For a Banach space X and its dual space X ′, we denote
the duality product as 〈·, ·〉X′,X or simply 〈·, ·〉 if no ambiguity arises. The
norm of X is denoted as ‖ · ‖X . In the case X = W 1,p(Ω) we denote the

dual by W−1,p′
� (Ω) where 1/p+ 1/p′ = 1.

The space Lin(X) denotes the space of bounded linear functions from X
into itself. Furthermore the space Lp(0, T ;X) denotes a Bochner space and
the space W 1,p(0, T ;X) is the subset of Lp(0, T ;X) such that distributional
time derivative of the elements are again in Lp(0, T ;X), see, e.g., [17, Chap-

ter III]. The space W 1,p
0 (0, T ;X) denotes the subspace of functions which

vanish at t = 0.
Vector-valued and matrix-valued functions, and spaces containing such

functions are written in bold-face notation. The spaces R3×3 and R3×3
sym repre-

sent the (symmetric) 3×3 matrices. Furthermore, R3×3
dev denotes the symmet-

ric and trace-free (deviatoric) 3×3 matrices. For p, q ∈ R3×3, the inner prod-
uct and the associated Frobenius norm are denoted by p : q = trace(p>q)
and |p|, respectively. The symmetrized gradient of a vector-valued function
u is defined as ε(u) = 1

2(∇u + ∇u>). The distributional time derivative
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of a function f defined on Ω × (0, T ) is denoted by ḟ . Further, we denote
by g′ the (Fréchet) derivative of a function g defined on R. Moreover, the
directional derivative of a function f in direction h is denoted by f ′(·;h) and
the Hadamard derivative is written as f ′H(·;h). The symbol ∂qD stands for
the partial convex subdifferential of the dissipation function D(q, θ) w.r.t.
q and we will simply denote it by ∂D in the sequel. The convex conjugate
of a function f : X → (−∞,+∞] on a normed vector space X is denoted
by f∗ : X ′ → (−∞,+∞], see [6, Chapter I, Definition 5.1]. Finally, C de-
notes a generic non-negative constant and it is written as C(·) to indicate
dependencies.

Now we are able to state our assumptions on the quantities in the ther-
moviscoplastic model (0.1)–(0.5). We begin with the physical constants and
functions. We then proceed to make precise the assumptions on the initial
conditions and mechanical and thermal loads, respectively. We conclude the
section with the assumptions on the domain Ω.

Assumption 1.1.

(1) The moduli C,H : Ω→ Lin(R3×3
sym) are

(a) elements of L∞(Ω,Lin(R3×3
sym)),

(b) symmetric in the sense that

Cijkl = Cjikl = Cklij and Hijkl = Hjikl = Hklij ,

(c) coercive on R3×3
sym with coercivity constants c, h > 0, i.e.

ε : C(x) ε ≥ c |ε|2 and p : H(x)p ≥ h |p|2

for all ε,p ∈ R3×3
sym and almost all x ∈ Ω.

(2) The temperature dependent uni-axial yield stress σ0 : R→ R is pos-
itive and is of class C1

b (R,R3×3
sym) (the space of bounded C1 functions

with bounded derivatives).
(3) The temperature dependent dissipation function D : R3×3

dev × R → R
is defined as

D(q, θ) := σ̃(θ) |q|, where σ̃(θ) :=
√

2/3σ0(θ).

(4) The temperature dependent thermal strain function t : R→ R3×3
sym is

(a) of class C2
b (R,R3×3

sym) (the space of bounded C2 functions with
bounded derivatives),

(b) such that R 3 θ 7→ θ t′(θ) ∈ R3×3
sym is Lipschitz continuous and

bounded.
(5) The density %, specific heat capacity cp, thermal conductivity κ and

heat transfer coefficient β are positive constants independent of the
temperature. W.l.o.g. we set % cp = 1 in the analysis.

(6) The viscosity parameters ε and γ are positive.

Remark 1.2. If the thermal strain t fulfills Assumption 1.1 (4a) and satisfies

t(θ) = t−∞ for θ ≤ −M and t(θ) = t∞ for θ ≥M
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for some M > 0 and matrices t−∞ and t∞ in R3×3
sym, then the product θ t′(θ)

is Lipschitz continuous and bounded.

Next we introduce suitable function spaces for the displacement and the
plastic strain.

Definition 1.3.

(1) We define for p ≥ 2 the (vector-valued) Sobolev space

W 1,p
D (Ω) :=

{
u ∈W 1,p(Ω;R3) : u = 0 on ΓD

}
.

Here ΓD denotes the Dirichlet part of the boundary, see Assump-
tion 1.6 (1).

(2) We denote the dual space of W 1,p
D (Ω) by W−1,p′

D (Ω), where 1/p +
1/p′ = 1.

(3) We define for p ≥ 2 the (matrix-valued) Lebesgue space

Qp(Ω) := Lp(Ω;R3×3
dev ).

The following regularities for the initial conditions and the mechanical
and thermal loads are assumed.

Assumption 1.4. Let p, q ≥ 2 be fixed and define

(1.1) v(p)

{
= 3p/(6− p) if p < 6

∈ ( 3p
3+p ,∞) arbitrary if p ≥ 6.

(1) The initial conditions u0, p0 and θ0 have regularity

u0 ∈W 1,p
D (Ω), p0 ∈ Qp(Ω) and θ0 ∈W 1,v(p)(Ω).

(2) The loads ` and r belong to the spaces

` ∈ Lq(0, T ;W−1,p
D (Ω)) and r ∈ L

q
2 (0, T ;W

−1,v(p)
� (Ω)).

(They may represent volume or boundary loads or both.)

Remark 1.5. The distinction of cases in the definition of v(p) is due to

the Sobolev embedding L
p
2 (Ω) ↪→W

−1,v(p)
� (Ω) which becomes saturated for

p ≥ 6.

Finally, we present the assumptions on the domain.

Assumption 1.6.

(1) Ω ⊂ R3 is a bounded domain with Lipschitz boundary Γ, see, e.g.,
[7, Definition 1.2.1.1]. The boundary Γ is divided into disjoint mea-
surable parts ΓN and ΓD such that Γ = ΓN ∪̇ ΓD. Furthermore, ΓN

is an open and ΓD is a closed subset of Γ with positive measure.
(2) The set Ω∪ΓN is regular in the sense of [8], which will be necessary

to obtain W 1,p regularity (for some p > 2) of a solution of (0.4), as
well as for the following assumption on maximal parabolic regularity.
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(3) In addition, the domain Ω is assumed to be smooth enough such that
the operator related to

(1.2) 〈ϑ̇, z〉+

∫
Ω
κ∇ϑ · ∇z dx+

∫
Γ
β ϑ z ds = f, ϑ(0) = 0

for all z ∈ W 1,v(p)′(Ω) and almost all t ∈ (0, T ) enjoys maximal

parabolic regularity in W
−1,v(p)
� (Ω). In other words, there exists a

solution operator of (1.2)

Π : L
q
2 (0, T ;W

−1,v(p)
� (Ω))

→W
1, q

2
0 (0, T ;W

−1,v(p)
� (Ω)) ∩ L

q
2 (0, T ;W 1,v(p)(Ω))

defined by Πf = ϑ, which is linear and bounded, i.e., the following
estimate holds:

‖ϑ‖
W

1,
q
2

0 (0,T ;W
−1,v(p)
� (Ω))∩L

q
2 (0,T ;W 1,v(p)(Ω))

≤ LΠ ‖f‖L q
2 (0,T ;W

−1,v(p)
� (Ω))

.

Remark 1.7.

(1) In 3D, there is no simple characterization for Assumption 1.6 (2); cf.
[9, Theorem 5.4]. For example, Ω ∪ ΓN is regular in the sense of [8]
if Ω ⊂ R3 is a Lipschitzian polyhedron and ΓN ∩ΓD is a finite union
of line segments; see [9, Corollary 5.5].

(2) Assumption 1.6 (3) is not very restrictive because there exists v̂ > 2
such that the operator related to (1.2) satisfies maximal parabolic

regularity in W
−1,v(p)
� (Ω) for v̂′ ≤ v(p) ≤ v̂ (where v̂′ is the conjugate

exponent of v̂); cf. [10, Lemmata 41 and 42].

2. Weak Formulation of the Thermoviscoplastic System and
Some Useful Results

Before we start with our analysis, we give a precise notion of (weak)
solutions to the thermoviscoplastic system (0.1)–(0.5) and summarize some
uselful results regarding the thermoviscoplastic system and the property of
Hadamard differentiability.

Weak Formulation. (Weak) Solutions to the thermoviscoplastic system
satisfy the system (0.1)–(0.5) in a weak sense as follows.

Definition 2.1 (Weak solution of the thermoviscoplastic system). Let p, q >
2. Given initial data and inhomogeneities according to Assumption 1.4, we
say that a quintuple

u ∈W 1,q(0, T ;W 1,p
D (Ω)), p ∈W 1,q(0, T ;Qp(Ω)),

σ ∈W 1,q(0, T ;Lp(Ω)), χ ∈W 1,q(0, T ;Lp(Ω)),

θ ∈W 1, q
2 (0, T ;W

−1,v(p)
� (Ω)) ∩ L

q
2 (0, T ;W 1,v(p)(Ω))
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is a weak solution of the thermoviscoplastic system (0.1)–(0.5), if it fulfills,
for almost all t ∈ (0, T ), the

stress-strain relation: σ = C
(
ε(u)− p− t(θ)

)
(0.1)

conjugate forces: χ = −Hp(0.2)

viscoplastic flow rule: ε

∫
Ω
ṗ : (q − ṗ) dx(0.3’)

−
∫

Ω
(σ + χ) : (q − ṗ) dx+

∫
Ω
D(q, θ) dx−

∫
Ω
D(ṗ, θ) dx ≥ 0

for all q ∈ Qp(Ω)

balance of momentum:

∫
Ω

(σ + γ ε(u̇)) : ε(v) dx = 〈`, v〉(0.4’)

for all v ∈W 1,p′

D (Ω)

and the heat equation: 〈θ̇, z〉+

∫
Ω
κ∇θ · ∇z dx+

∫
Γ
β θ z ds(0.5’)

= 〈r, z〉+

∫
Ω

(σ + χ) : ṗ z dx−
∫

Ω
θ t′(θ) : C(ε(u̇)− ṗ) z dx

+ γ

∫
Ω
ε(u̇) : ε(u̇) z dx for all z ∈W 1,v(p)′(Ω),

along with the initial conditions u(0) = u0, p(0) = p0, and θ(0) = θ0.

Notice that the associated stress σ and back-stress χ are determined
through u, p, and θ and can directly be calculated from the pointwise equa-
tions in (0.1) and (0.2). Their regularity then follows immediately from
Assumption 1.1.

We remark that W 1,v(p)′(Ω) is the dual space to W
−1,v(p)
� (Ω). Note that

the balance of momentum (0.4) is equipped with mixed boundary conditions

u = 0 on ΓD and (γ ε(u̇) + σ)n = s on ΓN,

where n is the outwards unit normal of Ω. The surface traction forces s,
together with additional volume loads, are summarized in `. Moreover, the
heat equation (0.5) is endowed with Robin boundary conditions, whose left
hand side is given by κ ∂θ

∂n + β θ and whose right hand side enters r.
For simplicity, we will refer to (0.3’) in the sequel as (0.3) and similarly

for (0.4) and (0.5) but always have in mind the weak form of the respective
equation.

Reformulation of the Balance of Momentum. We apply [11, Theo-
rem 1.1] in order to solve the balance of momentum; see [10, Lemma 11] for
a proof.
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Lemma 2.2. There exists p̂ > 2 such that for all 2 ≤ p ≤ p̂ and F ∈
W−1,p

D (Ω), there exists a unique solution u ∈W 1,p
D (Ω) of∫

Ω
γ ε(u) : ε(v) dx = 〈F , v〉 for all v ∈W 1,p′

D (Ω).

The corresponding solution operator Φu : W−1,p
D (Ω)→W 1,p

D (Ω), F 7→ u is
linear and bounded and satisfies the following estimate

‖u‖
W 1,p

D (Ω)
= ‖Φu(F )‖

W 1,p
D (Ω)

≤ C γ−1‖F ‖
W−1,p

D (Ω)
.

The Lipschitz constant C γ−1 is independent of p ∈ [2, p̂].

Remark 2.3 (Reformulation of the balance of momentum). We apply the

linear and bounded solution operator Φu : W−1,p
D (Ω) → W 1,p

D (Ω) estab-
lished in Lemma 2.2 to the balance of momentum (0.4) and obtain the
Banach space-valued ODE

u̇ = Φu(F 1(`,u,p) + F 2(θ))(2.1)

where F 1 and F 2 are given by

〈F 1(`,u,p), v〉 :=

∫
Ω
` · v dx−

∫
Ω
C (ε(u)− p) : ε(v) dx,

〈F 2(θ), v〉 :=

∫
Ω
C (t(θ)) : ε(v) dx.

Reformulation of the Viscoplastic Flow Rule. The reformulation of the
viscoplastic flow rule (0.3) is based on the following result from convex anal-
ysis; see [6, Chapter I, Corollary 5.2].

Lemma 2.4. Let X be a normed vector space and f : X → (−∞,∞] convex,
lower semicontinuous and proper. Then

x∗ ∈ ∂f(x) ⇔ x ∈ ∂f∗(x∗).

With Lemma 2.4 at hand we are able to derive a reformulation of the
viscoplastic flow rule (0.3).

Proposition 2.5. The viscoplastic flow rule (0.3) can be equivalently refor-
mulated as

(2.2) ṗ = −ε−1 min

(
σ̃(θ)

|τ (u,p, θ)|
− 1, 0

)
τ (u,p, θ) a.e. in (0, T )× Ω,

where τ (u,p, θ) := [σ(u,p, θ) + χ(u,p, θ)]D.

The right hand side of (2.2) is understood to be zero by continuous ex-
tension when τ (u,p, θ) = 0.

Proof. We can understand the viscoplastic flow rule (0.3) in a pointwise
sense, see [10, Remark 14]. Therefore we fix an arbitrary (t,x) ∈ (0, T )×Ω
and prove the equivalence of (0.3) and (2.2) pointwise. For brevity we omit
in the following the argument (t,x) for all functions.
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Since the mapping q 7→ D(q, θ) = σ̃(θ)|q| is proper, convex and lower
semicontinuous, we apply Lemma 2.4 and obtain

viscoplastic flow rule (0.3) ⇔ ṗ ∈ ∂D∗(−ε ṗ+ τ (u,p, θ), θ),

where τ (u,p, θ) := [σ(u,p, θ) + χ(u,p, θ)]D. It remains to show that the
subdifferential of D∗(· , θ) is a singleton and can be characterized as in the
assertion.

We start by calculating D∗(· , θ) :
(
R3×3

dev

)∗
= R3×3

dev → (−∞,∞] explicitly
using the definition of the convex conjugate,

D∗(q∗, θ) = sup
q∈R3×3

dev

{q∗ : q −D (q, θ)} = sup
q∈R3×3

dev

{q∗ : q − σ̃(θ) |q|}

=

{
0 if |q∗| ≤ σ̃(θ)
∞ if |q∗| > σ̃(θ)

}
= IB(θ)(q

∗),

where IB(θ) is the indicator function of the set B(θ) = {q ∈ R3×3
dev : |q| ≤

σ̃(θ)}. Therefore, we have to determine the subdifferential of the indicator
function IB(θ) which is nonempty only for q∗ ∈ B(θ):

(2.3) q ∈ ∂D∗(q∗, θ) = ∂IB(θ)(q
∗) ⇔ 0 ≥ q : (v − q∗) ∀v ∈ B(θ).

We multiply (2.3) with β > 0 and add a zero term in order to exploit the
projection theorem, see [1, 2.3 Projektionssatz].

q ∈ ∂D∗(q∗, θ)
⇔ (q∗ − (q∗ + β q)) : (v − q∗) ≥ 0 ∀v ∈ B(θ), β > 0

⇔ q∗ = projB(θ)(q
∗ + β q) = min (σ̃(θ), |q∗ + β q|) q

∗ + β q

|q∗ + β q|
,(2.4)

where we used the fact that the orthogonal projection w.r.t. the Frobenius
norm onto the ball B(θ) can be calculated explicitly. Note that (2.4) im-
plies |q∗| = min (σ̃(θ), |q∗ + β q|) ≤ σ̃(θ). Therefore, the equivalence (2.4)
extends to the case q∗ /∈ B(θ), when ∂D∗(q∗, θ) = ∅. Finally we insert
q ≡ ṗ ∈ R3×3

dev and q∗ ≡ −ε ṗ + τ (u,p, θ) ∈ R3×3
dev into (2.4), choose β = ε

and obtain the assertion. �

Properties of the Solution to the Forward Problem. We recall the ex-
istence result for the thermoviscoplasitc system (0.1)–(0.5) and the bound-
edness of the solution map.

Theorem 2.6 (Existence and uniqueness of a weak solution; [10, Theo-
rem 10]). Suppose that Assumption 1.1 and Assumption 1.6 hold. There
exists p̄ > 2 such that for all 2 < p ≤ p̄, there exists q̄ > 2 (depending on
p) such that for all q̄ ≤ q <∞ and right hand sides (`, r) and initial condi-
tions (u0,p0, θ0) as in Assumption 1.4, there exists a unique weak solution
(u,p, θ,σ,χ) of (0.1)–(0.5) according to Definition 2.1.

Lemma 2.7 (Boundedness of the solution map; [10, Lemma 27]). Under
the assumptions of Theorem 2.6, the solution map
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(2.5) G : Lq(0, T ;W−1,p
D (Ω))× L

q
2 (0, T ;W

−1,v(p)
� (Ω))

→W 1,q(0, T ;W 1,p
D (Ω))×W 1,q(0, T ;Qp(Ω))

×W 1, q
2 (0, T ;W

−1,v(p)
� (Ω)) ∩ L

q
2 (0, T ;W 1,v(p)(Ω)),

defined by G(`, r) := (u,p, θ) is bounded, i.e., the images of bounded sets are
bounded.

In Section 4, we will need to address the individual components of G,
which will be written as Gu, Gp, and Gθ, respectively. Moreover, the first
two components of G will be written as Gu,p.

Embedding. Using [18, Corollary 8 and Lemma 12] one can show the
following embedding, compare also [10, Corollary 44].

Lemma 2.8.

(1) Suppose 2 < p < 6 and thus v(p) = 3p/(6− p); cf. (1.1). Choose

q >
2

b
and 0 < b <

{
1− 3

2p if p < 3
1
2 otherwise.

(2) Suppose p ≥ 6 and thus v(p) ∈ ( 3p
3+p ,∞); cf. (1.1). Choose

q >
2

b
and 0 < b <

{
1− 3

2v(p) + 3
2p if v(p) < p

1
2 otherwise.

Then the following embedding is compact:

W
1, q

2
0 (0, T ;W

−1,v(p)
� (Ω)) ∩ L

q
2 (0, T ;W 1,v(p)(Ω)) ↪→↪→ C([0, T ];Lp(Ω)).

Hadamard Differentiability. We recall that locally Lipschitz continuous
and directionally differentiable functions are Hadamard differentiable, see
[16, Proposition 3.5].

Lemma 2.9. Let V,W be normed vector spaces and f : V → W . If the
mapping f is directionally differentiable in u ∈ V and locally Lipschitz con-
tinuous in u ∈ V , then f is Hadamard differentiable in u ∈ V . Moreover, the
Hadamard derivative f ′H(u; ·) and the directional derivative f ′(u; ·) coincide.

A major advantage of Hadamard differentiable functions—compared to
merely directionally differentiable functions—is that there exists a chain
rule; see [16, Proposition 3.6].

Lemma 2.10 (Chain rule). Let V,W,X be normed vector spaces, f : V →
W and g : W → X given functions. If f is Hadamard/directionally differ-
entiable in u ∈ V and g is Hadamard differentiable in f(u) ∈ W then g ◦ f
is Hadamard/directionally differentiable in u ∈ V with

(g ◦ f)′H(u;h) = g′H(f(u); f ′H(u;h)).
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Notice that we can exploit the chain rule in order to obtain that compo-
sitions (addition, multiplication, division) of Hadamard differentiable func-
tions are again Hadamard differentiable.

We close this subsection with some examples of Hadamard differentiable
function which will be the key elements in order to prove the directional
differentiability of the solution map related to the thermoviscoplastic system,
see Section 4.2. This result is a direct consequence of Lemma 2.9.

Lemma 2.11. The following functions are Hadamard differentiable.

(1) f : R→ R, f(θ) = t(θ) with f ′H(θ; δθ) = t′(θ; δθ).
(2) f : R→ R, f(θ) = σ̃(θ) with f ′H(θ; δθ) = σ̃′(θ; δθ).
(3) f : R3×3

sym×R3×3
sym → R, f(a, b) = a :b with f ′H(a, b; δa, δb) = δa :b+

a : δb.
(4) f : R→ R, f(θ) = θ t′(θ) with f ′H(θ; δθ) = δθ t′(θ) + θ t′′(θ; δθ).
(5) f : R3×3

sym → R3×3
sym, f(a) = aD with f ′H(a; δa) = δaD.

(6) f : R3×3
sym → R, f(a) = |a| with

f ′H(a; δa) =

{
a:δa
|a| for a 6= 0

|a| for a = 0.

(7) f : R→ R, f(x) = min(x, 0) with

f ′H(x; δx) =

 δx for x < 0
min(0, δx) for x = 0
0 for x > 0

 =: min′(x; δx).

3. Local Lipschitz Continuity of the Solution Map

In this section we prove that the solution map G is locally Lipschitz contin-
uous by adopting ideas of the proof of [10, Proposition 15] and by exploiting
the boundedness of the solution map, see Lemma 2.7, in order to handle
the nonlinear terms of the right hand side of the heat equation. On the
other hand, the use of Lemma 2.7 does not allow a proof of a global Lip-
schitz property, see for example estimate (3.3). Whether or not G is globally
Lipschitz is an open question.

Proposition 3.1 (Local Lipschitz continuity of the solution map). Under
the assumptions of Theorem 2.6, the solution map defined in (2.5) is locally
Lipschitz continuous.

Proof. We choose two loads

(`1, r1), (`2, r2) ∈ Lq(0, T ;W−1,p
D (Ω))× L

q
2 (0, T ;W

−1,v(p)
� (Ω))

with ‖(`1, r1)‖, ‖(`2, r2)‖ ≤ M and denote the corresponding states by
(ui,pi, θi) := G(`i, ri) for i = 1, 2.

Balance of momentum and plastic flow rule. We follow the ideas of
the proof of [10, Proposition 15] and reformulate the balance of momentum
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(0.4) and the plastic flow rule (0.3) for i = 1, 2 as the Banach space-valued
ODE system (

u̇i
ṗi

)
=

(
Φu(`+ div(Φσ(ui,pi, θi)))

Φp(θi,Φ
σ(ui,pi, θi) + Φχ(ui,pi, θi))

)
with the solution operators Φu (defined in Lemma 2.2) and Φp (defined
by the right hand side in (2.2), see also [10, Lemma 13] for an alternative
representation), and the maps Φσ and Φχ given by the algebraic relations
(0.1) and (0.2).

Similarly to the proof of the Lipschitz property required for the applica-
tion of a Picard-Lindelöf argument in [10, Proposition 15], we obtain with
minor modifications (due to the loads being variable) the estimate

‖(u1,p1)− (u2,p2)‖
W 1,q(0,T ;W 1,p

D (Ω))×W 1,q(0,T ;Qp(Ω))
(3.1)

≤ C ‖θ1 − θ2‖Lq(0,T ;Lp(Ω)) + C ‖`1 − `2‖Lq(0,T ;W−1,p
D (Ω))

.

Heat equation. We apply the embedding, cf. Lemma 2.8,

W
1, q

2
0 (0, T ;W

−1,v(p)
� (Ω)) ∩ L

q
2 (0, T ;W 1,v(p)(Ω)) ↪→↪→ C([0, T ];Lp(Ω)).

and the maximal parabolic regularity, Assumption 1.6 (3), to the difference
of the temperatures θ1 − θ2, where [θ1 − θ2] (0) = 0 holds. We obtain the
following chain of inequalities,

‖θ1(t)− θ2(t)‖Lp(Ω) ≤ C ‖θ1 − θ2‖
W

1,
q
2

0 (0,t;W
−1,v(p)
� (Ω))∩L

q
2 (0,t;W 1,v(p)(Ω))

≤ C ‖f1 − f2‖L q
2 (0,t;W

−1,v(p)
� (Ω))

,(3.2)

where fi ∈ L
q
2 (0, T ;W

−1,v(p)
� (Ω)) for i = 1, 2 are defined as the right hand

sides of the heat equation (0.5) related to the loads (`i, ri). It remains to
bound the right hand side of (3.2) in a suitable way to exploit Gronwall’s
lemma. We estimate

‖f1 − f2‖L q
2 (0,t;W

−1,v(p)
� (Ω))

≤ ‖r1 − r2‖L q
2 (0,t;W

−1,v(p)
� (Ω))

+ γ‖ε(u̇1) : ε(u̇1)− ε(u̇2) : ε(u̇2)‖
L

q
2 (0,t;L

p
2 (Ω))

+ ‖(σ1 + χ1) : ṗ1 − (σ2 + χ2) : ṗ2‖L q
2 (0,t;L

p
2 (Ω))

+ ‖θ1t
′(θ1) : C(ε(u̇1)− ṗ1)− θ2t

′(θ2) : C(ε(u̇2)− ṗ2)‖
L

q
2 (0,t;L

p
2 (Ω))

=: ‖r1 − r2‖L q
2 (0,t;W

−1,v(p)
� (Ω))

+ γB1 +B2 +B3,

where we used the embedding L
p
2 (Ω) ↪→ W

−1,v(p)
� (Ω), cf. Remark 1.5. We

estimate the individual terms as follows,

B1 ≤ ‖ε(u̇1)‖Lq(0,t;Lp(Ω)) ‖ε(u̇1 − u̇2)‖Lq(0,t;Lp(Ω))

+ ‖ε(u̇2)‖Lq(0,t;Lp(Ω)) ‖ε(u̇1 − u̇2)‖Lq(0,t;Lp(Ω)),

B2 ≤ ‖σ1 + χ1‖Lq(0,t;Lp(Ω)) ‖ṗ1 − ṗ2‖Lq(0,t;Lp(Ω))
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+ ‖(σ1 + χ1)− (σ2 + χ2)‖Lq(0,t;Lp(Ω)) ‖ṗ2‖Lq(0,t;Lp(Ω)),

where σi := Φσ(ui,pi, θi) and χi := Φχ(ui,pi, θi), respectively. Finally,
we apply the Lipschitz continuity of θ 7→ θ t′(θ), see Assumption 1.1, and
estimate

B3 ≤ ‖θ1t
′(θ1)‖Lq(0,t;Lp(Ω)) ‖C(ε(u̇1)− ṗ1)− C(ε(u̇2)− ṗ2)‖Lq(0,t;Lp(Ω))

+ C ‖θ1 − θ2‖Lq(0,t;Lp(Ω)) ‖C(ε(u̇2)− ṗ2)‖Lq(0,t;Lp(Ω)).

We benefit from the boundedness of the solution map (see Lemma 2.7), the
boundedness of the mapping θ 7→ θ t′(θ) and the Lipschitz continuity of t
(see Assumption 1.1) to obtain

‖θ1(t)− θ2(t)‖Lp(Ω)

(3.3)

≤ C ‖r1 − r2‖L q
2 (0,t;W

−1,v(p)
� (Ω))

+ C(M) ‖u1 − u2‖W 1,q(0,t;W 1,p
D (Ω))

+ C(M) ‖p1 − p2‖W 1,q(0,t;Lp(Ω)) + C(M) ‖θ1 − θ2‖Lq(0,t;Lp(Ω)).

Putting everything together. Now we combine the results from esti-
mates (3.1) and (3.3) to obtain

(3.4) ‖θ1(t)− θ2(t)‖Lp(Ω) ≤ C ‖r1 − r2‖L q
2 (0,t;W

−1,v(p)
� (Ω))

+ C(M) ‖`1 − `2‖Lq(0,T ;W−1,p
D (Ω))

+ C(M) ‖θ1 − θ2‖Lq(0,t;Lp(Ω)).

We abbreviate

D(t) := C ‖r1 − r2‖L q
2 (0,t;W

−1,v(p)
� (Ω))

+ C(M) ‖`1 − `2‖Lq(0,T ;W−1,p
D (Ω))

and obtain, using the convexity of z 7→ zq for z ≥ 0 for the right hand side,
the inequality

‖θ1(t)− θ2(t)‖qLp(Ω) ≤ C(M)

∫ t

0
‖θ1 − θ2‖qLp(Ω) +D(t)q.

Now we can employ Gronwall’s lemma to estimate

‖θ1(t)− θ2(t)‖qLp(Ω) ≤ C(M,T )D(T )q for all t ∈ [0, T ]

and therefore

‖θ1 − θ2‖L∞(0,T ;Lp(Ω)) ≤ C(M,T )D(T ).(3.5)

In addition we obtain from inequality (3.2) and the calculations above,

‖θ1 − θ2‖
W

1,
q
2

0 (0,t;L
p
2 (Ω))∩L

q
2 (0,t;W 1,v(p)(Ω))

≤ C(M) ‖θ1 − θ2‖Lq(0,t;Lp(Ω)) +D(t),

compare (3.4). Together with (3.5) we obtain

(3.6) ‖θ1 − θ2‖
W

1,
q
2

0 (0,T ;L
p
2 (Ω))∩L

q
2 (0,T ;W 1,v(p)(Ω))

≤ C(M,T ) ‖r1−r2‖L q
2 (0,T ;W

−1,v(p)
� (Ω))

+C(M,T ) ‖`1−`2‖Lq(0,T ;W−1,p
D (Ω))

.

Finally, we combine (3.1) with (3.5). Together with (3.6), this establishes
the assertion. �
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Remark 3.2 (Fréchet differentiability of the solution map). The result of
[15] states that locally Lipschitz continuous functions defined on Asplund
spaces (see [2]) are Fréchet differentiable on a dense subset of their domain.
Therefore we conclude that the solution map G is Fréchet differentiable

4. Directional Differentiability of the Solution Map

In this section we provide the proof of the main Theorem 4.2, which states
the directional differentiability of the solution map G. We start with defining
the linearized system related to our thermoviscoplastic system (0.1)–(0.5)
in Definition 4.1. Then we present our main theorem followed by a detailed
roadmap of its proof. The major part of this section is a rigorous proof of
the main theorem.

In deriving the linearized thermoviscoplastic system and its weak solu-
tion, we consider the thermoviscoplastic flow rule in its representation as a
Banach space-valued ODE (2.2), instead of the formulation as a variational
inequality (0.3).

Definition 4.1 (Weak solution of the linearized thermoviscoplastic system).
Let p, q > 2 and (u,p, θ,σ,χ) a weak solution of the thermoviscoplastic
system (0.1)–(0.5) with regularity

u ∈W 1,q(0, T ;W 1,p
D (Ω)), p ∈W 1,q(0, T ;Qp(Ω)),

σ ∈W 1,q(0, T ;Lp(Ω)), χ ∈W 1,q(0, T ;Lp(Ω)),

θ ∈W 1, q
2 (0, T ;W

−1,v(p)
� (Ω)) ∩ L

q
2 (0, T ;W 1,v(p)(Ω)),

where v(p) is defined in (1.1). Given inhomogeneities according to Assump-
tion 1.4, we say that a quintuple (δu, δp, δσ, δχ, δθ) with the same regular-
ities as above is a weak solution of the linearized thermoviscoplastic system,
if it fulfills, for almost all t ∈ (0, T ), the

stress-strain relation: δσ = C
(
ε(δu)− δp− t′(θ; δθ)

)
(4.1)

conjugate forces: δχ = −H δp(4.2)

viscoplastic flow rule: δ̇p = −ε−1 min

(
σ̃(θ)

|τ |
− 1, 0

)
δτ(4.3)

− ε−1min′
(
σ̃(θ)

|τ |
− 1;

σ̃′(θ; δθ)

|τ |
− σ̃(θ)

τ : δτ

|τ |3

)
τ ,

where min′(x; ·) is defined as in Lemma 2.11

and δτ = [δσ + δχ]D, τ = [σ + χ]D

balance of momentum: ˙δu = Φu(F 1(δ`, δu, δp) + F ′2(θ; δθ)),(4.4)

where Φu is given in Lemma 2.2 and F 1, F 2 in Remark 2.3

and the heat equation: 〈δ̇θ, z〉+

∫
Ω
κ∇δθ · ∇z dx+

∫
Γ
β δθ z ds(4.5)
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= 〈δr, z〉+

∫
Ω

2 γ ε( ˙δu) : ε(u̇) z dx+

∫
Ω

(σ + χ) : δ̇p z dx

+

∫
Ω

(δσ + δχ) : ṗ z dx−
∫

Ω
t′(θ; δθ) : C(ε(u̇)− ṗ) z dx

−
∫

Ω
θ t′′(θ) δθ : C(ε(u̇)− ṗ) z dx−

∫
Ω
θ t′(θ) : C(ε( ˙δu)− δ̇p) z dx

for all z ∈W 1,v(p)′(Ω),

along with the initial conditions δu(0) = 0, δp(0) = 0, and δθ(0) = 0.

Note that as in the ODE formulation of the flow rule (2.2), the right
hand side of (4.3) is understood to be zero by continuous extension when
τ (u,p, θ) = 0. For detailed information about boundary conditions which
are defined in the weak setting above implicitly, we refer the reader to the
remarks following Definition 2.1.

With Definition 4.1 at hand we formulate our main theorem concerning
the directional differentiability of the solution map as follows.

Theorem 4.2 (Directional differentiablity of the solution map). Under the
assumptions of Theorem 2.6, the solution map defined in (2.5) is direction-
ally differentiable. When (u,p, θ,σ,χ) is the (weak) solution of the thermo-
viscoplastic system (0.1)–(0.5) according to the control (`, r), the directional
derivative is given by

G′(`, r; δ`, δr) = (δu, δp, δθ),

where (δu, δp, δθ) is the (weak) solution of the linearized thermoviscoplastic
system (4.1)–(4.5) in the sense of Definition 4.1.

Since the proof of Theorem 4.2 is quite involved, we first present a roadmap
of the proof.

(1) We establish in Proposition 4.3 that the thermoviscoplastic linearized
system (4.1)–(4.5) has a unique solution in the same space as the
thermoviscoplastic system (0.1)–(0.5).

(2) We prove that all nonlinear terms appearing in the thermoviscoplas-
tic system (0.1)–(0.5) are directionally differentiable.
(a) First we show the directional differentiability of the functions

pointwise in a finite dimensional setting by exploiting the chain
rule for Hadamard differentiable functions, see Lemma 2.10.

(b) Secondly, we apply Lebesgue’s dominated convergence theorem,
to obtain the property also in Bochner spaces.

(3) We finalize the proof of the main Theorem 4.2 using Gronwall’s
lemma and the previous results.

The following three subsections are arranged according to the structure
above.
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4.1. Existence of a Unique Solution to the System Related to the
Directional Derivative. In this subsection we show the existence of a
unique solution of the system (4.1)–(4.5).

Proposition 4.3. Under the assumptions of Theorem 2.6, let (u,p, θ,σ,χ)
be the unique weak solution of the thermoviscoplastic system (0.1)–(0.5)

for given (`, r) ∈ Lq(0, T ;W−1,p
D (Ω)) × L

q
2 (0, T ;W

−1,v(p)
� (Ω)). Then for

all (δ`, δr) sharing the same regularity, there exists a unique weak solution
(δu, δp, δθ, δσ, δχ) of the linearized viscoplastic system (4.1)–(4.5) in the
sense of Definition 4.1.

Proof. Since the structure of the linearized thermoviscoplastic system (4.1)–
(4.5) is similar to the thermoviscoplastic system (0.1)–(0.5), the proof can
be achieved with the same techniques developed in [10, Theorem 10] with
the following modifications:

(1) In comparison to [10, Proposition 15], we have to assume more reg-
ularity for the temperature, viz. δθ ∈ Lq(0, T ;Lp(Ω)) instead of
L1(0, T ;L1(Ω)). This is since we have to estimate in the linearized
system the term t′(θ; δθ) appearing in the stress-strain relation (4.1)
instead of only t(θ), which is bounded by assumption.

(2) The image of the solution operator δθ 7→ (δu, δp, δσ, δχ) is no
longer bounded independently of the temperature δθ, in contrast
to [10, Proposition 15]. This is due to the term t′(θ; δθ) appearing
in the stress-strain relation (4.1) of the linearized system. Thanks
to the linearity of the right hand side of the linearized heat equation
(4.5), the boundedness property will not be needed in the analysis,
compare [10, Lemma 16].

(3) The concatenation argument in the proof of [10, Proposition 24] can
be simplified exploiting that the Lipschitz constant LδR is indepen-
dent of the initial values δu(0) and δp(0).

�

4.2. Directional Differentiability of the Nonlinear Terms in the For-
ward System. The following nonlinear mappings appearing in the balance
of momentum (0.4) and heat equation (0.5) of the thermoviscoplastic system
are directionally differentiable.

Lemma 4.4 (Directional differentiability of nonlinear terms).

(1) The mapping

Therm : Lq(0, T ;Lp(Ω))→ Lq(0, T ;Lp(Ω)), Therm(θ) = t(θ)

is directionally differentiable with directional derivative

Therm′(θ; δθ) = t′(θ; δθ).

(2) The mapping

Heat1 : Lq(0, T ;W 1,p
D (Ω))→ L

q
2 (0, T ;L

p
2 (Ω)), Heat1(u) = ε(u) : ε(u)
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is directionally differentiable with directional derivative

Heat1
′(u; δu) = 2 ε(δu) : ε(u).

(3) The mapping

Heat2 : Lq(0, T ;W 1,p
D (Ω))×W 1,q(0, T ;Lp(Ω))× Lq(0, T ;Lp(Ω))

→ L
q
2 (0, T ;L

p
2 (Ω)),

Heat2(u,p, θ) = (σ(u,p, θ) + χ(u,p, θ)) : ṗ

is directionally differentiable with directional derivative

Heat2
′(u,p, θ; δu, δp, δθ) = (σ(u,p, θ) + χ(u,p, θ)) : δ̇p

− (δσ(δu, δp, δθ) + δχ(δu, δp, δθ)) : ṗ.

where the mappings σ, δσ,χ and δχ are defined by the algebraic
relations (0.1)–(0.2) and (4.1)–(4.2), respectively.

(4) The mapping

Heat3 : Lq(0, T ;W 1,p
D (Ω))× Lq(0, T ;Lp(Ω))× Lq(0, T ;Lp(Ω))

→ L
q
2 (0, T ;L

p
2 (Ω)),

Heat3(u,p, θ) = θ t′(θ) : C(ε(u)− p)

is directionally differentiable with directional derivative

Heat3
′(u,p, θ; δu, δp, δθ) = δθ t′(θ) : C(ε(u)− p)− θ t′′(θ)δθ : C(ε(u)− p)

+ θ t′(θ) : C(ε(δu)− δp).

Proof. (1) Wie fix a point θ and direction δθ. The sequence

f s(t,x) :=
t(θ(t,x) + s δθ(t,x))− t(θ(t,x))

s
→ t′(θ(t,x); δθ(t,x))

converges pointwise for almost all (t,x) ∈ (0, T )×Ω since the map-
ping t : R→ R3×3

sym is directionally differentiable, see Assumption 1.1.
f s is also bounded,

|f s(t,x)| ≤ C |δθ(t,x)| with δθ ∈ Lq(0, T ;Lp(Ω)),

where we used the Lipschitz continuity of t. The dominated conver-
gence theorem shows the assertion.

(2) We write Heat1 =: heat1 ◦ g as the composition of a Hadamard and
a directionally differentiable function, where

heat1 : Lq(0, T ;Lp(Ω))× Lq(0, T ;Lp(Ω))→ L
q
2 (0, T ;L

p
2 (Ω))

heat1(a, b) := a : b

and

g : Lq(0, T ;W 1,p
D (Ω))→ Lq(0, T ;Lp(Ω))× Lq(0, T ;Lp(Ω)),

g(u) :=

(
ε(u)
ε(u)

)
.
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Since g is linear, the map is obviously directionally differentiable
with directional derivative g′(u; δu) = (ε(δu), ε(δu))> it remains
to show that heat1 is Hadamard differentiable. We fix n(s),m(s) :
(0,∞)→ R3×3

sym with n(s) = o(s),m(s) = o(s) and a point (a, b) and
direction (δa, δb), repectively. As in (1) the sequence

fs(t,x) := s−1
(

heat1(a(t,x)+s δa(t,x)+n(s), b(t,x)+s δb(t,x)+n(s))

− heat1(a(t,x), b(t,x))
)
→ δa(t,x) : b(t,x) + a(t,x) : δb(t,x)

converges pointwise for almost all (t,x) ∈ (0, T ) × Ω since heat1 :
R3×3

sym → R3×3
sym is Hadamard differentiable, see Lemma 2.11. More-

over, we estimate the difference quotient pointwise by

|fs(t,x)| ≤ |a(t,x)| |δb(t,x)|+ |b(t,x)| |δa(t,x)|+ s−1|a(t,x)| |m(s)|
+ s−1|b(t,x)| |n(s)|+ |δa(t,x)| |m(s)|+ |δb(t,x)| |n(s)|
+ s−1|δa(t,x)| |δb(t,x)|+ s−1|n(s)| |m(s)|

≤ |a(t,x)| |δb(t,x)|+ |b(t,x)| |δa(t,x)|+ C |a(t,x)|+ C |b(t,x)|
+ C |δa(t,x)|+ C |δb(t,x)|+ C |δa(t,x)| |δb(t,x)|+ C

=: M(t,x) with M ∈ L
q
2 (0, T ;L

p
2 (Ω))

for s small enough. We apply the dominated convergence theorem,
and obtain that heat1 is Hadamard differentiable with

heat1
′(a, b; δa, δb) = δa : b+ a : δb.

Therefore, using the chain rule (Lemma 2.10) we see that Heat1 is
directionally differentiable with

Heat1
′(u; δu) = heat1

′(g(u); g′(u; δu)) = 2 ε(δu) : ε(u).

The proof of the two remaining assertions follows analogously. �

To cover all the nonlinearities in the thermoviscoplastic system, it re-
mains to show that the right hand side of the flow rule (2.2) is Hadamard
differentiable.

Lemma 4.5 (Directional differentiability of the flow rule). The right hand
side of the flow rule (2.2),

Flow : Lq(0, T ;W 1,p
D (Ω))× Lq(0, T ;Lp(Ω))× Lq(0, T ;Lp(Ω))→ Lq(0, T ;Lp(Ω)),

Flow(u,p, θ) = −ε−1 min

(
σ̃(θ)

|τ (u,p, θ)|
− 1, 0

)
τ (u,p, θ),

where τ (u,p, θ) := [σ(u,p, θ) +χ(u,p, θ)]D = [C(ε(u)−p− t(θ))−Hp]D,
is directionally differentiable with directional derivative

Flow′(u,p, θ; δu, δp, δθ)

= −ε−1 min

(
σ̃(θ)

|τ (u,p, θ)|
− 1, 0

)
δτ (δu, δp, δθ)
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− ε−1min′
(

σ̃(θ)

|τ (u,p, θ)|
− 1;

σ̃′(θ; δθ)

|τ (u,p, θ)|
− σ̃(θ)

τ (u,p, θ) : δτ (δu, δp, δθ)

|τ (u,p, θ)|3

)
·

· τ (u,p, θ).

Here δτ (δu, δp, δθ) := [C(ε(δu)− δp− t′(θ; δθ))−H δp]D and min′ is the
directional derivative of min(·, 0), see Lemma 2.11.

Note that we include in this formulation the case τ (u,p, θ) = 0, which,
by continuous extension, is understood as Flow′(u,p, θ; δu, δp, δθ) := 0,
compare Proposition 2.5.

Proof. We follow the idea of the proof of Lemma 4.4 and rewrite the mapping
Flow := flow ◦ g as the composition of a Hadamard and a directionally
differentiable function, where

flow : Lq(0, T ;Lp(Ω))× Lq(0, T ;Lp(Ω))→ Lq(0, T ;Lp(Ω)),

flow(a, b) := −ε−1 min

(
σ̃(a)

|bD|
− 1, 0

)
· bD

and flow(a, b) := 0 if bD = 0. The mapping

g : Lq(0, T ;W 1,p
D (Ω))× Lq(0, T ;Lp(Ω))× Lq(0, T ;L1(Ω))

→ Lq(0, T ;L1(Ω))× Lq(0, T ;Lp(Ω))

is defined as

g(u,p, θ) := (θ, C(ε(u)− p− t(θ))−Hp)>.

The directional differentiability of the mapping g can be inferred with similar
arguments as in the proof of (1) of Lemma 4.4 using that t is pointwise
Lipschitz continuous and that C is linear and bounded, see Assumption 1.1.
The directional derivative of g is given by

g′(u,p, θ; δu, δp, δθ) = (δθ, C(ε(δu)− δp− t′(θ; δθ))−H δp)>.

It remains to show that flow is Hadamard differentiable. We fix n(s) :
(0,∞) → R with n(s) = o(s) and m(s) : (0,∞) → R3×3

sym with m(s) = o(s)
respectively. Furthermore we choose an arbitrary point (a, b) and direction
(δa, δb). For bD(t,x) 6= 0 the sequence

f s(t,x) := s−1
(

flow(a+ s δa, b+ s δb)− flow(a, b)
)
(t,x)

→ −ε−1 min

(
σ̃(a(t,x))

|bD(t,x)|
− 1; 0

)
δbD(t,x)− ε−1min′

(
σ̃(a(t,x))

|bD(t,x)|
− 1;

σ̃′(a(t,x); δa(t,x))

|bD(t,x)|
− σ̃(a(t,x))

bD(t,x) : δbD(t,x)

|bD(t,x)|3

)
bD(t,x)

converges pointwise for almost all (t,x) ∈ (0, T )×Ω using Lemma 2.11 and
the chain rule for Hadamard differentiable functions (Lemma 2.10). In case
bD(t,x) = 0, the sequence satisfies f s(t,x) = 0 for s small enough.
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Next, we will estimate the difference quotient pointwise. Note that we
are only interested in points (t,x) with bD(t,x) 6= 0. We estimate

|f s(t,x)| ≤ Cε−1
(
|δa(t,x)|+ |δbD(t,x)|

)
+ Cε−1 =: M(t,x)

with M ∈ Lq(0, T ;Lp(Ω)) for s small enough. We apply the dominated
convergence theorem, and obtain that flow is Hadamard differentiable with

flow′(a, b; δa, δb) = −ε−1 min

(
σ̃(a)

|bD|
− 1, 0

)
δbD

− ε−1min′
(
σ̃(a)

|bD|
− 1;

σ̃′(a; δa)

|bD|
− σ̃(a)

bD : δbD

|bD|3

)
bD.

Therefore, the chain rule (Lemma 2.10) shows that the mapping Flow is
directionally differentiable with the related derivative claimed in the asser-
tion. �

4.3. Proof of the Directional Differentiability. In this subsection we
provide the proof of Theorem 4.2. We emphasize that the structure of
the proof is very close to the proof of local Lipschitz continuity in Propo-
sition 3.1. In the sequel we have to deal with many difference quotients.
Therefore, we introduce the short-hand notation

Dsf(v; δv) :=
f(v + s δv)− f(v)

s
,

where f : V →W and v, δv ∈ V and s > 0.

Proof of Theorem 4.2. Let

(`, r), (δ`, δr) ∈ Lq(0, T ;W−1,p
D (Ω))× L

q
2 (0, T ;W

−1,v(p)
� (Ω))

be arbitrary but fixed. We have to verify the definition of directional differ-
entiability,

lim
s↓0

(us,ps, θs)− (u,p, θ)

s
= lim

s↓0
DsG(`, r; δ`, δr) = (δu, δp, δθ),

where (us,ps, θs) := G(` + s δ`, r + s δr) solves the perturbed thermovis-
coplastic system consisting of the

stress-strain relation: σs = C (ε(us)− ps − t(θs))(4.6)

conjugate forces: χs = −Hps(4.7)

viscoplastic flow rule: ṗs = −ε−1 min
( σ̃(θs)

|τ s(us,ps, θs)|
− 1, 0

)
·(4.8)

· τ s(us,ps, θs), where τ s(us,ps, θs) := [σs + χs]D

balance of momentum: u̇s = Φu(F 1(`+ s δ`,us,ps) + F 2(θs))(4.9)

heat equation: θ̇s − div(κ∇θs) = r + s δr(4.10)

+ γ ε(u̇s) : ε(u̇s) + (σs + χs) : ṗs − θst′(θs) : C(ε(u̇s)− ṗs).
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Moreover, (δu, δp, δθ) denotes the solution of the linearized thermovis-
coplastic system (4.1)–(4.5) related to the weak solution of the thermovis-
coplastic system (0.1)–(0.5) for the control (`, r). Note that Proposition 4.3
ensures the existence of the weak solution of the linearized thermoviscoplas-
tic system (4.1)–(4.5).

The strategy now is to estimate the three states separately and then to
combine the results to obtain the assertion using Gronwall’s lemma. We
recall that Gu, Gp, Gu,p and Gθ, denotes the individual components of the
solution mapping G, see after Lemma 2.7.

Balance of momentum. We consider the difference quotient of (4.9)
and (2.1), subtract (4.4), and integrate over time. Following the ideas of the
proof of [10, Proposition 15] and using DsGu(`, r; δ`, δr)(0)−δu(0) = 0, we
obtain

‖DsGu(`, r; δ`, δr)(t)− δu(t)‖
W 1,p

D (Ω)

(4.11)

≤ Cγ−1

∫ t

0

∥∥DsGu,p(`, r; δ`, δr)−
(
δu, δp

)∥∥
W 1,p

D (Ω)×Lp(Ω)
dt

+ Cγ−1

∫ t

0

∥∥∥∥t(θs)± t(θ + s δθ)− t(θ)
s

− t′(θ; δθ)
∥∥∥∥
Lp(Ω)

dt

≤ Cγ−1

∫ t

0

∥∥DsG(`, r; δ`, δr)−
(
δu, δp, δθ

)∥∥
W 1,p

D (Ω)×Lp(Ω)×Lp(Ω)
dt

+ Cγ−1

∫ t

0

∥∥Dst(θ; δθ)− t′(θ; δθ)∥∥Lp(Ω)
dt,

where we used the Lipschitz continuity of t. Note that the idea behind
adding a zero term was to obtain one term whose Lipschitz properties we can
exploit, and one term enjoying directional differentiablity, see Lemma 4.4.

Next, we consider again the difference quotient of (4.9) and (0.4), subtract
(4.4), and calculate as above∥∥∥∥ d

dt
DsGu(`, r; δ`, δr)(t)− ˙δu(t)

∥∥∥∥
W 1,p

D (Ω)

(4.12)

≤ Cγ−1
∥∥DsG(`, r; δ`, δr)(t)−

(
δu, δp, δθ

)
(t)
∥∥
W 1,p

D (Ω)×Lp(Ω)×Lp(Ω)

+ Cγ−1
∥∥Dst(θ; δθ)(t)− t′(θ; δθ)(t)∥∥Lp(Ω)

.

Plastic flow rule. For brevity we omit the arguments for τ , τ s and δτ
having in mind that their dependencies are given by the algebraic relations
in (2.2), (4.8) and (4.3), respectively. Moreover, we define τ̂ := τ (u +
s δu,p+ s δp, θ + s δθ).

Note that for points (t,x) ∈ (0, T ) × Ω with τ (t,x) = 0, the right hand
side of the flow rule (2.2) and the linearized flow rule (4.3) are zero by
definition (see the comments after Proposition 2.5 and Definition 4.1). The
continuity property of G, Proposition 3.1, which means that τ s(t,x) →
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τ (t,x) = 0 for s → 0 almost everywhere, leads for s small enough to the
same result for the perturbed flow rule (4.8). Therefore, we can neglect in
the following estimate the case τ (t,x) = 0.

We consider the difference quotient of (4.8) and (2.2), subtract (4.3),

integrate over time, and using ps(0)−p(0)
s − δp(0) = 0 we obtain

‖DsGp(`, r; δ`, δr)(t)− δp(t)‖Lp(Ω)

≤ ε−1

∫ t

0

∥∥∥∥∥min
(
σ̃(θs)
|τ s| − 1, 0

)
τ s −min

(
σ̃(θ)
|τ | − 1, 0

)
τ

s

−min
( σ̃(θ)

|τ |
− 1, 0

)
δτ −min′

( σ̃(θ)

|τ |
− 1;

σ̃′(θ; δθ)

|τ |
− σ̃(θ)

τ : δτ

|τ |3
)
τ

∥∥∥∥∥
Lp(Ω)

dt.

Now we use the equality min(ab − c, 0) = b−1 min(a − b c, 0) for a, b, c ∈ R
and b > 0 and add, with the same strategy as in the balance of momentum
above, suitable zero terms. We end up with

‖DsGp(`, r; δ`, δr)(t)− δp(t)‖Lp(Ω) ≤ ε
−1(A1 +A2 +A3) +A4,

where A1, A2 and A3 are given by

A1 :=

∫ t

0
s−1

∥∥∥∥[min (σ̃(θs)− |τ s|, 0)−min (σ̃(θ + s δθ)− |τ̂ |, 0)
] τ s
|τ s|

∥∥∥∥
Lp(Ω)

dt

A2 :=

∫ t

0
s−1

∥∥∥∥min (σ̃(θ + s δθ)− |τ̂ |, 0)

[
τ s

|τ s|
− τ

s

|τ̂ |

]∥∥∥∥
Lp(Ω)

dt

≤
∫ t

0
s−1

∥∥∥∥min

(
σ̃(θ + s δθ)

|τ̂ |
− 1, 0

) [
|τ̂ | − |τ s|

]∥∥∥∥
Lp(Ω)

dt

A3 :=

∫ t

0
s−1

∥∥∥∥min (σ̃(θ + s δθ)− |τ̂ |, 0)

[
τ s

|τ̂ |
− τ̂

|τ̂ |

]∥∥∥∥
Lp(Ω)

dt

=

∫ t

0
s−1

∥∥∥∥min

(
σ̃(θ + s δθ)

|τ̂ |
− 1, 0

)
[τ s − τ̂ ]

∥∥∥∥
Lp(Ω)

dt

A4 :=

∫ t

0

∥∥Ds Flow(u,p, θ; δu, δp, δθ)− Flow′(u,p, θ; δu, δp, δθ)
∥∥
Lp(Ω)

dt.

For A1 we exploit the Lipschitz continuity of the mapping min(·, 0) and the
yield function σ̃. For A2 and A3 we make use of the Lipschitz continuity of
the thermal strain t and

−1 < min

(
σ̃(θ)

|τ |
− 1, 0

)
≤ 0 for all τ ∈ R3×3

sym.

It follows that

‖DsGp(`, r; δ`, δr)(t)− δp(t)‖Lp(Ω)

(4.13)
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≤ ε−1C

∫ t

0

∥∥DsG(`, r; δ`, δr)−
(
δu, δp, δθ

)∥∥
W 1,p

D (Ω)×Lp(Ω)×Lp(Ω)
dt

+

∫ t

0

∥∥Ds Flow(u,p, θ; δu, δp, δθ)− Flow′(u,p, θ; δu, δp, δθ)
∥∥
Lp(Ω)

dt.

In addition we consider again the difference quotient of (4.8) and (0.3),
subtract (4.3) and estimate as above

∥∥∥∥ d

dt
DsGp(`, r; δ`, δr)(t)− δ̇p(t)

∥∥∥∥
Lp(Ω)

(4.14)

≤ ε−1C
∥∥DsG(`, r; δ`, δr)(t)−

(
δu, δp, δθ

)
(t)
∥∥
W 1,p

D (Ω)×Lp(Ω)×Lp(Ω)

+
∥∥Ds Flow(u,p, θ; δu, δp, δθ)(t)− Flow′(u,p, θ; δu, δp, δθ)(t)

∥∥
Lp(Ω)

.

Combination of balance of momentum and plastic flow rule. Now
we can add (4.11) and (4.13) and obtain with the Gronwall lemma∥∥DsGu,p(`, r; δ`, δr)(t)−

(
δu, δp

)
(t)
∥∥
W 1,p

D (Ω)×Lp(Ω)
(4.15)

≤ C(ε, γ, T )

∫ t

0

∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥
Lp(Ω)

dt

+ C(ε, γ, T )

∫ t

0

∥∥Ds Flow(u,p, θ; δu, δp, δθ)

− Flow′(u,p, θ; δu, δp, δθ)
∥∥
Lp(Ω)

dt

+ C(ε, γ, T )

∫ t

0

∥∥Dst(θ; δθ)− t′(θ; δθ)∥∥Lp(Ω)
dt.

Owing to the convexity of z 7→ zq for z ≥ 0, and using (4.12) and (4.14),
this results in∥∥∥∥ d

dt
DsGu,p(`, r; δ`, δr)(t)−

(
˙δu, δ̇p

)
(t)

∥∥∥∥
Lq(0,t;W 1,p

D (Ω))×Lq(0,t;Lp(Ω))

(4.16)

≤ C(γ, ε, T )
∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥

Lq(0,t;Lp(Ω))

+ C(γ, ε, T )
∥∥Dst(θ; δθ)− t′(θ; δθ)∥∥Lq(0,t;Lp(Ω))

+ C(ε, γ, T )
∥∥Ds Flow(u,p, θ; δu, δp, δθ)

− Flow′(u,p, θ; δu, δp, δθ)
∥∥
Lq(0,t;Lp(Ω))

.

Heat equation. We apply the embedding, cf. Lemma 2.8,

W
1, q

2
0 (0, T ;W

−1,v(p)
� (Ω)) ∩ L

q
2 (0, T ;W 1,v(p)(Ω)) ↪→↪→ C([0, T ];Lp(Ω)),

and the maximal parabolic regularity result Assumption 1.6 (3) to the
difference quotient of (4.10) and (0.5), and subtract (4.5). We also use
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DsGθ(`, r; δ`, δr)− δθ

]
(0) = 0 and observe the following chain of inequali-

ties ∥∥∥DsGθ(`, r; δ`, δr)(t)− δθ(t)∥∥∥
Lp(Ω)

≤ C
∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥

W
1,

q
2

0 (0,t;W
−1,v(p)
� (Ω))∩L

q
2 (0,t;W 1,v(p)(Ω))

≤ C
∥∥∥∥fs − fs

− δf
∥∥∥∥
L

q
2 (0,t;W

−1,v(p)
� (Ω))

,(4.17)

where f, fs, δf ∈ L
q
2 (0, T ;W

−1,v(p)
� (Ω)) are defined as the right hand sides

of the corresponding heat equations (4.10), (0.5) and (4.5). It remains to
bound the right hand side of (4.17) in a suitable way to exploit Gronwall’s
lemma.

We continue by adding zero terms as in the steps before and use the

embedding L
p
2 (Ω) ↪→ W

−1,v(p)
� (Ω), cf. Remark 1.5. For brevity, we define

in the same way as we defined τ̂ above the mapping σ̂ := σ(u + s δu,p +
s δp, θ + s δθ) and similarly for the backstress χ̂. We estimate∥∥∥∥fs − fs

− δf
∥∥∥∥
L

q
2 (0,t;W

−1,v(p)
� (Ω))

≤ γ (B1 +B2 +B3) +B4 + . . .+B9,

where the individual terms are given by

B1 := s−1
∥∥∥ε(u̇s) : ε(u̇s)− ε(u̇s) : ε(u̇+ s ˙δu)

∥∥∥
L

q
2 (0,t;L

p
2 (Ω))

B2 := s−1
∥∥∥ε(u̇s) : ε(u̇+ s ˙δu)− ε(u̇+ s ˙δu) : ε(u̇+ s ˙δu)

∥∥∥
L

q
2 (0,t;L

p
2 (Ω))

B3 :=
∥∥∥Ds Heat1(u̇; ˙δu)−Heat1

′(u̇; ˙δu)
∥∥∥
L

q
2 (0,t;L

p
2 (Ω))

B4 := s−1
∥∥∥(σs + χs) : ṗs − (σs + χs) : (ṗ+ s δ̇p)

∥∥∥
L

q
2 (0,t;L

p
2 (Ω))

B5 := s−1
∥∥∥(σs + χs) : (ṗ+ s δ̇p)− (σ̂ + χ̂) : (ṗ+ s δ̇p)

∥∥∥
L

q
2 (0,t;L

p
2 (Ω))

B6 :=
∥∥Ds Heat2(u,p, θ; δu, δp, δθ)−Heat2

′(u,p, θ; δu, δp, δθ)
∥∥
L

q
2 (0,t;L

p
2 (Ω))

B7 := s−1
∥∥∥θst′(θs) :

[
C(ε(u̇s)− ṗs)− C(ε(u̇+ s ˙δu)

]
− (ṗ+ s δ̇p))

∥∥∥
L

q
2 (0,t;L

p
2 (Ω))

B8 := s−1
∥∥∥θst′(θs) : C(ε(u̇+ s ˙δu)− (ṗ+ s δ̇p))

− (θ + s δθ) t′(θ + s δθ) : C(ε(u̇+ s ˙δu)− (ṗ+ s δ̇p))
∥∥∥
L

q
2 (0,t;L

p
2 (Ω))

B9 :=
∥∥Ds Heat3(u,p, θ; δu, δp, δθ)−Heat3

′(u,p, θ; δu, δp, δθ)
∥∥
L

q
2 (0,t;L

p
2 (Ω))

.

Note that the set {(us,ps,σs,χs, θs)}s∈[0,1] is bounded independently
of s since the solution operator for (0.1)–(0.5) is bounded according to
Lemma 2.7. Therefore we can estimate the individual terms (compare also
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to the proof of Proposition 3.1) easily exploiting the Lipschitz properties of
θ 7→ t(θ) and θ 7→ θ t′(θ), see Assumption 1.1, and obtain

∥∥∥∥fs(t)− f(t)

s
− δf(t)

∥∥∥∥
L

q
2 (0,t;W

−1,v(p)
� (Ω))

(4.18)

≤ C
∥∥DsG(`, r; δ`, δr)−

(
δu, δp, δθ

)∥∥
W 1,q(0,t;W 1,p

D (Ω))×W 1,q(0,t;Lp(Ω))×Lq(0,t;Lp(Ω))

+ γ
∥∥Ds Heat1(u; δu)−Heat1

′(u; δu)
∥∥
L

q
2 (0,t;L

p
2 (Ω))

+
∥∥Ds Heat2(u,p, θ; δu, δp, δθ)−Heat2

′(u,p, θ; δu, δp, δθ)
∥∥
L

q
2 (0,t;L

p
2 (Ω))

+
∥∥Ds Heat3(u,p, θ; δu, δp, δθ)−Heat3

′(u,p, θ; δu, δp, δθ)
∥∥
L

q
2 (0,t;L

p
2 (Ω))

.

Recall that the constants C given above depend on (`, r) and on (δ`, δr)
but they are independent of s. Together with (4.15), (4.16) and the maximal
parabolic regularity property (4.17), inequality (4.18) results in∥∥∥DsGθ(`, r; δ`, δr)(t)− θ(t)∥∥∥

Lp(Ω)
≤
∥∥∥∥fs(t)− f(t)

s
− δf(t)

∥∥∥∥
L

q
2 (0,t;W

−1,v(p)
� (Ω))

≤ C(γ, ε, T )
∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥

Lq(0,t;Lp(Ω))

+ C(γ, ε, T )
∥∥Dst(θ; δθ)− t′(θ; δθ)∥∥Lq(0,t;Lp(Ω))

+ C(ε, γ, T )
∥∥∥Ds Flow(u,p, θ; δu, δp, δθ)

− Flow′(u,p, θ; δu, δp, δθ)
∥∥∥
Lq(0,t;Lp(Ω))

+ γ
∥∥Ds Heat1(u; δu)−Heat1

′(u; δu)
∥∥
L

q
2 (0,t;L

p
2 (Ω))

+
∥∥Ds Heat2(u,p, θ; δu, δp, δθ)−Heat2

′(u,p, θ; δu, δp, δθ)
∥∥
L

q
2 (0,t;L

p
2 (Ω))

+
∥∥Ds Heat3(u,p, θ; δu, δp, δθ)−Heat3

′(u,p, θ; δu, δp, δθ)
∥∥
L

q
2 (0,t;L

p
2 (Ω))

=: C
∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥

Lq(0,t;Lp(Ω))
+D(t)

and we obtain by the convexity of z 7→ zq for z ≥ 0 the inequality∥∥∥DsGθ(`, r; δ`, δr)(t)− θ(t)∥∥∥q
Lp(Ω)

≤ C
∫ t

0

∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥q
Lp(Ω)

dt+ C D(t)q.

Now we can again use the Gronwall lemma to get

(4.19)
∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥

L∞(0,T ;Lp(Ω))
≤ C(T )D(T ).

In addition we obtain from inequality (4.17) and (4.18)∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥
W

1,
q
2

0 (0,t;L
p
2 (Ω))∩L

q
2 (0,t;W 1,v(p)(Ω))
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≤ C
∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥

Lq(0,t;Lp(Ω))
+D(t).(4.20)

Putting everything together. It remains to take the limit for s → 0.
We start with (4.19) and obtain

lim
s↓0

∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥
L∞(0,T ;Lp(Ω))

≤ lim
s↓0

C(T )D(T ) = 0

using Lemma 4.4. Therefore we infer with (4.20) that

lim
s↓0

∥∥∥DsGθ(`, r; δ`, δr)− δθ∥∥∥
W

1,
q
2

0 (0,T ;L
p
2 (Ω))∩L

q
2 (0,T ;W 1,v(p)(Ω))

= 0.

Furthermore we end up using (4.15) and (4.16) with

lim
s↓0

∥∥DsGu,p(`, r; δ`, δr)−
(
δu, δp

)∥∥
W 1,q(0,T ;W 1,p

D (Ω))×W 1,q(0,T ;Lp(Ω))
= 0.

This shows the assertion. �

Having Theorem 4.2 at hand we immediately obtain the following corol-
lary.

Corollary 4.6 (Hadamard differentiability of the solution map). Under the
assumptions of Theorem 2.6, the solution map defined in (2.5) is Hadamard
differentiable and its Hadamard derivative coincides with the directional de-
rivative given in Theorem 4.2.

Proof. Since the solution map G is directionally differentiable by Theo-
rem 4.2 and locally Lipschitz continuous by Proposition 3.1, we can apply
Lemma 2.9, which shows the assertion. �
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