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EDGE ELEMENT METHOD FOR OPTIMAL CONTROL OF
STATIONARY MAXWELL SYSTEM WITH GAUSS’ LAW

IRWIN YOUSEPT ∗ AND JUN ZOU †

Abstract. A novel edge element method is proposed for the optimal control of the stationary
Maxwell’s system with a non-vanishing charge density. The proposed approach does not involve the
usual saddle-point formulation and features a positive definite structure in the associated equality
constraints, for which optimal preconditioners are available in combination with conjugate gradient
iteration. Our main results include error estimates and strong convergence for both the optimal edge
element solution and the associated discrete Gauss’ laws. In particular, our analysis helps improve
significantly the convergence rate established by Ciarlet et. al [5] for the edge element method for the
stationary Maxwell’s system. Numerical experiments are presented to verify the theoretical results.
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1. Introduction. This work shall examine an edge element approximation and
the analysis of the following optimal control problem:

(P) min
1

2

∫
Ω

ε|E −Ed|2 dx+
κ

2

∫
Ω

ε|u|2 dx,

subject to the stationary Maxwell equations with a non-vanishing charge density
curl (µ−1curlE) = εu in Ω,

div (εE) = ρ in Ω,

E × n = 0 on Γ,

(1.1)

and to the Gauss law for the applied current source

div (εu) = 0 in Ω.(1.2)

The precise mathematical assumptions on the data involved in (P) will be specified
in Section 2.

Several mathematical and numerical studies on electromagnetic optimal control
problems can be found in literature. However, they were mainly focused on the cases
where the stationary system (1.1) was replaced by the corresponding time-dependent
system [2, 15, 20, 21, 29] or the curl-curl-elliptic system [11, 26, 27], namely, either a
time derivative term ∂E/∂t or a zero-order term is added in the first equation of
(1.1). In these cases, the divergence law, i.e., the second equation in (1.1), can be
automatically ensured at the discrete level from the first equation of (1.1) when edge
element methods are used for discretization. Thus, only two symmetric and positive
definite systems (corresponding to (1.1) and its adjoint system) need to be solved in
the discrete optimality conditions. However, the situation will be much more tricky
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2 EDGE ELEMENT METHOD

and difficult when the stationary system (1.1) is considered, instead of the corre-
sponding time-dependent system or the curl-curl-elliptic system. Not much has been
studied for this stationary optimal control problem except the recent work [28], where
the optimal control (P), constrained with the stationary state system (1.1) for ρ ≡ 0,
ε ≡ 1 and a nonlinear magnetic permeability µ = µ(x, |curlE|), was investigated
both mathematically and numerically. In this case, as most approximations do for
the stationary state system (1.1), a Lagrange multiplier ∇p is included in the left-
hand side of the first equation so that (1.1) becomes a saddle-point system. A mixed
finite element method was proposed in [28] for this saddle-point system using the low-
est order edge elements of Nédélec’s first family and the continuous piecewise linear
elements to approximate E and p, respectively. The error estimates of the proposed
finite element method were also established. These mathematical and numerical re-
sults obtained in [28] are naturally valid for the stationary optimal control problem
(P) with the linear state system (1.1). We note that two (resp. linearized) indefinite
saddle-point systems (corresponding to (1.1) and its adjoint system) need to be solved
at each iteration (resp. each inner iteration) when an iterative method is applied for
solving the discretized version of (P) (resp. (P) constrained with (1.1) with a nonlin-
ear magnetic permeability µ = µ(x, |curlE|)). This is an essential difference between
the minimization (P) constrained with the stationary state system (1.1) and its time-
dependent version or the curl-curl-elliptic version. It is much more difficult to solve
the resulting indefinite saddle-point systems than the similar symmetric and positive
definite systems, for which efficient and nearly optimal preconditioners are available
such as the mutltigrid and Hiptmair-Xu preconditioners [8, 10] or the overlapping
and non-overlapping domain decomposition preconditioners [13,22]. One of the most
popular methods for solving such discrete indefinite saddle-point systems is the pre-
conditioned inexact Uzawa iterative methods, but they converge in a reasonable rate
only when two efficient preconditioners are available for the curl-curl system and the
corresponding Schur complement system (see [12,13] and the references therein). But
this is usually quite difficult to realize in most applications.

There is another fundamental issue that needs our great attention when we solve
the optimal control problem (P) numerically. We see that both the continuous opti-
mal solutions E and u satisfy Gauss’ law (see (1.1) and (1.2)). It is physically and
mathematically important whether finite element methods used could guarantee the
global strong convergence of the Gauss’ law for the discrete optimal solutions. This
is still open for all existing finite element approximations of optimal control problems
governed by both stationary and non-stationary Maxwell’s systems.

This work is mainly motivated by two numerical challenges we have discussed
above. In order to treat these two numerical difficulties, a novel edge element method
was proposed recently for solving the stationary Maxwell’s equations (1.1) in [7] (for
the case ρ = 0) and [5] (for the general charge density). Differently from most
existing edge element schemes (see, e.g., [4,6,9,18]), the new method does not involve
any saddle-point structure. Instead, it requires only the resolution of a symmetric
and positive-definite system, which can be solved efficiently by efficient and nearly
optimal preconditioners, including [8, 10, 13, 22]. More importantly, the new edge
element method ensures the optimal convergence rate [5, 7] and strong convergence
of the Gauss’ law in some proper norm [5]. It is natural to ask, whether the edge
element method [5, 7] with all its advantages can be extended and transferred to the
optimal control problem (P). This is exactly the main objective of the current work.
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On the basis of our earlier works in [5, 28], we aim therefore at developing an
efficient finite element method for the optimal control problem (P) without a saddle-
point structure so that the strong convergence of the Gauss law can be ensured for
the discrete optimal solutions. We now describe our basic strategy to realize this aim.
In order to drop both Gauss’ laws for the state E and the control u in (1.1)-(1.2),
we introduce two additional terms γεE and γε∇χ with a parameter γ > 0 in (1.1),
where χ ∈ H1

0 (Ω) is the unique solution of the variational equation:

(1.3) (ε∇χ,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω), ∀ψ ∈ H1
0 (Ω).

This leads to the following family of optimal control problems of our interest:

(Pγ)


min

1

2

∫
Ω

ε|E −Ed|2 dx+
κ

2

∫
Ω

ε|u|2 dx,

s.t. curl (µ−1curlE) + γεE = ε(u + γ∇χ) in Ω,
E × n = 0 on Γ.

Hereafter, we discretize the state E and the control u in (Pγ) by the lowest order edge
elements of Nédélec’s first family and consider γ as a function depending on the mesh-
size. Based on this concept, we propose the following finite element approximation:

(Ph)


min

Eh,uh∈NDh

1

2

∫
Ω

ε|Eh −Ed|2 dx+
κ

2

∫
Ω

ε|uh|2 dx,

s.t. (µ−1curlEh, curlvh)L2(Ω) + γ(h)(εEh,vh)L2(Ω)

= (ε(uh + γ(h)∇χh),vh)L2(Ω), ∀vh ∈NDh,

where NDh denotes the space of lowest order edge elements of Nédélec’s first family
[19] with vanishing tangential traces. Furthermore, χh is an appropriate continuous
piecewise linear approximation of χ. The precise mathematical formulation for (Ph)
will be presented in Section 4.

The proposed finite element approach (Ph) turns out to be very efficient, and
there are three main reasons for this as we shall demonstrate later, where the sec-
ond and third ones present two important novel features in numerical solutions of
the optimal control problem (P). First of all, the method ensures strong conver-
gence of (Ph) towards (P) with optimal convergence rate (Theorem 4.10). Second,
it guarantees strong convergence of all Gauss’ laws involved, including the discrete
optimal control, the discrete optimal state, and the discrete adjoint state (Theorem
4.7). More importantly, the equality constraint in (Ph) features a positive definite
structure, i.e., no saddle-point structure appears in (Ph). This makes the resulting
numerical method much more favorable than the existing mixed finite element meth-
ods, especially when the state Maxwell system (1.1) involves a nonlinear magnetic
permeability µ = µ(x, |curlE|) as considered in [28], where two linearized indefinite
saddle-point systems need to be solved at each inner iteration when an iterative algo-
rithm is applied for the optimal control problem. In addition, there is another novel
feature in our new formulation and method, which will be seen clearly in our subse-
quent numerical analysis: The use of weighting coefficients ε and γε respectively in
the objective functionals and the state equations for (Pγ) and (Ph) is crucial for the
optimal convergence of the resulting finite element method. This seems to be the first
time to see the essential impact of the coefficients in the mathematical and numerical
studies of electromagnetic optimal control problems governed by Maxwell’s systems.
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Our strategy to prove error estimates for (Ph) is based on the use of the solution
operator of a discrete mixed variational problem (see Section 4.2) in combination with
various optimal control and finite element techniques. Here, for the proposed finite
element method (Ph), we are able to prove the convergence rate of γ(h) +hs for some
exponent s ∈ (0.5, 1], depending on the regularity of the optimal solution to (P). In
particular, this result (see Corollary 4.12) significantly improves the recently obtained
convergence rate of

√
γ(h) + hs for the edge element approximation of the stationary

Maxwell’s system (1.1) with a non-vanishing charge density in [5].
We remark that one drawback of our proposed method lies in the stronger as-

sumption on the desired electric field Ed. We may notice that the mathematical and
numerical analysis of the optimal control system (P) requires only Ed ∈ L2(Ω) (see,
e.g., [28]). But we need the additional assumption div (εEd) = ρ ∈ L2(Ω) for our
analyses in this work. This condition appears to be reasonable from the physical
point of view, as it is in agreement with the Gauss law about electricity (see Remark
2.3). Nonetheless, the condition may not hold if noisy data are allowed in the desired
electric field Ed.

The rest of this paper is organized as follows. In next section, we introduce our
notation and general assumptions for (P), including some preliminary results. Section
3 is devoted to the mathematical analysis for (P) and (Pγ), including the strong
convergence of (Pγ) towards (P) with convergence rate. In Section 4, we analyze the
finite element approximation (Ph). Our main results include the strong convergence of
the finite element solution with optimal convergence rate and the strong convergence
of the Gauss’ law in the discrete optimal state, the discrete optimal adjoint state, and
the optimal discrete control.

2. Preliminaries. We start by introducing our notation and general assump-
tions for (P). Throughout this work, unless it is specified explicitly, we shall use
c to denote a generic positive constant, which is independent of the mesh size, the
triangulation, and the quantities/fields of interest. For a given Hilbert space V , we
use the notation ‖ · ‖V and (·, ·)V for a standard norm and a standard inner product
in V . The Euclidean norm in R3 is denoted by | · |. Furthermore, if V is contin-
uously embedded in another normed function space Y , we write V ↪→ Y . We use
a bold typeface to indicate a three-dimensional vector-valued function or a Hilbert
space of three-dimensional vector-valued functions. In our analysis, we mainly use
the following Hilbert spaces:

H(div) =
{
q ∈ L2(Ω)

∣∣ div q ∈ L2(Ω)
}
,

H0(div) =
{
q ∈H(div)

∣∣ q · n = 0 on Γ
}
,

H(div=0) =
{
q ∈H(div)

∣∣ div q = 0 in Ω
}
,

H(curl) =
{
q ∈ L2(Ω)

∣∣ curl q ∈ L2(Ω)},
H0(curl) =

{
q ∈H(curl)

∣∣ q × n = 0 on Γ
}
,

where the div - and curl -operators as well as the tangential and normal traces are
understood in the sense of distributions. The state space associated with (P) is given
by the Hilbert space

V :=
{
q ∈H0(curl)

∣∣ εq ∈H(div)
}
,

endowed with the inner product

(v,w)V := (v,w)H(curl) + (div (εv),div (εw))L2(Ω), ∀v,w ∈ V ,



IRWIN YOUSEPT & JUN ZOU 5

and the norm ‖ · ‖V = (·, ·)1/2
V . Furthermore, the control space associated with (P) is

given by the Hilbert space

U :=
{
u ∈ L2(Ω)

∣∣ εu ∈H(div=0)
}
,

endowed with the inner product (·, ·)U = (·, ·)L2(Ω) and the norm ‖ · ‖U = (·, ·)1/2

L2(Ω)
.

Remark 2.1. It follows from the definition that

U =
{
u ∈ L2(Ω)

∣∣ εu ∈H(div=0)
}

=
{
u ∈ L2(Ω)

∣∣ (εu,∇φ)L2(Ω) = 0 ∀φ ∈ H1
0 (Ω)

}
.

Therefore, as it was proposed in [28], an ε-divergence-free control u ∈ U can be
realised by including the variational equality

(εu,∇φ)L2(Ω) = 0 ∀φ ∈ H1
0 (Ω)

as an explicit control constraint of (P) in place of (1.2). But this control constraint
is naturally eliminated in (Pγ); see Remark 3.3.

Assumption 2.2 (General assumptions for (P)). We assume that Ω ⊂ R3 is
a bounded domain with a connected Lipschitz boundary Γ. The electric permittivity
ε : Ω→ R and the magnetic permeability µ : Ω→ R are of class L∞(Ω) and satisfy

(2.1) 0 < µ ≤ µ(x) ≤ µ a.e. in Ω and 0 < ε ≤ ε(x) ≤ ε a.e. in Ω

for some positive real constants µ < µ and ε < ε. Moreover, κ > 0 denotes the control

cost constant, and the desired electric field Ed ∈ L2(Ω) satisfies the Gauss law:

(2.2) div (εEd) = ρ in Ω ⇐⇒ (εEd,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω), ∀ψ ∈ H1
0 (Ω),

where ρ ∈ L2(Ω) is the charge density.
Remark 2.3. In this work, Ω represents a large holdall domain that may con-

tain different materials including conductors and inductors. We refer to [24] for
low-frequency electromagnetic optimal control problems with multiply connected con-
ductors.

We note that (2.2) arises from the Gauss law about electricity. As Ed is the
desired electric field, Dd := εEd is then the desired electric displacement field. Ac-
cording to the Gauss law about electricity, the divergence of the electric displacement
field yields the free electric charge density, namely (2.2).

We notice that, since the boundary Γ is connected, there exists a constant ĉ > 0,
depending only on Ω, such that

(2.3) ‖E‖L2(Ω) ≤ ĉ
(
‖curlE‖L2(Ω) + ‖div (εE)‖L2(Ω)

)
, ∀E ∈ V .

The inequality (2.3) follows from a classical indirect argument by using the compact-
ness of the embedding V ↪→ L2(Ω) [25] and the fact that

{y ∈ V | curly = 0,div (εy) = 0} = {0},

which holds due to the connectedness of Γ (see, e.g., [1]). Also, the Ladyzhenskaya-
Babuška-Brezzi (LBB) condition

(2.4) sup
0 6=E∈H0(curl)

|(εE,∇ψ)L2(Ω)|
‖E‖H(curl)

≥
(ε∇ψ,∇ψ)L2(Ω)

‖∇ψ‖H(curl)
≥ c‖ψ‖H1

0 (Ω), ∀ψ ∈ H1
0 (Ω),

is satisfied with a constant c > 0 depending only on ε and Ω. In fact, since ∇H1
0 (Ω) ⊂

H0(curl) and curl∇ ≡ 0, we may insert E = ∇ψ in (2.4) to get the LBB condition.
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3. Mathematical Analysis. We consider a mixed variational formulation for
the stationary Maxwell’s equations (1.1): for a given u ∈ U , find E ∈ V such that

(3.1)

{
(µ−1curlE, curlv)L2(Ω) = (εu,v)L2(Ω), ∀v ∈H0(curl),

(εE,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω), ∀ψ ∈ H1
0 (Ω).

It is standard to verify that, for every u ∈ U , the mixed variational formulation (3.1)
admits a unique solution E ∈ V . This follows from a well-known theory for mixed
variational problems (see [3]) together with the Poincaré-Friedrichs-type inequality
(2.3) and the LBB condition (2.4). Next, we introduce the solution operator associated
with (3.1) by

G : U → V , u 7→ E,

that assigns to every control u ∈ U the unique solution E ∈ V of the mixed variational
formulation (3.1). The solution operator G : U → V is bounded and affine linear
such that it is infinitely Fréchet differentiable. Its Fréchet derivative at z ∈ U in
the direction u ∈ U is given by G′(z)u = Ez, where Ez ∈ V is the solution of the
following mixed variational equations:

(3.2)

{
(µ−1curlEz, curlv)L2(Ω) = (εu,v)L2(Ω), ∀v ∈H0(curl),

(εEz,∇ψ)L2(Ω) = 0, ∀ψ ∈ H1
0 (Ω).

Employing the solution operator, we may reformulate the optimal control problem
(P) as a minimization problem in Hilbert spaces:

(P) min
u∈U

f(u) :=
1

2

∫
Ω

ε|G(u)−Ed|2 dx+
κ

2

∫
Ω

ε|u|2 dx.

By classical arguments (see [16, 23]), the minimization problem (P) admits a unique
solution u ∈ U , and its necessary and sufficient optimality condition is given by

(3.3) f ′(u)u = 0, ∀u ∈ U .

Theorem 3.1. A control u ∈ U with the associated electric field E ∈ V is the
(unique) optimal solution of (P), if and only if there exists a unique p ∈ V such that
the triple (u,E,p) satisfies

(3.4a)

{
(µ−1curlE, curlv)L2(Ω) = (εu,v)L2(Ω), ∀v ∈H0(curl),

(εE,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω), ∀ψ ∈ H1
0 (Ω),

(3.4b)

{
(µ−1curlp, curlv)L2(Ω) = (ε(E −Ed),v)L2(Ω) ∀v ∈H0(curl),

(εp,∇ψ)L2(Ω) = 0 ∀ψ ∈ H1
0 (Ω),

(3.4c) u = −κ−1p.

Proof. The existence of a unique solution p ∈ V of the mixed variational problem
(3.4b) follows from [3] along with (2.2), (2.3) and (2.4). Inserting v = G′(u)u with
u ∈ U in (3.4b) yields

(3.5) (µ−1curlp, curl (G′(u)u))L2(Ω) = (ε(E −Ed),G
′(u)u)L2(Ω), ∀u ∈ U .
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We also know that G′(u)u satisfies (3.2), with z = u and Ez = G′(u)u, and hence
inserting v = p in (3.2) gives

(3.6) (µ−1curl (G′(u)u), curlp)L2(Ω) = (εu,p)L2(Ω), ∀u ∈ U .

From (3.4b), (3.5) and (3.6), we come to the conclusion that

f ′(u)u = (ε(E −Ed),G
′(u)u)L2(Ω) + κ(εu,u)L2(Ω)

= (ε(p + κu),u)L2(Ω), ∀u ∈ U .

Thus, the necessary and sufficient optimality condition (3.3) is nothing but

(3.7) (ε(p + κu),u)L2(Ω) = 0, ∀u ∈ U .

Now, the second variational equality in (3.4b) implies εp ∈H(div=0). This regularity
property implies that p + κu ∈ U . Then we can insert u = p + κu in (3.7) to obtain

(ε(p + κu),p + κu)L2(Ω) = 0 ⇐⇒ u = −κ−1p.

This completes the proof.
In all what follows, we shall write by u ∈ U the unique optimal solution of (P)

with the corresponding optimal electric field E ∈ V and the adjoint state p ∈ V ∩U
satisfying (3.4). Thanks to (3.4c), we can see that the optimal control enjoys the
regularity property

(3.8) u ∈ V ∩U .

3.1. Sensitivity Analysis of (Pγ). This section is devoted to the sensitivity
analysis of (Pγ), namely, to establish an error estimate depending on the parameter
γ. First, we note that the variational formulation for the associated state equation in
(Pγ) is given by

(3.9) (µ−1curlEγ , curlv)L2(Ω) + γ(εEγ ,v)L2(Ω) = (ε(u+ γ∇χ),v)L2(Ω), ∀v ∈H0(curl).

By the Lax-Milgram lemma, the variational equality (3.9) admits for every u ∈ L2(Ω)
a unique solution Eγ ∈H0(curl). We denote the corresponding solution operator by

Gγ : L2(Ω)→H0(curl), u 7→ Eγ .

Some elementary properties of this operator are listed below for later use.
Lemma 3.2. The solution operator Gγ : L2(Ω) → H0(curl) satisfies Gγ(0) =

∇χ and div (εGγ(u)) = ρ for all u ∈ U and all γ > 0.
Proof. Let γ > 0. Since curl∇ ≡ 0, we can easily see

(µ−1curl (∇χ), curlv)L2(Ω)+γ(ε∇χ,v)L2(Ω) = (ε(0+γ∇χ),v)L2(Ω), ∀v ∈H0(curl),

which implies Gγ(0) = ∇χ by the definition of Gγ . Now, for any u ∈ U , we insert
v = ∇ψ with ψ ∈ H1

0 (Ω) in (3.9) and use (1.3) to see that Eγ := Gγ(u) satisfies

(3.10) γ(εEγ ,∇ψ)L2(Ω) = (ε(u + γ∇χ),∇ψ)L2(Ω) = −γ(ρ, ψ)L2(Ω), ∀ψ ∈ H1
0 (Ω).



8 EDGE ELEMENT METHOD

Similarly to (P), we reformulate (Pγ) as a minimization problem in Hilbert spaces:

(Pγ) min
u∈L2(Ω)

fγ(u) :=
1

2

∫
Ω

ε|Gγ(u)−Ed|2 dx+
κ

2

∫
Ω

ε|u|2 dx.

Remark 3.3. We emphasize that the formulation (Pγ) removes the original
divergence constraint on the control u as the control space of (Pγ) is now given by
L2(Ω) instead of U as in (P). Nonetheless, we will see later that the optimal control of
(Pγ) belongs to U . Similarly to (P), (Pγ) admits a unique optimal solution, with its
necessary and sufficient optimality conditions described as in the following theorem,
whose proof is basically analogous to the one of Theorem 3.1.

Theorem 3.4. Let γ > 0. A control uγ ∈ L2(Ω) with the associated electric field
E
γ ∈H0(curl) is the (unique) optimal solution of (Pγ) if and only if there exists a

unique pγ ∈H0(curl) such that the triple (uγ ,E
γ
,pγ) satisfies

(µ−1curlE
γ
, curlv)L2(Ω) + γ(εE

γ
,v)L2(Ω) = (ε(uγ + γ∇χ),v)L2(Ω),

∀v ∈H0(curl),

(3.11a)

(µ−1curlpγ , curlv)L2(Ω) + γ(εpγ ,v)L2(Ω) = (ε(E
γ −Ed),v)L2(Ω),

∀v ∈H0(curl),

(3.11b)

(3.11c) uγ = −κ−1pγ .

An important consequence of the optimality system for (Pγ) is the following
structural property for the optimal triple (uγ ,E

γ
,pγ) of (Pγ):

Proposition 3.5. For every γ > 0, let (uγ ,E
γ
,pγ) ∈ L2(Ω) × H0(curl) ×

H0(curl) be the optimal triple of (Pγ) satisfying (3.11). Then it holds that

(3.12) uγ ∈ V ∩U , E
γ ∈ V , div (εE

γ
) = ρ, pγ ∈ V ∩U .

Proof. For a fixed γ > 0, inserting v = ∇ψ with ψ ∈ H1
0 (Ω) in (3.11a) yields

(3.13)

γ(εE
γ
,∇ψ)L2(Ω) = (ε(uγ + γ∇χ),∇ψ)L2(Ω)

= (ε(−κ−1pγ + γ∇χ),∇ψ)L2(Ω)

= −κ−1(εpγ ,∇ψ)L2(Ω) − γ(ρ, ψ)L2(Ω), ∀ψ ∈ H1
0 (Ω),

where we have used (3.11c) and (1.3). Analogously, setting v = ∇ψ with ψ ∈ H1
0 (Ω)

in (3.11b) implies that

(3.14)

γ(εpγ ,∇ψ)L2(Ω) = (ε(E
γ −Ed),∇ψ)L2(Ω)

=︸︷︷︸
(2.2)

(εE
γ
,∇ψ)L2(Ω) + (ρ, ψ)L2(Ω), ∀ψ ∈ H1

0 (Ω).

From (3.13) and (3.14), it follows that

(γ2 + κ−1)(εpγ ,∇ψ)L2(Ω) = 0, ∀ψ ∈ H1
0 (Ω).

In other words, div (εpγ) = 0, so pγ ∈ V ∩ U . Then it follows from (3.11c) that
uγ ∈ V ∩U . Consequently, in view of Lemma 3.2, we obtain that

E
γ ∈ V and div (εE

γ
) = ρ.
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This completes the proof.
In all what follows, for every γ > 0, let (uγ ,E

γ
,pγ) ∈ (V ∩U) × V × (V ∩U)

denote the optimal triple of (Pγ) satisfying (3.11).
Theorem 3.6. There exists a constant c > 0, independent of γ, such that

‖uγ − u‖H(curl) + ‖Eγ −E‖H(curl) + ‖pγ − p‖H(curl) ≤ cγ , ∀ γ > 0 .

Proof. As uγ is the optimal solution of (Pγ), it follows that

fγ(uγ) ≤ fγ(0) =︸︷︷︸
Lemma 3.2

1

2

∫
Ω

ε|∇χ−Ed|2 dx, ∀γ > 0.

This implies the existence of a constant c > 0, independent of γ > 0, such that

(3.15) ‖Eγ‖2L2(Ω) + ‖uγ‖2L2(Ω) ≤ c, ∀γ > 0.

Then (3.15), along with (3.11c), implies that {uγ}γ>0, {E
γ}γ>0, and {pγ}γ>0 are all

bounded in L2(Ω).
Setting v = pγ−p in (3.11a) and (3.4a) respectively, then subtracting the resulting

equalities, we infer that

(µ−1curl (E
γ −E), curl (pγ − p))L2(Ω) + γ(εE

γ
,pγ − p)L2(Ω)

= (ε(uγ + γ∇χ− u),pγ − p)L2(Ω)

=︸︷︷︸
(3.4c)−(3.11c)

−κ−1‖ε1/2 (pγ − p) ‖2L2(Ω) + γ(ε∇χ,pγ − p)L2(Ω).
(3.16)

Similarly, setting v = E
γ −E in (3.11b) and (3.4b) respectively, then subtracting the

resulting equations yields that

(µ−1curl (pγ − p), curl (E
γ −E))L2(Ω) + γ(εpγ ,E

γ −E)L2(Ω)

= ‖ε1/2(E
γ −E)‖2L2(Ω), ∀γ > 0.

(3.17)

In view of (3.16) and (3.17), we obtain

‖ε1/2(E
γ −E)‖2L2(Ω) + κ−1‖ε1/2 (pγ − p) ‖2L2(Ω)

=γ
(
(εpγ ,E

γ −E)L2(Ω) + (ε(∇χ−E
γ
),pγ − p)L2(Ω)

)
≤γ
(
‖ε1/2pγ‖L2(Ω) + ‖ε1/2(∇χ−E

γ
)‖L2(Ω)

)(
‖ε1/2(E

γ −E)‖L2(Ω) + ‖ε1/2 (pγ − p) ‖L2(Ω)

)
.

From the above estimate and the boundedness of {Eγ}γ>0 and {pγ}γ>0 in L2(Ω), it
follows that

‖Eγ −E‖L2(Ω) + ‖pγ − p‖L2(Ω) ≤ cγ, ∀γ > 0.

Then making use of (3.4c) and (4.6c), we have

(3.18) ‖uγ − u‖L2(Ω) + ‖Eγ −E‖L2(Ω) + ‖pγ − p‖L2(Ω) ≤ cγ, ∀γ > 0.

Now, inserting v = E
γ − E in (3.11a) and (3.4a) respectively, then subtracting the

resulting equations, we obtain that

‖µ−1/2curl (E
γ −E)‖2L2(Ω)

= γ(ε(∇χ−E
γ
),E

γ −E)L2(Ω) + (ε(uγ − u),E
γ −E)L2(Ω)

≤ γε‖∇χ−E
γ‖L2(Ω)‖E

γ −E‖L2(Ω) + ε‖uγ − u‖L2(Ω)‖E
γ −E‖L2(Ω), ∀γ > 0.

(3.19)
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Analogously, we insert v = pγ − p in (3.11b) and (3.4b) to obtain

(µ−1curlpγ , curlpγ − p)L2(Ω) + γ(εpγ ,pγ − p)L2(Ω) = (ε(E
γ −Ed),p

γ − p)L2(Ω)

and

(µ−1curlp, curlpγ − p)L2(Ω) = (ε(E −Ed),p
γ − p)L2(Ω).

Then, subtracting these two identities yields

‖µ−1/2curl (pγ − p)‖2L2(Ω)

=− γ(εpγ ,pγ − p)L2(Ω) + (ε(E
γ −E),pγ − p)L2(Ω)

≤γε‖pγ‖L2(Ω)‖p
γ − pγ‖L2(Ω) + ε‖Eγ −E

γ‖L2(Ω)‖p
γ − pγ‖L2(Ω).

(3.20)

Now the desired estimate in Theorem 3.6 is a direct consequence of (3.18)-(3.20).

4. Finite Element Method. This section is devoted to the analysis of the
finite element approximation (Ph) we proposed in the introduction. From now on,
the domain Ω ⊂ R3 is additionally assumed to be Lipschitz polyhedral. We consider
a family {Th}h>0 of triangulations of Ω consisting of tetrahedral elements T such that

Ω =
⋃
T∈Th

T.

For every element T ∈ Th, we write by hT the diameter of T , by ρT the diameter of
the largest ball contained in T , and by h the maximal diameter of all elements, i.e.,
h := max{hT | T ∈ Th}. We assume {Th}h>0 is quasi-uniform, i.e., there exist two
positive constants % and ϑ such that

hT
ρT
≤ % and

h

hT
≤ ϑ, ∀T ∈ Th, ∀h > 0.

Let us denote the space of lowest order edge elements of Nédélec’s first family [19]
with vanishing tangential traces and the space of continuous piecewise linear elements
with vanishing traces by:

NDh :=
{
Eh ∈H0(curl)

∣∣ Eh|T = aT + bT × x with aT , bT ∈ R3, ∀T ∈ Th
}
,

Θh :=
{
φh ∈ H1

0 (Ω)
∣∣ φh|T = aT · x+ bT with aT ∈ R3, bT ∈ R, ∀T ∈ Th

}
.

By the well-known discrete de Rham diagram (cf. [18, p. 150]), we know that

(4.1) ∇Θh ⊂NDh.

In what follows, we consider the parameter γ as a function of the mesh size of the
discretization, i.e., γ = γ(h). This function is supposed to be bounded, i.e., there
exists a constant c > 0, independent of h > 0, such that

(4.2) 0 < γ(h) ≤ c, ∀h > 0.

Now we introduce the finite element solution χh ∈ Θh of (1.3):

(ε∇χh,∇ψh)L2(Ω) = −(ρ, ψh)L2(Ω), ∀ψh ∈ Θh,(4.3)
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then we shall consider the following finite element approximation of (3.9):
For every given u ∈ L2(Ω), find Eh ∈ NDh such that, for all vh ∈ NDh, it

holds that

(µ−1curlEh, curlvh)L2(Ω) + γ(h)(εEh,vh)L2(Ω) = (ε(u + γ(h)∇χh),vh)L2(Ω).(4.4)

We denote the (discrete) solution operator associated with (4.4) by

Gh : L2(Ω)→NDh, u 7→ Eh,

that assigns to every u ∈ L2(Ω) the unique solution Eh ∈ NDh of (4.4). For later

use, we introduce the subspace X
(ε)
h of NDh consisting of all discrete ε-divergence-free

edge element functions:

(4.5) X
(ε)
h :=

{
uh ∈NDh

∣∣ (εuh,∇ψh)L2(Ω) = 0, ∀ψh ∈ Θh

}
.

Then, making use of this subspace, we can drive a discrete counterpart of Lemma 3.2.
Lemma 4.1. For every h > 0, the operator Gh : L2(Ω)→NDh satisfies Gh(0) =

∇χh and (εGh(uh),∇φh)L2(Ω) = −(ρ, φh)L2(Ω) for all uh ∈X
(ε)
h and φh ∈ Θh.

Proof. For h > 0, we can easily see by using curl∇ ≡ 0 that

(µ−1curl (∇χh), curlvh)L2(Ω) + γ(h)(ε∇χh,vh)L2(Ω) = γ(h)(ε∇χh,vh)L2(Ω)

= (ε(0 + γ(h)∇χh),vh)L2(Ω), ∀vh ∈NDh,

which implies Gh(0) = ∇χh by using the definition of Gh and the fact that ∇Θh ⊂
NDh. Now, inserting vh = ∇ψh with ψh ∈ Θh in (4.4), we see that Eh := Gh(uh)

for every uh ∈X
(ε)
h satisfies

γ(h)(εEh,∇ψh)L2(Ω) = (ε(uh+γ(h)∇χh),∇ψh)L2(Ω) = −γ(h)(ρ, ψh)L2(Ω), ∀ψh ∈ Θh,

where the last equality holds due to uh ∈X
(ε)
h and (4.3).

Now, by introducing the objective functional

fh : L2(Ω)→ R, fh(u) :=
1

2

∫
Ω

ε|Gh(u)−Ed|2 dx+
κ

2

∫
Ω

ε|u|2 dx,

we propose the finite element approximation for (Pγ) as follows:

(Ph) min
uh∈NDh

fh(uh).

4.1. Convergence Analysis for (Ph). For the convergence and error estimates
of the finite element approximation (Ph), we first present its necessary and sufficient
optimality condition, whose proof is analogous to the one of Theorem 3.1.

Theorem 4.2. Let h > 0. A function uh ∈ NDh is the (unique) optimal
solution of (Ph) if and only if there exists a unique pn ∈NDh such that the following
holds for all vh ∈NDh:

(µ−1curlEh, curlvh)L2(Ω) + γ(h)(εEh,vh)L2(Ω) = (ε(uh + γ(h)∇χh),vh)L2(Ω) ,(4.6a)

(µ−1curlph, curlvh)L2(Ω) + γ(h)(εph,vh)L2(Ω) = (ε(Eh −Ed),vh)L2(Ω),(4.6b)
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(4.6c) uh = −κ−1ph.

Based on the optimality system (4.6) and Lemma 4.1, we obtain a discrete coun-
terpart of Proposition 3.5. This result is essential to our convergence analysis.

Proposition 4.3. For every h > 0, let X
(ε)
h be the space as defined in (4.5), and

uh,Eh,ph ∈NDh be the optimal triple of (Ph) satisfying (4.6). Then it holds that

(4.7) uh,ph ∈X
(ε)
h and (εEh,∇ψh)L2(Ω) = −(ρ, ψh)L2(Ω), ∀ψh ∈ Θh,∀h > 0.

Proof. Thanks to (4.1), we may insert vh = ∇ψh with ψh ∈ Θh in (4.6a) and use
(4.6c) and (4.3) to obtain

γ(h)(εEh,∇ψh)L2(Ω) = (ε(uh + γ(h)∇χh),∇ψh)L2(Ω)

= −κ−1(εph,∇ψh)L2(Ω) + γ(h)(ε∇χh,∇ψh)L2(Ω)

= −κ−1(εph,∇ψh)L2(Ω) − γ(h)(ρ, ψh)L2(Ω), ∀ψh ∈ Θh,

(4.8)

Similarly, inserting vh = ∇ψh with ψh ∈ Θh in (4.6b) yields

γ(h)(εph,∇ψh)L2(Ω) = (ε(Eh −Ed),∇ψh)L2(Ω)

= (εEh,∇ψh)L2(Ω) + (ρ, ψh)L2(Ω), ∀ψh ∈ Θh,
(4.9)

where we have used (2.2). Then we infer from (4.8) and (4.9) that

γ(h)2(εph,∇ψh)L2(Ω) = γ(h)
(
(εEh,∇ψh)L2(Ω) + (ρ, ψh)L2(Ω)

)
= −κ−1(εph,∇ψh)L2(Ω), ∀ψh ∈ Θh,

from which it follows that (γ(h)2 + κ−1)(εph,∇ψh)L2(Ω) = 0 for all ψh ∈ Θh. Thus,
we come to the desired conclusion that

ph ∈X
(ε)
h =⇒︸︷︷︸

(4.6c)

uh ∈X
(ε)
h =⇒︸︷︷︸

Lemma 4.1

(εEh,∇ψh)L2(Ω) = −(ρ, ψh)L2(Ω), ∀ψh ∈ Θh.

The upcoming lemma states the discrete compactness property for X
(ε)
h . The

discrete compactness property for Nédélec’s edge elements in the case ε ≡ 1 goes back
to Kikuchi [14].

Lemma 4.4. Let {zh}h>0 be a uniformly bounded sequence in H0(curl) satisfying

zh ∈ X
(ε)
h for all h > 0. Then, there exists a subsequence {zhn}∞n=1 ⊂ {zh}h>0 with

hn → 0 as n→∞ such that

zhn → z strongly in L2(Ω) as n→∞,
curl zhn ⇀ curl z weakly in L2(Ω) as n→∞,

for some z ∈H0(curl) ∩U , i.e., div (εz) = 0 in Ω.
Proof. The assertion is well known (see, e.g. [18]). We provide the proof only for

the convenience of the reader. In view of the discrete Helmholtz decomposition, for

every h > 0, there exists a unique pair (y1
h, θ

1
h) ∈X

(1)
h ×Θh such that

(4.10) zh = y1
h +∇θ1

h.
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Due to the uniform boundedness {zh}h>0 ⊂ H0(curl), the sequence {y1
h}h>0 is

uniformly bounded in H0(curl). Thus, employing the discrete compactness property
[14] for ε ≡ 1, we find a subsequence {y1

hn
}∞n=1 ⊂ {y1

h}h>0 with hn → 0 as n → ∞
such that

y1
hn → y1 strongly in L2(Ω) as n→∞,

curly1
hn ⇀ curly1 weakly in L2(Ω) as n→∞,

(4.11)

for some y1 ∈ H0(curl) ∩H(div=0). Now, making use of the classical Helmholtz
decomposition, there exists a unique pair (yε, θε) ∈H0(curl)∩U ×H1

0 (Ω) such that

(4.12) y1 = yε +∇θε.

We show now that zhn → yε strongly in L2(Ω) as n → ∞. Since yε ∈ U and

zhn ∈X
(ε)
hn

holds for all n ∈ N,

(4.13) (ε(zhn − yε),∇φhn)L2(Ω) = 0, ∀φhn ∈ Θhn , ∀n ∈ N.

From (4.10), (4.12), and (4.13), we obtain that

(ε(zhn−y
ε),zhn−y

ε)L2(Ω) = (ε(zhn−y
ε),y1

hn
−y1+∇θε−∇φhn)L2(Ω), ∀φhn ∈ Θhn , ∀n ∈ N,

and so

ε‖zhn − yε‖L2(Ω) ≤ ε‖y1
hn − y1‖L2(Ω) + ε‖∇θε−∇φhn‖L2(Ω), ∀φhn ∈ Θhn , ∀n ∈ N.

Now employing (4.11) and the fact that the spaces {Θhn}∞n=1 is dense in H1
0 (Ω), the

above inequality implies the strong convergence zhn → yε in L2(Ω) as n→∞.
In all what follows, for every h > 0, we shall write by (uh,Eh,ph) ∈ X

(ε)
h ×

NDh ×X
(ε)
h the optimal triple of (Ph) satisfying (4.6). Let us now prove the strong

convergence of (uh,Eh,ph) to (u,E,p) as h→ 0 in the following theorem.

Theorem 4.5. Suppose that limh→0 γ(h) = 0. Then,

lim
h→0
‖uh − u‖H(curl) = lim

h→0
‖Eh −E‖H(curl) = lim

h→0
‖ph − p‖H(curl) = 0.

Proof. For every h > 0, the fact that uh is the unique solution of (Ph) yields

fh(uh) ≤ fh(0) =︸︷︷︸
Lemma 4.1

1

2
‖ε1/2(∇χh −Ed)‖2L2(Ω), ∀h > 0.

Therefore, in view of (4.3), there exists a constant c > 0, independent of h, such that

(4.14) ‖Eh‖L2(Ω) + ‖uh‖L2(Ω) ≤ c, ∀h > 0 =⇒︸︷︷︸
(4.6c)

‖ph‖L2(Ω) ≤ c, ∀h > 0.

Now, setting vh = Eh in (4.6a) and vh = ph in (4.6b) and then employing (4.14) and
(4.2), we obtain

(4.15) ‖curlEh‖L2(Ω) ≤ c and ‖curlph‖L2(Ω) ≤ c, ∀h > 0.
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Concluding from (4.14)–(4.15), the sequences {uh}h>0, {Eh}h>0, {ph}h>0 are all uni-
formly bounded in H0(curl). Therefore, there exists a subsequence {(uhn ,Ehn ,phn)}∞n=1 ⊂
{(uh,Eh,ph)}h>0 with hn → 0 as n→∞ such that

(4.16)


uhn ⇀ ũ weakly in H0(curl) as n→∞,
Ehn ⇀ Ẽ weakly in H0(curl) as n→∞,
phn ⇀ p̃ weakly in H0(curl) as n→∞

for some ũ, Ẽ, p̃ ∈ H0(curl). From (4.6c), we know uhn = −κ−1phn for all n ∈ N.
Thus, (4.16) implies that

(4.17) ũ = −κ−1p̃.

Now, we denote by Ih : C∞0 (Ω) → Θh the nodal interpolation operator corre-
sponding to the finite element space Θh. By virtue of Proposition 4.3, it holds for
every ψ ∈ C∞0 (Ω) that

(4.18)


(εuhn ,∇Ihnψ)L2(Ω) = 0, ∀n ∈ N,
(εphn ,∇Ihnψ)L2(Ω) = 0, ∀n ∈ N,
(εEhn ,∇Ihnψ)L2(Ω) = −(ρ, Ihψ)L2(Ω), ∀n ∈ N.

Then, passing to the limit n→∞ in (4.18), we obtain from (4.16) that

(εũ,∇ψ)L2(Ω) = (εp̃,∇ψ)L2(Ω) = 0 and (εẼ,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω), ∀ψ ∈ C∞0 (Ω).

Consequently, since C∞0 (Ω) ⊂ H1
0 (Ω) is dense, we come to the conclusion that

(4.19)


(εũ,∇ψ)L2(Ω) = 0, ∀ψ ∈ H1

0 (Ω),
(εp̃,∇ψ)L2(Ω) = 0, ∀ψ ∈ H1

0 (Ω),

(εẼ,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω), ∀ψ ∈ H1
0 (Ω).

Next, let N h : C∞
0 (Ω)→NDh denote the curl-conforming Nédélec interpolation

operator corresponding to the finite element space NDh. According to (4.6a), we
have for every v ∈ C∞

0 (Ω) that

(4.20)
(µ−1curlEhn , curlN hnv)L2(Ω) + γ(hn)(εEhn ,N hnv)L2(Ω)

= (ε(uhn + γ(hn)∇χhn),N hnv)L2(Ω), ∀n ∈ N.

Passing to the limit n → ∞ in (4.20), we obtain from (4.16) and limn→∞ γ(hn) = 0
that

(µ−1curl Ẽ, curlv)L2(Ω) = (εũ,v)L2(Ω), ∀v ∈ C∞
0 (Ω).

Therefore, as C∞
0 (Ω) ⊂H0(curl) is dense, it follows that

(4.21) (µ−1curl Ẽ, curlv)L2(Ω) = (εũ,v)L2(Ω), ∀v ∈H0(curl).

Analogously, we deduce from (4.6b), (4.16), and limn→∞ γ(hn) = 0 that

(4.22) (µ−1curl p̃, curlv)L2(Ω) = (ε(Ẽ −Ed),v)L2(Ω), ∀v ∈H0(curl).
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We can see from (4.17), (4.19), and (4.21)–(4.22) that the weak limit (ũ, Ẽ, p̃)
satisfies the necessary and sufficient optimality condition for (P), and consequently

(ũ, Ẽ, p̃) = (u,E,p).

In particular, the weak limit is independent of the subsequence {(uhn ,Ehn ,phn}
∞
n=1,

and consequently (4.16) holds for the whole sequence, i.e.,

(4.23)


uh ⇀ u weakly in H0(curl) as h→ 0,
Eh ⇀ E weakly in H0(curl) as h→ 0,
ph ⇀ p weakly in H0(curl) as h→ 0.

Now, making use of Lemma 4.4, we obtain from Proposition 4.3 and (4.23) that

(4.24)

{
uh → u strongly in L2(Ω) as h→ 0,

ph → p strongly in L2(Ω) as h→ 0.

Setting vh = v = ph in (4.6b) and (3.4b) yields

(µ−1curl (ph − p), curlph)L2(Ω) + γ(h)(εph,ph)L2(Ω) = (ε(Eh −E),ph)L2(Ω),

from which it follows that

‖µ−1/2curl (ph − p)‖2L2(Ω) = −γ(h)(εph,ph)L2(Ω) + (ε(Eh −E),ph)L2(Ω)

−(µ−1curl (ph − p), curlp)L2(Ω).

Then, passing to the limit h→ 0, (4.23), (4.24), and limh→0 γ(h) = 0 imply

lim
h→0
‖curl (ph − p)‖L2(Ω) = 0.

Together with (4.24), this strong convergence yields

(4.25) lim
h→0
‖ph − p‖H(curl) = 0 =⇒︸︷︷︸

(4.6c)

lim
h→0
‖uh − u‖H(curl) = 0.

It remains now to prove the strong convergence of {Eh}h>0 in H0(curl). First, we
verify the strong convergence in L2(Ω) by inserting vh = v = Eh in (4.6b) and (3.4b):

(µ−1curl (ph − p), curlEh)L2(Ω) + γ(h)(εph,Eh)L2(Ω) = (ε(Eh −E),Eh)L2(Ω),

from which it follows that

‖ε1/2(Eh −E)‖2L2(Ω) =(µ−1curl (ph − p), curlEh)L2(Ω)

+ γ(h)(εph,Eh)L2(Ω) − (ε(Eh −E),E)L2(Ω).
(4.26)

Then, passing to the limit h → 0 in (4.26), we obtain from (4.23), (4.25), and
limh→0 γ(h) = 0 that

(4.27) lim
h→0
‖Eh −E‖L2(Ω) = 0,

Similarly, by setting vh = v = Eh in (4.6a) and (3.4a), we deduce from (4.23), (4.25),
and limh→0 γ(h) = 0 that

(4.28) lim
h→0
‖curl (Eh −E)‖L2(Ω) = 0.

From (4.27)-(4.28), we come to the conclusion that limh→0 ‖Eh −E‖H(curl) = 0.
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4.2. Error Estimates. We first show that the newly proposed finite element
approximation (Ph) ensures the global strong convergence of all three Gauss’ laws for
the discrete optimal control, state and adjoint state uh, Eh and ph, which satisfy the
optimality system (4.6). We recall that, using the fact that Ω is Lipschitz polyhedral,
there is a constant δ ∈ (0.5, 1] such that [1]

(4.29) H0(curl) ∩H(div) ↪→Hδ(Ω) and H(curl) ∩H0(div) ↪→Hδ(Ω).

The results in the following lemma were verified in [5, Lemmas 3.9].
Lemma 4.6. Suppose that ε ∈ W 1,∞(Ω) and s ∈ (0.5, 1]. Then, there exists a

constant c > 0, independent of h and zh, such that

‖div(εzh)‖H−s(Ω) ≤ chs+δ−1‖curl zh‖L2(Ω),

for all h > 0 and all zh ∈X
(ε)
h . Moreover, the solution χh ∈ Θh of (4.3) satisfies

‖div(ε∇χh)− ρ‖H−s(Ω) ≤ chs+δ−1‖ρ‖Hδ−1(Ω), ∀h > 0.

Theorem 4.7. Suppose that ε ∈ W 1,∞(Ω), and s ∈ (0.5, 1]. Then, there exits a
positive constant c, independent of h, uh, Eh, and ph, such that for all h > 0,

‖div(εuh)‖H−s(Ω) + ‖div(εph)‖H−s(Ω) + ‖div(εEh)− ρ‖H−s(Ω) ≤ chs+δ−1.

Proof. From Proposition 4.3, we know that uh,ph ∈ X
(ε)
h for all h > 0. There-

fore, Lemma 4.6 together with the uniform boundedness of {uh}h>0 and {ph}h>0 in
H0(curl) (see Theorem 4.5) implies

(4.30) ‖div (εuh)‖H−s(Ω) + ‖div (εph)‖H−s(Ω) ≤ chs+δ−1, ∀h > 0.

Making use again of Proposition 4.3 along with (4.3), we have that

(εEh,∇ψh)L2(Ω) = −(ρ, ψh)L2(Ω) = (ε∇χh,∇ψh)L2(Ω), ∀ψ ∈ Θh,

from which it follows that

(ε(Eh −∇χh),∇ψh)L2(Ω) = 0, ∀ψ ∈ Θh =⇒ Eh −∇χh ∈X
(ε)
h , ∀h > 0.

Then using Lemma 4.6 we can derive

‖div (εEh)− ρ‖H−s(Ω) ≤ ‖div (ε(Eh −∇χh))‖H−s(Ω) + ‖div (ε∇χh)− ρ‖H−s(Ω)

≤ chs+δ−1(‖curlEh‖L2(Ω) + ‖ρ‖Hδ−1(Ω)), ∀h > 0.

(4.31)

Therefore, since {Eh}h>0 is uniformly bounded in H0(curl), the desired assertion
follows from (4.30)-(4.31).

As our main goal, we will derive next the error estimates for the optimal control,
state, and adjoint state of the proposed edge element method (Ph). To do so, we
introduce the following discrete mixed variational problem:
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For a given E ∈H0(curl), find the solution Eh = Φh(E) ∈NDh to

(4.32)

{
(µ−1curlEh, curlvh)L2(Ω) = (µ−1curlE, curlvh)L2(Ω), ∀vh ∈NDh,

(εEh,∇ψh)L2(Ω) = (εE,∇ψh), ∀ψh ∈ Θh.

It is standard to verify that, for every E ∈ H0(curl), the mixed discrete variational
problem (4.32) admits a unique solution ΦhE := Eh ∈NDh for all h > 0, satisfying

(4.33) ‖ΦhE −E‖H(curl) ≤ c
(

inf
vh∈NDh

‖vh −E‖H(curl)

)
, ∀E ∈H0(curl).

This follows again from a well-known theory for mixed variational problems (see,
e.g., [18, Theorem 2.45]) by utilizing (2.3)-(2.4), the discrete Poincaré-Friedrichs-type
inequality [9, Theorem 4.7]:

‖Eh‖L2(Ω) ≤ c‖curlEh‖L2(Ω), ∀Eh ∈X
(ε)
h ,∀h > 0,(4.34)

and the discrete LBB condition:

(4.35) sup
0 6=Eh∈NDh

|(εEh,∇ψh)L2(Ω)|
‖Eh‖H(curl)

≥
(ε∇ψh,∇ψh)L2(Ω)

‖∇ψh‖H(curl)
≥ c‖ψh‖H1

0 (Ω), ∀ψh ∈ Θh,

with a constant c > 0 depending only on ε and Ω. Notice that (4.35) holds due to the
inclusion ∇Θh ⊂ NDh. Now, making use of the operator Φh : H0(curl) → NDh,
we obtain the following important identity for our subsequent analysis.

Lemma 4.8. It holds for all h > 0 that

‖µ−1/2curl (Eh − ΦhE)‖2L2(Ω) + κ−1‖µ−1/2curl (ph − Φhp)‖2L2(Ω) =

γ(h)
[
(ε(∇χh −Eh),Eh − ΦhE)L2(Ω) + κ−1(εph,Φhp− ph)L2(Ω)

]
+κ−1(ε(Eh − ΦhE),p− Φhp)L2(Ω) + κ−1(ε(ΦhE −E),ph − Φhp)L2(Ω).

Proof. In view of the state equations (3.11a) and (4.6a), we have that

(4.36)
(µ−1curl (Eh −E), curlvh)L2(Ω) + γ(h)(εEh,vh)L2(Ω)

= (ε(uh − u + γ(h)∇χh),vh)L2(Ω), ∀vh ∈NDh.

Making use of the operator Φh and setting vh = Eh − ΦhE in (4.36), we obtain

‖µ−1/2curl (Eh − ΦhE)‖2L2(Ω) + γ(h)(εEh,Eh − ΦhE)L2(Ω)

= (ε(uh − u + γ(h)∇χh),Eh − ΦhE)L2(Ω)

=︸︷︷︸
(3.11c)&(4.6c)

−κ−1(ε(ph − p),Eh − ΦhE)L2(Ω) + γ(h)(ε∇χh,Eh − ΦhE)L2(Ω)

= −κ−1(ε(ph − Φhp),Eh − ΦhE)L2(Ω) + κ−1(ε(p− Φhp),Eh − ΦhE)L2(Ω)

+γ(h)(ε∇χh,Eh − ΦhE)L2(Ω),

which implies

(4.37)
‖µ−1/2curl (Eh − ΦhE)‖2L2(Ω) + κ−1(ε(ph − Φhp),Eh − ΦhE)L2(Ω)

= γ(h)(ε(∇χh −Eh),Eh − ΦhE)L2(Ω) + κ−1(ε(p− Φhp),Eh − ΦhE)L2(Ω).
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Similarly, we deduce from the adjoint equations (3.11b) and (4.6b) that

(4.38)
(µ−1curl (ph − p), curlvh)L2(Ω) + γ(h)(εph,vh)L2(Ω)

= (ε(Eh −E),vh)L2(Ω), ∀vh ∈NDh.

Then, making use of the operator Φh and setting vh = ph −Φhp in (4.38), we derive

‖µ−1/2curl (ph − Φhp)‖2L2(Ω) + γ(h)(εph,ph − Φhp)L2(Ω)

= (ε(Eh −E),ph − Φhp)L2(Ω)

= (ε(Eh − ΦhE),ph − Φhp)L2(Ω) + (ε(ΦhE −E),ph − Φhp)L2(Ω),

which implies

(4.39)
(ε(Eh − ΦhE),ph − Φhp)L2(Ω) = ‖µ−1/2curl (ph − Φhp)‖2L2(Ω)

+γ(h)(εph,ph − Φhp)L2(Ω) − (ε(ΦhE −E),ph − Φhp)L2(Ω).

Applying (4.39) to (4.37), we come to the desired identity:

(4.40)

‖µ−1/2curl (Eh − ΦhE)‖2L2(Ω) + κ−1‖µ−1/2curl (ph − Φhp)‖2L2(Ω)

= γ(h)(ε(∇χh −Eh),Eh − ΦhE)L2(Ω) + κ−1(ε(p− Φhp),Eh − ΦhE)L2(Ω)

+κ−1γ(h)(εph,Φhp− ph)L2(Ω) + κ−1(ε(ΦhE −E),ph − Φhp)L2(Ω).

We now recall a classical error estimate for the curl-conforming Nédélec inter-
polant Nh in the space Hs(curl) := {E ∈Hs(Ω) | curlE ∈Hs(Ω)} [6].

Lemma 4.9. For s ∈ (1/2, 1], there exists a constant c > 0, independent of h and
E, such that for all h > 0,

‖E −NhE‖H(curl) ≤ chs‖E‖Hs(curl), ∀E ∈Hs(curl).(4.41)

We are now ready to establish our main result.
Theorem 4.10. Suppose that E,p ∈ Hs(curl) for some s ∈ (0.5, 1]. Then,

there exists a constant c > 0, independent of h, uh, Eh, and ph, such that

‖Eh −E‖H(curl) + ‖ph − p‖H(curl) + ‖uh − u‖H(curl) ≤ c(γ(h) + hs),

for all h > 0.
Proof. In view of the regularity assumption E,p ∈ Hs(curl) with s ∈ (0.5, 1]

along with (4.33) and (4.41), there is a constant c > 0, independent of h, such that

(4.42) ‖ΦhE −E‖H(curl) + ‖Φhp− p‖H(curl) ≤ chs, ∀h > 0.

On the other hand, according to Lemma 4.8, we have the following estimate

µ−1‖curl (Eh − ΦhE)‖2L2(Ω) + κ−1µ−1‖curl (ph − Φhp)‖2L2(Ω) ≤(
γ(h)

(
‖ε(∇χh −Eh)‖L2(Ω) + κ−1‖εph‖L2(Ω)

)
+ κ−1‖ε(p− Φhp)‖L2(Ω)

+κ−1‖ε(E − ΦhE)‖L2(Ω)

)(
‖Eh − ΦhE‖L2(Ω) + ‖ph − Φhp‖L2(Ω)

)
, ∀h > 0.
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Then applying (4.42) to the above estimate yields

(4.43)
(‖curl (Eh − ΦhE)‖L2(Ω) + ‖curl (ph − Φhp)‖L2(Ω))

2

≤ c(γ(h) + hs)(‖Eh − ΦhE‖L2(Ω) + ‖ph − Φhp‖L2(Ω)), ∀h > 0.

Using the definition of Φh and Proposition 4.3, we have for every h > 0 that

(ε(Eh − ΦhE),∇ψh)L2(Ω) = (ε(Eh −E),∇ψh)L2(Ω) = 0, ∀ψh ∈ Θh,

(ε(ph − Φhp),∇ψh)L2(Ω) = (ε(ph − p),∇ψh)L2(Ω) = 0, ∀ψh ∈ Θh.

In other words, it holds that

Eh − ΦhE ∈X
(ε)
h and ph − Φhp ∈X

(ε)
h , ∀h > 0,

so it follows from the discrete Poincaré-Friedrichs-type inequality (4.34) that

(4.44)
‖Eh − ΦhE‖L2(Ω) + ‖ph − Φhp‖L2(Ω) ≤ c

(
‖curl (Eh − ΦhE)‖L2(Ω)

+‖curl (ph − Φhp)‖L2(Ω)

)
, ∀h > 0.

Applying (4.44) to (4.43), we deduce that

(4.45) ‖curl (Eh − ΦhE)‖L2(Ω) + ‖curl (ph − Φhp)‖L2(Ω) ≤ c(γ(h) + hs), ∀h > 0.

Combining the estimates (4.44)-(4.45) along with (4.42), we finally obtain the estimate

(4.46) ‖Eh −E‖H(curl) + ‖ph − p‖H(curl) ≤ c(γ(h) + hs), ∀h > 0.

Now the desired estimate follows from this estimate above, and the optimality condi-
tions (3.4c) and (4.6c).

Remark 4.11. We can easily observe that Theorem 4.10 ensures the optimal
convergence rate for our proposed finite element optimal control method (Ph) if we
take γ = O(h). Note that our analysis can help improve the error estimate in [5].
In fact, by making use of the operator Φh, we are able to significantly improve the
convergence rate of

√
γ(h) + hs achieved in [5] for the edge element approximation

of the stationary Maxwell’s system (1.1) with a non-vanishing charge density. Our
improved result is provided in the following corollary, whose proof is analogous to the
one for Theorem 4.10.

Corollary 4.12. Let f ∈ H(div=0) and z ∈ H0(curl) denote the unique
solution of

(4.47)

{
(µ−1curl z, curlv)L2(Ω) = (f ,v)L2(Ω), ∀v ∈H0(curl),

(εz,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω), ∀ψ ∈ H1
0 (Ω).

Furthermore, for every h > 0, let zh ∈NDh denote the unique solution of

(4.48)
(µ−1curl zh, curlvh)L2(Ω) + γ(h)(εzh,vh)L2(Ω) = (f + γ(h)ε∇χh,vh)L2(Ω),

∀vh ∈NDh,

where χh ∈ Θh is the solution of

(4.49) (ε∇χh,∇ψh)L2(Ω) = −(ρ, ψh)L2(Ω), ∀ψh ∈ Θh.
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Then, if z ∈ Hs(curl), for some s ∈ (0.5, 1], then there exists a constant c > 0,
independent of h, z, and zh, such that

‖z − zh‖H(curl) ≤ c(γ(h) + hs‖z‖Hs(curl)), ∀h > 0.

Proof. Thanks to the regularity assumption z ∈Hs(curl), we obtain from (4.33)
and (4.41) that

(4.50) ‖z − Φhz‖H(curl) ≤ chs‖z‖Hs(curl), ∀h > 0.

Now, making use of the operator Φh (see (4.32) for its definition), we infer that

(µ−1curl (zh − Φhz), curlvh)L2(Ω) = (µ−1curl (zh − z), curlvh)L2(Ω)

=︸︷︷︸
(4.48)&(4.47)

−γ(h)(εzh,vh)L2(Ω) + (f + εγ(h)∇χh,vh)L2(Ω) − (f ,vh)L2(Ω)

= γ(h)(ε(∇χh − zh),vh)L2(Ω), ∀vh ∈NDh.

Thus, inserting vh = zh − Φhz ∈NDh, we obtain that

(4.51)

‖µ−1/2curl (zh − Φhz)‖2L2(Ω) = γ(h)(ε(∇χh − zh), zh − Φhz)L2(Ω)

≤ γ(h)‖ε(∇χh − zh)‖L2(Ω)‖zh − Φhz‖L2(Ω)

≤ cγ(h)‖zh − Φhz‖L2(Ω), ∀h > 0.

On the other hand, by the definition of Φh (see (4.32)) and (4.47)-(4.49) we infer that

(ε(zh − Φhz),∇ψh) = (ε(zh − z),∇ψh) = (εzh,∇ψh) + (ρ, ψh)

= (ε∇χh,∇ψh) + (ρ, ψh) = 0, ∀ψh ∈ Θh,∀h > 0.

Consequently, we have zh − Φhz ∈ X
(ε)
h for all h > 0, so we may apply the discrete

Poincaré-Friedrichs-type inequality (4.34) to (4.51) to deduce that

µ−1‖curl (zh − Φhz)‖L2(Ω) ≤ cγ(h), ∀h > 0.

Then, this inequality together with (4.34) implies

(4.52) ‖zh − Φhz‖H(curl) ≤ cγ(h), ∀h > 0.

Finally, we obtain from (4.50) and (4.52) that

‖zh − z‖H(curl) ≤ ‖zh − Φhz‖H(curl) + ‖z − Φhz‖H(curl)

≤ c(γ(h) + hs‖z‖Hs(curl)), ∀h > 0.

This completes the proof.
Remark 4.13. We know from Theorem 4.10 (cf. Corollary 4.12) that the choice

γ(h) = h

yields the desired optimal error estimate of order O(hs), where the index s ∈ (0.5, 1]
is determined by the regularity of the true solution. We recall that the results in [5]
requires the choice γ(h) = h2 for the same optimal estimate O(hs). However, if
h is sufficiently small, then the choice γ(h) = h2 is much smaller than γ(h) = h
and increases the numerical effort considerably because the conditioning of the edge
element system (4.4) is much worse. For this reason, we suggest to choose γ(h) = h
for the numerical solution of (Ph) to achieve the optimal error estimate with a reduced
computational effort.
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5. Numerical Experiments. We present two numerical examples serving as a
numerical illustration of Theorem 4.5 and Theorem 4.10.

5.1. Example 1 with a smooth optimal solution. As the first example, we
consider the model optimal control problem (P) that has an analytical and smooth
optimal solution, with the computational domain Ω = (0, 1)3, and the parameters
µ = ε = 1, ρ = 0, κ = 1, and the desired state Ed given by

Ed(x) = (4π4 + 1)

sin(πx2) sin(πx3)

0

0

 .

Then by straightforward computations we can verify that the following three functions

E(x) =

sin(πx2) sin(πx3)

0

0

 , u(x) = 2π2

sin(πx2) sin(πx3)

0

0

 ,

p(x) = −2π2

sin(πx2) sin(πx3)

0

0


satisfy the sufficient and necessary optimality system (3.4). Thus, the optimal solu-
tion of (P) is given by u. For all the examples in this section, we have solved the
finite element approximation (Ph) using the open source software FEniCS [17]. The
computational domain Ω was triangulated with a regular mesh of mesh size h, and
the optimality system (4.6) was solved by MUMPS (MUltifrontal Massively Parallel
sparse direct Solver). As pointed out in Remark 4.11 and Remark 4.13, in order
to guarantee the optimal convergence rate in the finite element solution, we choose
γ(h) = h. Furthermore, we employ the following quantity to compute the approximate
order of convergence:

EOC =
log ‖uh1 − u‖H(curl) − log ‖uh2 − u‖H(curl)

log h1 − log h2

for two consecutive mesh sizes h1 and h2. Table 5.1 displays the H(curl)-norm error
between the analytical solution u and the finite element solution uh for different mesh
sizes. As we can see from the table that the finite element solution uh converges to
the analytical solution u as h decreases. Moreover, by Theorem 4.10 we know a
convergence rate of s = 1 should be obtained due to the nice regularity properties
u,E,p ∈H1(curl) for this example. This theoretical prediction is confirmed by our
numerical results, as we see EOC approximates s ≈ 1.

5.2. Example 2 with a non-smooth optimal solution. In this example, We
choose the following non-convex polyhedral computational domain

(5.1) Ω =
{

(0, 1/4)× (0, 1/2)× (0, 1)
}
\
{

[1/8, 1/4]× [1/8, 1/2]× [0, 1]
}

and the parameters µ = ε = 1, ρ = 0, κ = 1. For convenience, we now include an
additional shift control in our objective functional:

(P) min
u∈U

1

2

∫
Ω

|G(u)−Ed|2 dx+
1

2

∫
Ω

|u− ud|2 dx.



Table 5.1
Convergence history

h/
√

2 ‖uh − u‖H(curl) EOC

2−2 13.5704 -

2−3 6.94488 0.96644

2−4 3.48798 0.99356

2−5 1.74486 0.99929

Here, the desired state and the shift control are set to be

Ed = G(ud) and ud = G(f),

with f = 103(1, 1, 1)T . We note that, since µ ≡ ε ≡ 1 and ρ ≡ 0, the desired state
and the shift control enjoy the regularity property Ed,ud ∈ Hδ(curl), with δ as in
(4.29). As Ω is a non-convex Lipschitz polyhedron, this exponent is strictly less than
one, δ ∈ (0.5, 1). We also point out that the analytical solutions for Ed = G(ud) and
ud = G(f) are unknown. For our numerical experiment, we approximate them by
their finite element approximations with a very fine mesh size h = 2−8

√
2.

By our specific construction, the optimal solution of (P) is exactly given by
u = ud, and all our results in this work can be naturally extended to (P) in the
presence of the shift control ud. Table 5.2 displays the H(curl)-norm error between
the exact solution u and our finite element solution uh with γ(h) = h. As the mesh size
h decreases, we observe that the numerical solution approaches the exact one. Fur-
thermore, by Theorem 4.10 we know we can only expect a convergence rate δ ∈ (0.5, 1)
as the computational domain (5.1) features a non-convex structure in this example.
This theoretical prediction is also reasonably confirmed by our numerical results with
δ ≈ 0.7.

Table 5.2
Convergence history

h/
√

2 ‖uh − u‖H(curl) EOC

2−4 0.153028 -

2−5 0.118692 0.366573

2−6 0.073895 0.683666
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[21] S. Nicaise, S. Stingelin, and F. Tröltzsch. Optimal control of magnetic fields in flow measure-

ment. Discrete Contin. Dyn. Syst. Ser. S, 8(3):579–605, 2015.
[22] A. Toselli. Overlapping schwarz methods for maxwells equations in three dimensions. Numer.



24 EDGE ELEMENT METHOD

Math., 86(1):733–752, 2000.
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