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Improved Local Convergence Results for Augmented
Lagrangian Methods in C2-Cone Reducible

Constrained Optimization∗

Christian Kanzow† Daniel Steck†

November 3, 2017

Abstract. This paper deals with a class of cone-reducible constrained optimization prob-
lems which encompasses nonlinear programming, semidefinite programming, second-order cone
programming, and any combination thereof. Using the second-order sufficient condition and a
strict version of the Robinson constraint qualification, we provide a (semi-)local error bound
which generalizes known results from the literature. Moreover, under the same assumptions, we
prove that an augmented Lagrangian method is locally convergent with rate proportional to
1/ρk, where ρk is the penalty parameter, and that {ρk} remains bounded.

Keywords. Augmented Lagrangian method, local convergence, rate of convergence, C2-cone
reducible sets, error bound, semidefinite programming, second-order cone programming.

1 Introduction

Let X,H be finite-dimensional Euclidean spaces and consider the constrained minimization
problem

min f(x) s.t. G(x) ∈ K, (P )

where f : X → R, G : X → H, and K ⊆ H is a nonempty closed convex set. For the sake
of simplicity, we assume that f and G are twice continuously differentiable.

In the present paper, we analyze problems of the type (P ) in the situation where
the set K is so-called C2-cone reducible (see Definition 2.1). This encompasses nonlin-
ear programming, semidefinite programming, second-order cone programming, and any
combination thereof [26]. In these situations, we typically have X = Rn, n ∈ N, and the
space H is a Cartesian product including factors of the form Rmj , mj ∈ N, together with
a suitable matrix space in the case of semidefinite programming. More details will be
given in Section 5.

The main purpose of this paper is to provide some new results on the local convergence
of augmented Lagrangian-type methods for C2-cone reducible problems. Recall that the
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augmented Lagrangian method (ALM) is one of the classical approaches for constrained
optimization [3, 4, 9, 22]. As a result, there is a substantial amount of literature dealing
with local convergence aspects of such methods, in particular for standard nonlinear
programming. The classical results in this direction assume the second-order sufficient
condition (SOSC) together with the linear independence constraint qualification and yield
primal R-linear and dual Q-linear convergence [3, 10, 11, 14, 22]. Note that many of these
papers use additional assumptions such as a stronger SOSC or strict complementarity.
The sharpest local convergence result for nonlinear programming which we are aware of
is given in [13], where it is shown that the ALM converges locally with primal-dual rate
proportional to 1/ρk (ρk being the penalty parameter) under the assumptions that the
initial multiplier is sufficiently close to an optimal one and that SOSC holds.

For more sophisticated problem classes such as semidefinite or second-order cone
programming, the analysis of ALMs is much more complicated. In [27], it was shown that
a version of the ALM for semidefinite programming converges locally with primal-dual
rate proportional to 1/ρk under the so-called strong SOSC and constraint nondegeneracy
assumptions. For second-order cone programming, similar results were obtained in
[19, 20] using again the constraint nondegeneracy assumption together with either strict
complementarity or strong SOSC. Let us also stress that all these papers require that the
initial multiplier is sufficiently close to an optimal one.

In the present paper, we analyze the local convergence of the augmented Lagrangian
method for generic C2-cone reducible problems, thereby subsuming semidefinite and
second-order cone programming. Using the recently developed sensitivity theory from [12],
we show that, under SOSC and a strict version of the Robinson constraint qualification
(see Section 2), the KKT system of the problem (P ) admits a primal-dual error bound
which does not require any (a-priori) proximity of the multipliers. We then use this tool
to prove that the ALM converges with primal-dual rate of convergence proportional to
1/ρk. Our analysis is more general than that in [19, 20, 27] since our assumptions are
weaker than strong SOSC and constraint nondegeneracy. Moreover, we do not require
any assumption on the initial multiplier used in the algorithm.

Let us mention that the analysis in this paper is essentially a special instance of that
conducted by the authors in [15] for variational problems in Banach spaces. In contrast to
that paper, however, the present one is aimed specifically at C2-cone reducible problems
and takes into account the specific structure of such problems.

This paper is organized as follows: we start with some preliminary material in Section 2,
where we also introduce the key assumptions for our analysis. The augmented Lagrangian
method is formally presented in Section 3, and we provide a local convergence analysis
in Section 4. The applications to semidefinite and second-order cone programming are
discussed in Section 5. Finally, Section 6 contains some concluding remarks.

Notation: We write 〈·, ·〉 for the scalar product in X or H, and ‖·‖ with an appropriate
subscript (e.g. ‖ · ‖X) to denote norms. The linear hull of a vector x in X or H is denoted
by span(x), and its orthogonal complement by x⊥. If K ⊆ H is a nonempty closed convex
set, then PK denotes the projection onto K, and dK = dist(·, K) the distance function to
K. Finally, a prime ′ always indicates the derivative of a function with respect to x.
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2 Preliminaries

For a set S in some space Z and a point x ∈ S, we denote by

TS(x) :=
{
d ∈ Z | ∃xk → x, tk ↓ 0 such that xk ∈ S and (xk − x)/tk → d

}
the tangent cone to S at x. If S ⊆ H is convex, we also define the normal cone

NS(x) := {ψ ∈ H : 〈ψ, y − x〉 ≤ 0 ∀y ∈ S} = (S − x)◦, (1)

where ◦ denotes the polar cone [2, 8]. Note that we also have the characterization
NS(x) = TS(x)◦. Finally, we say that a cone C is pointed if C ∩ (−C) = {0}.

Throughout this paper, we will use the following important concept [8, 12].

Definition 2.1. We say that K is C2-cone reducible at y0 ∈ K if there exist a pointed
closed convex cone C ⊆ Z in some finite-dimensional space Z, a neighborhood N of y0,
and a twice continuously differentiable mapping Ξ : N → Z such that Ξ(y0) = 0, Ξ′(y0) is
onto, and K ∩N = Ξ−1(C) ∩N . We say that K is C2-cone reducible if the above holds
at every y0 ∈ K.

The C2-cone reducibility of the set K plays a crucial role for both first and second order
optimality conditions as we shall see below. As noted in the introduction, there are quite
a few classes of constraints for which C2-reducibility is known. In particular, the set K is
C2-cone reducible if it arises from an arbitrary (finite) combination of equality, inequality,
semidefiniteness, or second-order cone constraints [26].

2.1 Constraint Qualifications and KKT Conditions

Consider the Lagrange function

L : X ×H → R, L(x, λ) := f(x) + 〈λ,G(x)〉.

Then the KKT conditions can be stated as follows.

Definition 2.2. A tuple (x̄, λ̄) ∈ X ×H is a KKT point of (P ) if

L′(x̄, λ̄) = 0 and λ̄ ∈ NK(G(x̄)).

We call x̄ a stationary point if (x̄, λ̄) is a KKT point for some multiplier λ̄, and denote by
M(x̄) the set of such multipliers.

The relation between the optimization problem (P ) and its KKT conditions is well-known
[8]: if x̄ is a local solution of the problem and a suitable constraint qualification (see
below) holds, then x̄ is a KKT point. Conversely, the KKT conditions always imply the
“abstract” first order stationarity f ′(x̄)d ≥ 0 for all d ∈ TM (x̄), where M := G−1(K) is the
feasible set of (P ). In particular, if the problem is convex, then the KKT conditions are
always sufficient for local and global optimality.

3



Definition 2.3. Let x̄ ∈ X be a feasible point. We say that the Robinson constraint
qualification (RCQ) holds in x̄ if

G′(x̄)X + TK(G(x̄)) = H. (2)

If (x̄, λ̄) ∈ X×H is a KKT point of the problem, we say that the strict Robinson condition
(SRC) holds in (x̄, λ̄) if

G′(x̄)X + TK(G(x̄)) ∩ λ̄⊥ = H. (3)

The Robinson constraint qualification was introduced in [24] and has since become a
ubiquitous tool in optimization theory [8, 21]. For standard nonlinear programming, RCQ
boils down to the Mangasarian-Fromovitz constraint qualification, see [8, Eq. 2.191].

The strict Robinson condition is a tightened version of the Robinson constraint
qualification aimed at ensuring the uniqueness of the Lagrange multiplier as well as
certain stability properties. This condition is also called the “strict Robinson constraint
qualification” in the literature [12, 29]. It should be noted, however, that SRC is not a
constraint qualification in the conventional sense since it presupposes the existence of λ̄
and therefore depends not only on the constraint function but on the problem as a whole.
A similar observation was made in [28] for a strict version of the Mangasarian-Fromovitz
constraint qualification which can be seen as a special case of SRC.

Remark 2.4. A related condition used in the book [8] is the so-called strict constraint
qualification, which is defined as 0 ∈ int[G(x̄) + G′(x̄)X − K0], where K0 := {y ∈ K :〈
λ̄, y −G(x̄)

〉
= 0}, see [8, Def. 4.46]. By [8, Cor. 2.98], this condition is equivalent to

G′(x̄)X + TK0(G(x̄)) = H.

Hence, there are some similarities between the strict constraint qualification and our
notion of SRC. In fact, the former implies the latter [8, p. 299], but the two conditions
are not equivalent in general, even for C2-cone reducible sets K. Two concrete examples
demonstrating this fact are given in Example 2.5 below.

Example 2.5. (a) Let X := R, H := R2, and consider the optimization problem (P )
with f(x) := x, G(x) := (x, 0), and K the closed unit ball in H. Clearly, x̄ := −1
is the global minimizer of this problem, and it is easy to see that λ̄ := (−1, 0) is the
corresponding (unique) Lagrange multiplier. Moreover, the set K is C2-cone reducible in
ȳ := G(x̄) = (−1, 0) to the cone C := [0,+∞) by means of the mapping Ξ(x) := 1−x2

1−x2
2.

A straightforward calculation shows that TK(ȳ) ∩ λ̄⊥ = λ̄⊥; on the other hand, the set K0

is given by K0 = {ȳ}, and it follows that TK0(ȳ) = {0}, cf. Figure 1. We conclude that
G′(x̄)X + TK(ȳ) ∩ λ̄⊥ = H and G′(x̄)X + TK0(ȳ) 6= H.

K
ȳ

λ̄ K
ȳ

λ̄

λ̄⊥ TK(ȳ)

K

λ̄⊥

K0
λ̄

Figure 1: The setting of Example 2.5 (a), the tangent cone to K, and the set K0.
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(b) This example is a second-order cone program. Let X := R, H := R3, f(x) := −2x,
G(x) := (x, 0, 2 − x), and K :=

{
y ∈ R3 : y3 ≥

√
y2

1 + y2
2

}
. An easy calculation shows

that x̄ := 1 is the global minimizer of the problem, and λ̄ := (1, 0,−1) is the corresponding
(unique) Lagrange multiplier. Moreover, with ȳ := G(x̄) = (1, 0, 1), we have

NK(ȳ) = {αλ̄ : α ≥ 0} and TK(ȳ) = NK(ȳ)◦ = {λ̄}◦.

Hence, TK(ȳ) ∩ λ̄⊥ = λ̄⊥. On the other hand, the set K0 is the intersection of K with
the plane λ̄⊥, which is given by K0 = {αȳ : α ≥ 0}. Therefore, TK0(ȳ) = span(ȳ), and it
follows that G′(x̄)X + TK(ȳ) ∩ λ̄⊥ = H but G′(x̄)X + TK0(ȳ) 6= H.

2.2 Second-Order Conditions and Local Error Bounds

We have already mentioned that the KKT conditions from Definition 2.2 are sufficient
for optimality if the underlying problem is convex. In the absence of convexity, local
optimality can still be deduced if a suitable second-order sufficient condition is satisfied.
For the theory in this paper, we will need a second-order condition which crucially depends
on the C2-cone reducibility of the set K. For the corresponding definition, let

σ(y, C) := sup{〈y, z〉 : z ∈ C}

be the support function of a closed convex set (or cone) C. Moreover, for a point y ∈ K
and a direction h ∈ H, let

T 2
K(y, h) :=

{
w ∈ H : dist(y + th+ 1

2
t2w,K) = o(t2), t ≥ 0

}
be the second-order tangent set to K in the direction h, where dist is the distance function.
Note that there are actually different notions of second-order tangent sets in the literature,
in particular inner and outer tangent sets [8], but these coincide for C2-cone reducible
sets K [8, Prop. 3.136]. Hence, this distinction is not necessary for our purposes.

Definition 2.6. We say that the second-order sufficient condition (SOSC) holds in a
KKT point x̄ if the set K is C2-cone reducible at G(x̄) and

sup
λ∈M(x̄)

{
L′′(x̄, λ)(d, d)− σ

(
λ, T 2

K(G(x̄), G′(x̄)d)
)}

> 0 (4)

for all d ∈ C(x̄) \ {0}, where C(x̄) := {d ∈ X : G′(x̄)d ∈ TK(G(x̄)), f ′(x̄)d ≤ 0}.

It is well-known that this form of SOSC implies the quadratic growth of the objective
function, i.e. there is a c > 0 such that f(x) ≥ f(x̄) + c‖x− x̄‖2

X for all feasible points x
near x̄, see [8, Thm. 3.86]. In particular, x̄ is a strict local minimizer of the problem.

We now turn to another consequence of SOSC when used in conjunction with the
strict Robinson condition (SRC). These two conditions imply a primal-dual error bound
in a neighborhood of a KKT point (x̄, λ̄) in terms of the residual mapping

R(x, λ) := ‖L′(x, λ)‖X + ‖G(x)− PK(G(x) + λ)‖H ,

see [12]. A precise statement of the error bound is found in the following theorem which
actually generalizes [12, Remark 5] by not requiring any a-priori proximity of λ to λ̄.
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Theorem 2.7. Assume that the problem (P ) admits a KKT point (x̄, λ̄) which satisfies
SOSC and SRC. Then M(x̄) = {λ̄} and there is a c > 0 such that, for all (x, λ) ∈ X ×H
with x sufficiently close to x̄ and R(x, λ) sufficiently small,

‖x− x̄‖X + ‖λ− λ̄‖H ≤ cR(x, λ). (5)

Proof. The uniqueness follows from [8, Prop. 4.50]. By [15, Thm. 3.1], the above error
bound is equivalent to the following upper Lipschitz stability of the KKT system: there is
a c > 0 such that, for every (α, β) ∈ X ×H sufficiently small, any solution (x, λ) with x
near x̄ of the perturbed KKT conditions

L′(x, λ) = α, λ ∈ NK(G(x)− β) (6)

satisfies the estimate ‖x− x̄‖X + ‖λ− λ̄‖H ≤ c‖(α, β)‖X×H . To prove this property, let
{(αk, βk)} ⊆ X ×H be a zero sequence and (xk, λk) a sequence of corresponding solutions
of (6) such that xk → x̄. By [8, Prop. 4.43], the sequence {λk} is bounded. Moreover, it
follows from (6) and simple continuity arguments that every accumulation point of {λk}
is a multiplier corresponding to x̄. Since M(x̄) = {λ̄}, this implies λk → λ̄. The result
now follows from [12, Thm. 24].

The (semi-local) error bound property is central to this paper and allows us to deduce
local convergence properties for certain algorithms, in particular augmented Lagrangian
methods. As in [15], we note that the function R is locally Lipschitz-continuous with
respect to (x, λ) and globally so with respect to λ. Hence, we can extend the one-sided
error bound (5) to

c1R(x, λ) ≤ ‖x− x̄‖X + ‖λ− λ̄‖H ≤ c2R(x, λ) (7)

for suitable constants c1, c2 > 0 and all (x, λ) ∈ X ×H with x near x̄.

3 The Augmented Lagrangian Method

We now present the augmented Lagrangian method for the optimization problem (P ),
which is fundamentally similar to [15, Alg. 4.1]. Consider the augmented Lagrange function

Lρ : X ×H → R, Lρ(x, λ) := f(x) +
ρ

2
d2
K

(
G(x) +

λ

ρ

)
. (8)

Note that there are multiple variants of Lρ in the literature. In particular, when deriving
the augmented Lagrangian through the standard slack variable approach, one formally
obtains a function which includes an additional term depending on the multiplier λ. Since
this term plays no role for the minimization of Lρ with respect to x, we will deal with the
“reduced” augmented Lagrangian (8) for the sake of simplicity.

For the construction of our algorithm, we will need a means of controlling the penalty
parameters. To this end, we define the auxiliary function

V (x, λ, ρ) :=

∥∥∥∥G(x)− PK
(
G(x) +

λ

ρ

)∥∥∥∥
H

. (9)

The function V is a composite measure of feasibility and complementarity which arises
naturally in the aforementioned slack variable approach.
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Algorithm 3.1 (Augmented Lagrangian method).

(S.0) Let (x0, λ0) ∈ X ×H, B ⊆ H bounded, ρ0 > 0, γ > 1, τ ∈ (0, 1), and set k := 0.

(S.1) If (xk, λk) satisfies a suitable termination criterion: STOP.

(S.2) Choose wk ∈ B and compute a minimizer xk+1 of Lρk(·, wk).

(S.3) Update the vector of multipliers to

λk+1 := ρk

[
G(xk+1) +

wk

ρk
− PK

(
G(xk+1) +

wk

ρk

)]
. (10)

(S.4) If k = 0 or
V (xk+1, wk, ρk) ≤ τV (xk, wk−1, ρk−1) (11)

holds, set ρk+1 := ρk; otherwise, set ρk+1 := γρk.

(S.5) Set k ← k + 1 and go to (S.1).

Note that Algorithm 3.1 uses a safeguarded multiplier sequence {wk} in certain places
where classical augmented Lagrangian methods use the sequence {λk}. This bounding
scheme is in the spirit of recent developments [6, 15, 23] and is crucial to establishing strong
global convergence results for the above and similar methods [1, 5, 6, 16]. In practice, one
usually tries to keep wk as “close” as possible to λk, e.g. by defining wk := PB(λk), where
B (the bounded set from the algorithm) is chosen suitably to allow cheap projections.

4 Local Convergence Analysis

This section is dedicated to the local convergence analysis of Algorithm 3.1. The first
step in our local analysis is to analyze the behavior of local minimizers of the augmented
Lagrangian in a neighborhood of x̄.

Lemma 4.1. Let (x̄, λ̄) be a KKT point satisfying SOSC and B ⊆ H a bounded set. Then
there are ρ̄, r > 0 such that, for every ρ ≥ ρ̄ and w ∈ B, the function Lρ(x,w) has a local
minimizer x = xρ(w) in Br(x̄). Moreover, xρ → x̄ uniformly on B as ρ→∞.

Proof. Since SOSC holds, there is an r > 0 such that x̄ is a strict local solution of the
problem. For each ρ > 0 and w ∈ B, let x = xρ(w) be a solution of

min
x
Lρ(x,w) s.t. x ∈ Br(x̄).

(Note that xρ is not necessarily unique.) We show that xρ → x̄ uniformly on B as
ρ → ∞. In particular, this implies the existence of a ρ̄ > 0 such that xρ(w) lies in the
interior of Br(x̄) for all ρ ≥ ρ̄, w ∈ B. Assume, by contradiction, that the uniform
convergence does not hold. Then there are ε > 0, ρk → ∞ and {wk} ⊆ B such that
‖xρk(wk) − x̄‖X ≥ ε for all k. Due to compactness, the sequence yk := xρk(wk) has an
accumulation point x̂ ∈ Br(x̄). We claim that x̂ = x̄, which yields the desired contradiction.
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The nonexpansiveness of the distance function dK implies dK(G(x̄) +wk/ρk) ≤ ‖wk‖H/ρk
for all k. Thus, by the minimizing property of yk, we have

f(yk) +
ρk
2
d2
K

(
G(yk) +

wk

ρk

)
≤ Lρk(x̄, wk) ≤ f(x̄) +

‖wk‖2
H

2ρk
. (12)

This implies dK(G(yk)+wk/ρk)→ 0, hence dK(G(yk))→ 0 and G(x̂) ∈ K. Moreover, (12)
also yields lim supk→∞ f(yk) ≤ f(x̄). Therefore, f(x̂) ≤ f(x̄), which implies x̂ = x̄.

Of course, since SOSC is a local condition, we cannot rule out the possibility that the
augmented Lagrangian has local or global minimizers arbitrarily far from x̄ or is even
unbounded from below. Since we are mainly interested in a local analysis of the method,
we will assume that the algorithm finds, at least for sufficiently large k, the minimizers
from Lemma 4.1. This enables us to prove the following result which implies the strong
convergence of {(xk, λk)} as well as an estimate for the rate of convergence. Note that this
result is essentially a consequence of the theory established in [15]. For the convenience of
the reader, we include a complete proof here.

Theorem 4.2. Let (x̄, λ̄) be a KKT point satisfying SOSC and SRC and assume that,
for k sufficiently large, xk+1 is one of the minimizers from Lemma 4.1. Then there is
ρ̄ > 0 such that, if ρk ≥ ρ̄ for sufficiently large k, then (xk, λk)→ (x̄, λ̄). If, in addition,
wk = λk for sufficiently large k, then there exists c > 0 such that

‖xk+1 − x̄‖X + ‖λk+1 − λ̄‖H ≤
c

ρk

(
‖xk − x̄‖X + ‖λk − λ̄‖H

)
(13)

for all k sufficiently large. Moreover, {ρk} remains bounded.

Proof. By Lemma 4.1, we can choose ρ̄ > 0 large enough such that, whenever ρk ≥ ρ̄,
then xk lies in a neighborhood of x̄ where the error bound property (5) holds. Consider
now the sequence Rk := R(xk, λk) = ‖G(xk) − PK(G(xk) + λk)‖H . We first show that
Rk → 0. Let sk+1 := PK(G(xk+1) + wk/ρk). Then sk+1 ∈ K and λk+1 ∈ NK(sk+1) by [2,
Prop. 6.46]. We now use the fact that y 7→ y − PK(y + λk+1) is nonexpansive, which is an
easy consequence of [2, Cor. 4.10]. Therefore, the inverse triangle inequality yields

Rk+1 ≤ ‖G(xk+1)− sk+1‖H + ‖sk+1 − PK(sk+1 + λk+1)‖H . (14)

The last term is equal to zero since λk+1 ∈ NK(sk+1), cf. [2, Cor. 6.46]. Now, if {ρk} is
bounded, then the penalty updating scheme (11) implies ‖G(xk+1) − sk+1‖H → 0, and
Rk+1 → 0 follows. On the other hand, if ρk →∞ (which actually cannot occur, but for
the sake of the proof we need to cover this case), then xk+1 → x̄ by Lemma 4.1, and

‖G(xk+1)− sk+1‖H ≤ ‖sk+1 − PK(G(xk+1))‖H + dK(G(xk+1))→ 0

by the nonexpansiveness of PK and the boundedness of {wk}. Hence, in this case, we also
obtain Rk+1 → 0.

The convergence Rk → 0 implies, by virtue of the error bound property from Theo-
rem 2.7, that (xk, λk)→ (x̄, λ̄). Assume now that wk = λk for sufficiently large k. We prove
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the convergence rates by first showing that there is a c > 0 such that Rk+1 ≤ (c/ρk)Rk

for all k ∈ N sufficiently large. Using (14) and the definition of λk+1, it follows that

Rk+1 ≤ ‖G(xk+1)− sk+1‖H =
‖λk+1 − λk‖H

ρk
≤ 1

ρk

(
‖λk+1 − λ̄‖H + ‖λk − λ̄‖H

)
. (15)

By the error bound property (5), there is a c1 > 0 such that ‖λk − λ̄‖H ≤ c1Rk for all
k ∈ N sufficiently large (recall that xk → x̄). Hence, we obtain Rk+1 ≤ (c1/ρk)(Rk+1 +Rk),
or equivalently (

1− c1

ρk

)
Rk+1 ≤

c1

ρk
Rk

for k ∈ N sufficiently large. Increasing the threshold value ρ̄ if necessary, we may assume
that 1− c1/ρk ≥ 1/2 and thus Rk+1 ≤ (2c1/ρk)Rk. Using the two-sided error bound (7),
it is easy to deduce the convergence estimate (13).

Finally, let us show that {ρk} remains bounded. To this end, we need to show that
Vk+1 ≤ τVk holds eventually, where Vk+1 := V (xk+1, λk, ρk) = ‖G(xk+1)− sk+1‖H is the
quantity used to determine the penalty update (11). From (15), we have Vk+1 ≥ Rk+1 and

Vk+1 =
‖λk+1 − λk‖H

ρk
≤ 1

ρk

(
‖λk+1 − λ̄‖H + ‖λk − λ̄‖H

)
≤ c1

ρk
(Rk+1 +Rk).

Putting these inequalities together yields

Vk+1

Vk
≤ c1

ρkRk

(Rk+1 +Rk) ≤
c1

ρk

(
1 +

Rk+1

Rk

)
.

If we now assume that ρk → ∞, then it is easy to conclude that Vk+1/Vk → 0. Hence,
Vk+1/Vk ≤ τ for sufficiently large k, which contradicts ρk →∞.

5 Applications

In this section, we describe some applications of the above theory, in particular to
semidefinite and second-order cone programming. Note that, for both these problem
classes, we obtain convergence results which are stronger than those in the literature.

5.1 Semidefinite Programming

Semidefinite programming (SDP), linear or nonlinear, revolves around constraints which
impose semidefiniteness of certain matrices. Throughout this section, we write Sn for the
space of symmetric n× n-matrices, equipped with the scalar product 〈A,B〉 := tr(ATB),
Sn+ (Sn−) for the subsets of positive (negative) semidefinite matrices, and A � 0 (A � 0)
for positive (negative) semidefiniteness. With these definitions, a typical SDP is given by

min f(x) s.t. g(x) ≤ 0, h(x) = 0, G(x) � 0, (16)

where x ∈ X for some finite-dimensional space X and g : X → Rm, h : X → Rp,
G : X → Sn are given mappings. This problem corresponds to our setting (P ) with
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H := Rm ×Rp ×Sn, G(x) := (g(x), h(x),G(x)), and K := Rm
− × {0}p ×Sn−. Note that K

is C2-cone reducible because it is a Cartesian product of C2-cone reducible sets [26].
For semidefinite programming, the Lagrange multiplier occurring in the KKT conditions

can be split as λ̄ = (µ̄, ν̄, Γ̄) with µ̄ ∈ Rm, ν̄ ∈ Rp, and Γ̄ ∈ Sn. With an obvious change
of notation, the Lagrange function now becomes

L(x, µ, ν,Γ) := f(x) + µTg(x) + νTh(x) + 〈Γ,G(x)〉,

and the KKT conditions from Definition 2.2 take on the form

L′(x̄, µ̄, ν̄, Γ̄) = 0, 0 ≤ µ̄ ⊥ g(x̄) ≤ 0, h(x̄) = 0, 0 � Γ̄ ⊥ G(x̄) � 0.

Most of the conditions in this paper such as the strict Robinson condition or the second-
order sufficient condition can be reformulated explicitly in the case of SDP. For SRC,
a characterization was essentially obtained in [25] (see also [29]). As for SOSC, the
σ-term occurring in (4) can be calculated explicitly [8], and the condition can therefore
be rewritten as

sup
(µ,ν,Γ)∈M(x̄)

{
L′′(x̄, µ, ν,Γ)(d, d)− 2

〈
Γ, (G ′(x̄)d)G(x̄)†(G ′(x̄)d)

〉}
> 0 (17)

for all d ∈ C(x̄) \ {0}, see [8, 26, 29]. Note that the functions g and h provide no
contribution to the σ-term since they represent constraints for which the corresponding
factor in the set K is polyhedral.

Theorem 5.1. Assume that (x̄, µ̄, ν̄, Γ̄) is a KKT point of the nonlinear SDP (16) sat-
isfying the SOSC (17) and SRC. Then, under the assumptions of Theorem 4.2, the
sequence {(xk, µk, νk,Γk)} generated by Algorithm 3.1 converges to (x̄, µ̄, ν̄, Γ̄), the rate of
convergence is proportional to 1/ρk, and {ρk} remains bounded.

Proof. This is a consequence of Theorem 4.2.

Note that similar results were obtained in [27]; however, the theory established therein
uses the so-called strong SOSC and constraint nondegeneracy assumptions, which are
stronger than SOSC and SRC respectively, and assumes that the multiplier λ is close to
the optimal multiplier λ̄, which follows automatically from our analysis.

For extensive numerical results on augmented Lagrangian methods for SDP, we refer
the reader to the existing literature [17, 18, 31]. We finish this section with some remarks
on the linear case. Given a linear SDP of the form

min 〈c, x〉 s.t. Ax = b, x � 0,

where c ∈ Sn, b ∈ Rm, and A : Sn → Rm is a linear operator, it is customary to apply the
augmented Lagrangian method to the dual problem [31]

max bTy s.t. A∗y − c � 0,

since this yields subproblems which are smooth, unconstrained minimization problems
on Rm. It turns out that SOSC and SRC for the dual problem are closely related to the
corresponding primal properties. In fact, assuming that the problem admits a unique
primal-dual solution pair, it can be shown that SOSC for the primal problem is equivalent
to SRC for the dual problem [31, Cor. 2.2]. By duality, this also holds with SOSC and
SRC interchanged. Hence, if both conditions hold for the primal problem, then they also
hold for the dual problem (primal-dual uniqueness follows automatically in this case).
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5.2 Second-Order Cone Programming

For second-order cone programs (SOCP), the theoretical analysis is very similar to
semidefinite programming. Throughout this section, we write w := (w0, w̄) for a generic
element in R1+m. Assume, for the sake of simplicity, that the optimization problem is
given by (P ) with K the second-order cone, i.e.

K := {(w0, w̄) ∈ R1+m : w0 ≥ ‖w̄‖2},

where ‖ · ‖2 is the Euclidean norm. The analysis below can easily be extended to the
case where additional inequality, equality, or multiple second-order cone constraints are
present. In any case, the resulting set K is C2-cone reducible [26].

As in the case of semidefinite programming, the second-order sufficient condition from
Definition 2.6 can be reformulated to take into account the particular structure of the
problem. The resulting condition is given by

sup
λ∈M(x̄)

{
L′′(x̄, λ)(d, d) + dTH(x̄, λ)d

}
> 0 (18)

for all d ∈ C(x̄) \ {0}, where

H(x̄, λ) := − λ0

G0(x̄)
G′(x̄)T

(
1 0
0 −Im

)
G′(x̄)

if G(x̄) ∈ bd(K) \ {0} and H(x̄, λ) := 0 otherwise, see [7, 20, 30].

Theorem 5.2. Assume that (x̄, λ̄) is a KKT point of the nonlinear SOCP (16) satisfying
the SOSC (18) and SRC. Then, under the assumptions of Theorem 4.2, the sequence
{(xk, λk)} generated by Algorithm 3.1 converges to (x̄, λ̄), the rate of convergence is
proportional to 1/ρk, and {ρk} remains bounded.

Proof. This is a consequence of Theorem 4.2.

As with semidefinite programming, similar results to Theorem 5.2 have been obtained in
the literature [19, 20]. However, both these papers use assumptions which are stronger
than ours, in particular the constraint nondegeneracy assumption together with either
SOSC and strict complementarity or the so-called strong SOSC. Moreover, the analysis in
both papers assumes that λ is close to λ̄, which follows automatically in our case.

6 Final Remarks

We have shown that the augmented Lagrangian method converges locally for C2-cone
reducible constrained optimization problems under the second-order sufficient condition
and a strict version of the Robinson constraint qualification. Notably, our analysis does
not require any assumptions on the initial multiplier estimate.

Moreover, we have shown that the aforementioned assumptions guarantee a primal-dual
error bound on the KKT system which does not require any (a-priori) proximity of the
multiplier to the optimal one.
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