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CHARACTERIZING AND TESTING
SUBDIFFERENTIAL REGULARITY FOR

PIECEWISE SMOOTH OBJECTIVE FUNCTIONS

ANDREA WALTHER1 AND ANDREAS GRIEWANK2

Abstract. Functions defined by evaluation programs involving smooth elementals and abso-
lute values as well as the max- and min-operator are piecewise smooth. Using piecewise lineariza-
tion we derived in [7] for this class of nonsmooth functions ϕ first and second order conditions for
local optimality (MIN). They are necessary and sufficient, respectively. These generalizations of
the classical KKT and SSC theory assumed that the given representation of ϕ satisfies the Linear-
Independence-Kink-Qualification (LIKQ). In this paper we relax LIKQ to the Mangasarin-Fromovitz-
Kink-Qualification (MFKQ) and develop a constructive condition for a local convexity concept, i.e.,
the convexity of the local piecewise linearization on a neighborhood. As a consequence we show that
this first order convexity (FOC) is always required by subdifferential regularity (REG) as defined in
[20], and is even equivalent to it under MFKQ. Whereas it was observed in [7] that testing for MIN
is polynomial under LIKQ, we show here that even under this strong kink qualification, testing for
FOC and thus REG is co-NP complete. We conjecture that this is also true for testing MFKQ itself.

Keywords: Subdifferential Regularity, First-Order-Convexity, Clarke
Gradient, Linear-Independence-Kink-Qualification, Mordukhovich Gra-
dient, Mangasarin-Fromovitz-Kink-Qualification, Abs-Normal-Form

1. Introduction and Motivation. We view this paper as part of an ongoing
effort to make the concepts and results of the extensive literature on nonsmooth analy-
sis accessible and implementable for computational practitioners. Like in algorithmic,
or automatic, differentiation [6], the key assumption facilitating this process is that
the problem functions of interest are given by evaluation programs whose individual
instructions can be easily analyzed and approximated. In the classical smooth case all
of them are assumed to be differentiable near the evaluation points of interest. By al-
lowing piecewise linear elemental functions like abs, min, and max as part of the mix,
we arrive at a subclass of piecewise smooth functions that can still be analyzed by
slight extensions of automatic differentiation tools. However, the resulting extended
program does not produce gradients, Jacobians, Hessians, or Taylor coefficients, but
represent a procedure for evaluating ∆ϕ(x; ∆x), an (incremental) piecewise lineariza-
tion of ϕ developed at x and evaluated at ∆x. The construction of this approximation
is given in [4], where we also show that

ϕ(x+ ∆x)− ϕ(x) = ∆ϕ(x; ∆x) +O(‖∆x‖2) .(1)

In contrast to directional differentiation, the order term in this generalized Taylor
expansion is uniform, i.e., does not depend on the direction ∆x/‖∆x‖. Since the
discrepancy ϕ(x+ ∆x)− ϕ(x)−∆ϕ(x; ∆x) is of second order it possesses at ∆x = 0
a derivative that vanishes. However, for fixed x the discrepancy function is generally
not differentiable with respect to ∆x in a neighborhood of the origin. in other words
we do not have strong Bouligand differentiability as discussed in [21].

Nevertheless, it is not surprising that quite a few local properties of ϕ(x) near
some x are inherited by ∆ϕ(x; ∆x) near the origin ∆x = 0. It is not very difficult to
check that this is in particular true for the properties:

Local minimality (MIN) and Local convexity (CON)
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Note that the relation between the two sides of (1) and hence the above implications
are not symmetric. The right hand side ∆ϕ(x; ∆x) is by construction piecewise linear,
whereas the left hand side belongs to our class of nonsmooth functions. For example
this means that ∆ϕ(x; ∆x) has a sharp minimum,i.e., locally ∆ϕ(x∗; ∆x) ≥ c‖x−x∗‖
if and only if it has a strict minimum in that ∆ϕ(x∗; ∆x) > 0 for small ∆x 6= 0. In the
companion paper [8] we explore these optimality conditions and the resulting rates of
convergence for successive piecewise linearization methods. Since ∆ϕ(x; ∆x) is a first
order approximation of ϕ(x), we will refer to its properties as First Order Minimality
(FOM) and First Order Convexity (FOC). They are necessary conditions for ϕ to have
the corresponding properties MIN and CON. Conversely, some properties of ϕ(x) can
be deduced from those of its linearization ∆ϕ(x; ∆x) at the origin, provided certain
additional assumptions are satisfied.

As we will see some of these assumptions are kink qualifications that exclude
degeneracies of first derivative matrices, and others are curvature conditions that
require second derivative matrices to be definite on certain subspaces. Of course
the whole point of the exercise is to characterize these extra assumptions and the
properties of ∆ϕ(x; ∆x) itself constructively by linear algebra tests on the so-called
abs-normal form. In its abs-normal form, ∆ϕ(x; ∆x) is represented by several real
matrices and vectors, which can be analyzed by various linear algebra procedures. In
[7] it was shown how for a scalar-valued function ϕ(x) this information can be used
to characterize local optimality, i.e., property MIN in terms of generalized Karush-
Kuhn-Tucker (KKT) and Positive Curvature Conditions. This optimality analysis
was based on a generalization of the Linear-Independence-Constraint-Qualification
(LICQ) called Linear-Independence-Kink-Qualification (LIKQ), which is generic [5],
i.e., always satisfiable by arbitrary small perturbations of a given abs-normal form. Of
course, some of these perturbations may alter inherent structural properties of a given
problem, which is why we wish to relax LIKQ, just like LICQ in the smooth, con-
strained case. There, a popular relaxation is the Mangasarin-Formovitz-Constraint-
Qualification (MFCQ), which naturally generalizes to the Mangasarin-Fromovitz-
Kink-Qualification (MFKQ).

Our main thrust here is to characterize subdifferential regularity (REG) for our
class of nonsmooth functions. This well known nonsmoothness property is a necessary
condition for partial smoothness [13], which yields in turn a special case of the V U
decomposition [16]. As it turns out REG at a point x always requires FOC, i.e.,
convexity of the piecewise linearization ∆ϕ(x; ∆x) with respect to ∆x near the origin
∆x = 0. Therefore, we refer to REG also as a convexity property, although it strictly
speaking does not require proper convexity. This can be seen from the simple example
ϕ(x) = |sin(x)|, which is not CON but FOC even at x = 0, where ∆ϕ(0; ∆x) = |∆x|
as detailed later in Example 2.4. An immediate consequence of FOC is First Order
Support, i.e., the existence of a supporting hyperplane g of ∆ϕ(x; ∆x) at ∆x = 0 such
that the shifted function (∆ϕ(x; ∆x)− g>∆x) has 0 as a local minimizer. From the
Taylor expansion above we see immediately that this is equivalent to g being a regular
subgradient of f at x as defined in [20]. The existence of a supporting hyperplane at
a given point can also be interpreted as multiphase stability in the following sense:

Lemma 1.1. A continuous function ϕ : Rn 7→ R possesses a regular subgradient g
at a point x ∈ Rn if and only if the problem

min

n∑
j=0

µjϕ(xj) s.t.

n∑
j=0

µjxj = x and

n∑
j=0

µj = 1(2)
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for µj ∈ R, µj ≥ 0, and xj ∈ Rn, j ∈ {1, . . . , n}, has the local minimizers xj = x for
all j.

Proof. It is easy to see that the above minimization problem is for any ρ > 0
weakly dual to the maximization problem

convρ(ϕ)(x) ≡ max g>x s.t. g>x̃ ≤ ϕ(x̃) for x̃ ∈ Bρ(x) ,

where Bρ(x) denotes the ball with radius ρ centered at x. It is shown in [2] that there
is no duality gap, which proves the assertion.

The physical interpretation of this result is that x is a feed vector whose components
represent the (molar) concentrations of various species in a mixture, e.g., hydrocar-
bons in a crude oil. Then with ϕ(x) denoting the Gibbs free energy the mixture can
split up into various submixtures called phases µjxj in order to minimize the resulting
mixed energy as target function of Eq. (2). Locally this can only yield a reduction
compared to the feed energy ϕ(x) if there is no supporting hyperplane at x (see, e.g.,
[15, 18]). On the other hand the existence of such a hyperplane immediately implies
the stability of the feed x as its own single phase.

The logical relations between the various properties defined above are given in
the following implication chain:

CON =⇒ REG
=⇒
⇐=

(MFKQ)

FOC

Figure 1. Relations between convexity properties of ϕ

The one-way implication at the beginning follows directly from the definitions.
The relation of interest is the near equivalence between regularity (REG) and first
order convexity (FOC). Here, we need the Mangasarin-Fromovitz-Kink-Qualification
(MFKQ) for the more difficult, converse implication.

The paper is organized as follows. In Section 2, first we introduce the represen-
tation of piecewise smooth functions in abs-normal form. Furthermore, we give five
different example functions that will be used to illustrate the concepts and results
throughout the paper. Then, we introduce the two kink qualifications LIKQ and the
weaker MFKQ. In Section 3 we first review some classical concepts of nonsmooth
analysis and then prove the key result of this paper, namely the near equivalence
between REG and FOC. Section 4 discusses the computational complexity of testing
for convexity. The paper concludes with a summary and outlook in Section 5.

2. Kink Qualifications for Nonsmooth Problems. For the definition of kink
qualifications, we consider the class of objective functions that are defined as composi-
tions of smooth elemental functions and the absolute value function abs(x) = |x|. This
includes also max(x, y), min(x, y), and the positive part function max(0, x), which can
be reformulated in terms of an absolute value. The inclusion of the Euclidean norm as
elementary function would lead to objectives that are still Lipschitz continuous and
lexicographically differentiable [19] but no longer piecewise smooth [21].

The Abs-normal Form. To derive the abs-normal form for the class of piecewise
smooth functions considered here, we define and number all arguments of absolute
value evaluations successively as switching variables zi for i = 1 . . . s, where we assume
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throughout that zj can only influence zi if j < i. Hence, one obtains the components
of z = z(x) one by one as piecewise smooth Lipschitz continuous functions of x.
Then, we formulate the calculation of all switching variables as equality constraints.
Furthermore, we introduce the vector of the absolute values of the switching variables
as extra argument of the then smooth target function f and the equality constraints
F . Thus, we obtain a piecewise smooth representation of y = ϕ(x) in the so-called
abs-normal form

z = F (x, |z|) ,(3)

y = f(x, |z|),(4)

where for D ⊂ Rn open F : D ×Rs+ 7→ Rs and f : D ×Rs+ 7→ R with D ×Rs+ ⊂ Rn+s.
Sometimes, we write

ϕ(x) ≡ f(x, |z(x)|)

to denote the objective directly in terms of the argument vector x only. In this paper,
we are mostly interested in the case where the nonlinear elementals are all at least
once continuously differentiable yielding the following function class:

Definition 2.1. For any d ∈ N and D ⊂ Rn, the set of functions ϕ : D 7→ R
defined by an abs-normal form (3)-(4) with f, F ∈ Cd(D×Rs+) is denoted by Cdabs(D).
Since F and f are smooth in the respective arguments, the derivatives

L ≡ ∂

∂|z|
F (x, |z|) ∈ Rs×s, Z ≡ ∂

∂x
F (x, |z|) ∈ Rs×n ,

a ≡ ∂

∂x
f(x, |z|) ∈ Rn, and b ≡ ∂

∂|z|
f(x, |z|) ∈ Rs .

(5)

are well defined on D×Rs+, when interpreting the symbol |z| ∈ Rs+ as a (nonnegative)
variable vector.

Due to our assumption on the numbering of the switching variables, the derivative
matrix L is strictly lower triangular. Note that a mathematical map ϕ ∈ Cdabs(D) may
have different abs-normal decompositions as shown below for the example proposed
by Hiriart-Urruty and Lemaréchal. The properties occurring in Fig. 1 are independent
of the particular representation, except for the kink qualifications LIKQ and MFKQ
introduced below.

The combinatorial aspect of the evaluation can be expressed in terms of the
signature vector σ(x) ≡ sgn(z(x)) and the corresponding diagonal matrix Σ(x) =
diag(σ(x)). Throughout the paper, we will write z = z(x), σ = σ(x), and Σ = Σ(x)
for brevity if the dependence on the argument x is clear. However, we will also
consider frequently the situation where σ varies over all possibilities {−1, 1}s. As
observed already in [9] also for the nonlinear case, the limiting gradients as defined
later in Def. 3.2 of ϕ in the vicinity of x are given by

(6) g>σ ≡ a> + b>Σ(I − LΣ)−1Z = a> + b>(Σ− L)−1Z ,

where the last equality only holds if σ ∈ {−1, 1}s so that Σ is nonsingular and thus
its own inverse. The signature vectors define the domains

Sσ = {x ∈ Rn | sgn(z(x)) = σ}(7)
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as a decomposition of the argument space, where one has

ϕ(x) = ϕσ(x) for all x ∈ Sσ(8)

and ϕσ is one of finitely many differentiable selection functions in the sense of Scholtes
[21]. At a given point x, the nonsmoothness of the target function ϕ is caused by the
so-called active switching variables zi(x) = 0 for 1 ≤ i ≤ s. We collect them in the
active switch set

α = α(x) ≡ {1 ≤ i ≤ s |σi(x) = sgn(zi(x)) = 0} of size |α(x)| = s− |σ(x)| ,

with |σ| ≡ ‖σ‖1 and |α| defined correspondingly. Later on, we will distinguish two
different scenarios for the activity pattern α:

Definition 2.2 (Localization). Let ϕ : Rn → R be a Cdabs function. If all
switching variables vanish for a given point x, i.e.,

z = z(x) = 0 and α(x) = {1, . . . , s} ,

we say that the switching and also the function ϕ is localized at x. Otherwise, the
switching and also the function itself is nonlocalized.

Note that for each fixed σ ∈ {−1, 1}s and corresponding Σ = diag(σ) the system

z = F (x,Σz)

is Cd(D × Rs+) and has by the implicit function theorem a locally unique solution
zσ = zσ(x) with the well defined Jacobian

(9) ∇zσ ≡ ∂

∂x
zσ = (I − LΣ)−1Z ∈ Rs×n,

where Z and L are evaluated at (x, zσ(x)).

Example Problems. To illustrate the kink qualifications and the regularity
results derived in this paper, we consider the following five examples.

Example 2.3 (HUL). Hiriart-Urruty and Lemaréchal highlighted the piecewise
linear, convex function ϕ : R2 → R,

ϕ(x1, x2) = max{−100, 3x1 − 2x2, 2x1 − 5x2, 3x1 + 2x2, 2x1 + 5x2} .(10)

To derive an abs-normal form for this function one could either use the straight forward
formulation

ϕ(x) = max{max{max{max{y0(x), y1(x)}, y2(x)}, y3(x)}, y4(x)}(11)

with y0(x) = −100, y1(x) = 3x1 − 2x2, y2(x) = 2x1 − 5x2,

y3(x) = 3x1 + 2x2, y4(x) = 2x1 + 5x2,

yielding four switching variables. Alternatively, one may use the mathematically
equivalent description

ϕ(x) = max{max{−100, 2x1 + 5|x2|}, 3x1 + 2|x2|}(12)

that requires only three switching variables. As we will see later, the two representa-
tions have quite different properties.
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Figure 2. Half Pipe Example and Gradient Cube Example for n = 2

Example 2.4 (Abs-sin). As a simple nonconvex example in one dimension, we
will employ

ϕ : R 7→ R, ϕ(x) = |sin(x)| .(13)

Example 2.5 (Half pipe). The function

ϕ : R2 7→ R, ϕ(x1, x2) = max(x2
2 −max(x1, 0), 0)(14)

=

 x2
2 if x1 ≤ 0
x2

2 − x1 if 0 ≤ x1 ≤ x2
2

0 if 0 ≤ x2
2 ≤ x1

,

is also nonconvex as illustrated on the left hand side of Fig. 2.

Example 2.6 (Gradient cube). Here, we consider the gradient cube example as
introduced in [7] for n = 2 defined by

ϕ : R2 7→ R, ϕ(x1, x2) = |x2 − |x1||+ ε|x1|,(15)

=


ϕ1(x1, x2) = x2 − x1 + εx1 if x2 ≥ x1 ≥ 0
ϕ2(x1, x2) = x2 + x1 − εx1 if x2 ≥ −x1, x1 < 0
ϕ3(x1, x2) =−x2 − x1 − εx1 if x2 < −x1, x1 < 0
ϕ4(x1, x2) =−x2 + x1 + εx1 if x1 > x2, x1 ≥ 0

.

This function is illustrated on the right hand side of Fig. 2.

For piecewise linear functions, local convexity is of course neither sufficient nor
necessary for local optimality. The second observation is borne out by an inverted
lemon squeezer, which has a unique global minimum at the center but is of course not
convex as illustrated by the next example function:

Example 2.7 (Lemon squeezer). For q ∈ N ∪ {0} and ε ∈ R given, we define the
function

ϕ : R2 7→ R, ϕ(x) =

q∑
i=0

(y2i(x) + εy2i+1(x)) with(16)

y0(x) = |x1|+ |x2|, y1(x) = |x1 + x2|+ |x1 − x2|
yi(x) = |x1 + i x2|+ |x1 − i x2|+ |x1 + x2/i|+ |x1 − x2/i|, i > 2 ,

6
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Figure 3. Function of Eq. (16) with ε = −0.5

which is illustrated on the left hand side of Fig. 3 for q = 1. Hence, ϕ has s = 8q + 4
switching variables yielding 28q+4 definite signature vectors. The solid lines on the
right hand side of Fig. 3 represent the kinks for q = 0, the dashed lines the additional
kinks for q = 1 and the dotted lines the additional kinks for q = 2. The numbers
i ∈ {1, . . . , 24} in the circles identify the corresponding selection function ϕi for later
use. As can be seen, for q = 1 only 24 definite signature vectors out of the 4096
possibilities belong to nonempty subdomains of the argument space. For q = 2 the
effect is even more pronounced with only 40 definite signature vectors out of 1 048 576
possibilities that have corresponding nonempty subdomains in the argument space.
Obviously, all 8q + 4 > 2 = n switching variables are active at the origin 0 ∈ R2.

Kink Qualifications. We will now examine under what conditions the sets Sσ
as defined in Eq. (7) satisfy the classical constraint qualifications LICQ or MFCQ in
some neighborhood of a given point x̊ with signature σ̊ = σ(̊x). By continuity of z(x)
it follows immediately that all nonvanishing components σ̊j 6= 0 force the components
σj of σ at points in the neighborhood to have the same sign. In other words, for some
ball Bρ about x̊ with radius ρ > 0 the intersection Bρ ∩ Sσ can only be nonempty if

σ � σ̊ in that σj σ̊j ≥ σ̊2
j for j = 1, . . . , s .

This partial ordering of the signature vectors was already used in [9]. Like in the
piecewise linear case we can find that the closure S̄σ of any Sσ is contained in the
extended closure

Ŝσ ≡ {x ∈ Rn : σ � σ(x)} ⊃ S̄σ .(17)

Since ≺ is a partial ordering we have the monotonicity property

σ̃ � σ =⇒ Ŝσ̃ ⊂ Ŝσ .

According to this monotonicity property, one has Ŝσ̃ ⊂ Ŝσ for a σ being definite, i.e.,
0 6= σi for all i = 1, . . . , s, and σ̃ � σ. For this reason, from now on we can consider
only maximal Ŝσ, which are characterized by σ being a definite signature vector, for
the examination of convexity. We will abbreviate this definiteness by 0 6∈ σ and note
that then Σ = Σ−1 is an involutory matrix.
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In particular, we have near x̊ the local decomposition property

B̄ρ =
⋃

0 6∈σ�σ̊

(
Ŝσ ∩ B̄ρ

)
.

Using the smooth vector function zσ as defined above we can for definite σ describe
the Ŝσ in the usual representation of constraints as

Ŝσ ≡ {x ∈ Rn : σi z
σ
i (x) ≥ 0 for i = 1 . . . s} .(18)

As observed in [7, Sec. 3.2] the point x̊ is a local minimizer of ϕ(x) if and only if it is
a local minimizer of each one of the branch problems

min fσ(x) ≡ f(x,Σzσ(x)) s.t. x ∈ Ŝσ with 0 6∈ σ � σ̊ .(19)

It is natural to look at constraint qualifications for these problems, which will
be useful for the regularity analysis in the Section 3. For any such definite σ the
constraints that are active at x̊ have the same indices i ∈ α̊ = α(̊x), but the corre-
sponding constraints σi z

σ
i (x) ≥ 0 are not the same since σ differs. The Jacobian of

all constraints is given according to Eq. (9) by

(20) Σ∇zσ = Σ(I − LΣ)−1Z = (Σ− L)−1Z ∈ Rs×n ,

where we have used the invertibility of Σ = Σ−1 due to the definiteness of σ. One can
show, that the Jacobian of the active constraints only has a very similar structure:

Lemma 2.8 (Jacobian of active constraints). Consider for a definite signature
vector σ ∈ {−1, 1}s the branch problem (19). For x̊ ∈ Rn, the Jacobian of the
constraints that are active at x̊ is given by

Jσ ≡ (σi∇zσi )i∈α̊ = Σ̌(I − ĽΣ̌)−1Ž = (Σ̌− Ľ)−1Ž ∈ R|α̊|×n(21)

with matrices Ž ∈ R|α̊|×n, Σ̌ ∈ diag{−1, 1}|α̊| diagonal, and Ľ ∈ R|α̊|×|α̊| strictly
lower triangular.

Proof. Since σ � σ̊, we have

Σ = Σ̊ + Γ with Σ̊ Γ = 0

for a diagonal matrix Γ with diag(Γ) ∈ {−1, 0, 1}s. This yields

Γ∇zσ = Γ(I − LΣ̊− LΓ)−1Z = Γ[I − (I − LΣ̊)−1LΓ]−1(I − LΣ̊)−1Z .

Defining

L̊ ≡ (I − LΣ̊)−1L and Z̊ ≡ (I − LΣ̊)−1Z ,(22)

and P̊ ≡ |Γ| to zero out the inactive constraints, we obtain with Γ = P̊Γ = ΓP̊ and
P̊ = P̊ P̊ that

Γ∇zσ = ΓP̊ [I − L̊Γ]−1Z̊ = ΓP̊ [I − P̊ L̊P̊Γ]−1P̊ Z̊ = P̊Γ[I − P̊ L̊P̊ P̊Γ]−1P̊ Z̊ ,

where the next to last identity follows from the Neumann series. Extracting the
submatrices

Ž = (P̊ Z̊)i∈α̊,1≤j≤n ∈ R|α̊|×n, Σ̌ = (P̊Γ)i∈α̊,j∈α̊ ∈ {−1, 1}|α̊|×|α̊|, and

Ľ = (P̊ L̊P̊ )i∈α̊,j∈α̊ ∈ R|α̊|×|α̊| ,
(23)

8
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one obtains for the Jacobian of the active constraints the reduced identity

Jσ ≡ (σi∇zσi )i∈α̊ = Σ̌(I − ĽΣ̌)−1Ž = (Σ̌− Ľ)−1Ž ∈ R|α̊|×n .

as stated in the assertion.

This relation was also derived in [7] for nonlocalized points by eliminating the zi with
i 6∈ α̊ using the implicit function theorem. Since |det(Σ̌ − Ľ)| = 1, we obtain the
following result

Corollary 2.9 (Uniformity of rank and nullspace). The active Jacobian Jσ
has for all σ � σ̊ the same rank r ≤ min(|α̊|, n) and the same nullspace as Ž, which
is spanned by some orthogonal matrix Ǔ ∈ Rn×(n−r) such that ŽǓ = 0 ∈ R|α̊|×(n−r).
All Jacobian Jσ have full rank r = |α̊| ≤ n if and only if the |α̊| ×n matrix Ž has full
rank α̊ ≤ n. Hence, at x̊ either all branch problems satisfy LICQ or none of them.
Otherwise, if the columns of Ž are linearly independent such that r = n < |α̊| then
the nullspace of Jσ contains only the null vector 0 ∈ Rn for all σ � σ̊.

Due to this uniformity the constraint property LICQ is easy to check in polynomial
time. In contrast, the Mangasarin-Fromovitz-Constraint-Qualification [14] for some
σ � σ̊ requires that

(24) Jσv = (Σ̌− Ľ)−1Žv > 0

has some solution v ∈ Rn. There is also the possibility that Jσv ≥ 0 has only the
trivial solution v = 0, in which case the branch problem is trivial, since Sσ is only a
singleton, and can be excluded from further consideration. The latter possibility is
not of much interest in the smooth case, but here it is quite likely to arise for certain
signatures σ. Geometrically, this means that if the linear subspace

Rσ ≡ {(Σ̌− Ľ)−1Žv : v ∈ Rn}

intersects the positive orthant of R|α̊| in its interior then we have MFCQ and if it
intersects only at the origin we have the trivial case. This is sketched in Fig. 4, where
MFCQ holds for the signature vectors σ and σ̃ but is violated for the signature vector
σ̄. Furthermore, σ̂ represents the trivial case.

Dual formulation. By the usual duality relations for constraints of linear pro-
grams, MFCQ is violated for a particular σ � σ̊ if and only if

(25) µ>Jσ = µ>(Σ̌− Ľ)−1Ž = 0 ∈ Rn for some 0 6= µ ≥ 0 ∈ R|α̊| ,
9



since these are the constraints dual to the original MFCQ conditions

Jσv = (Σ̌− Ľ)−1Žv > 0 ∈ R|α̊| for some 0 6= v ∈ Rn .

The convex combination (25) implies for any objective the Fritz John condition

µ0gσ (̊x) =
∑
i∈α̊

µiσ̊i∇zσ (̊x) with µ0 = 0 ,

which is necessary but in no way sufficient for the optimality of ϕσ on the degenerate
subdomain Ŝσ.

MFCQ on example. The following simple example shows that MFCQ may
hold for one definite σ but not for another. Consider the localized case

z1 = x1, z2 = x2
2 − 1

2 (x1 + |z1|), x̊ = 0 ∈ R2 ,(26)

i.e., n = 2, s = 2, and

Ž = Z =

[
1 0
− 1

2 0

]
Ľ = L =

[
0 0
− 1

2 0

]
.

Then we have σ̊ = (0, 0)> and for σ ∈ {−1, 1}2

Jσ =

[
σ1 0
1
2 σ2

]−1 [
1 0
1
2 0

]
=

[
σ1 0

− 1
2σ1σ2 σ2

] [
1 0
− 1

2 0

]
=

[
σ1 0

− 1
2σ2(σ1 + 1) 0

]
.

Hence, we get the active Jacobians

J(1,1) =

[
1 0
−1 0

]
, J(1,−1) =

[
1 0
1 0

]
, J(−1,1) = J(−1,−1) =

[
−1 0
0 0

]
.

The corresponding range R(1,1) = {(v1,−v1)> | (v1, v2)> ∈ R2} intersects the positive

orthant only at the origin but for all (v1, v2)> ∈ R2 with v1 = 0 and v2 ∈ R. Hence,
MFCQ is violated for the subdomain

Ŝ(1,1) = {x ∈ R2 | x1 ≥ 0 and x2
2 ≥ x1} .

The corresponding vectors for the dual criterion are given by the left null vector
0 6= µ = (µ̃, µ̃)> ∈ R2, µ̃ > 0, confirming the violation of MFCQ. In contrast to that
the range R(1,−1) = {(v1, v1)> | (v1, v2)> ∈ R2} intersects the interior of the positive

orthant for all (v1, v2)> ∈ R2 with v1 > 0. It follows that MFCQ is satisfied on the
subdomain

Ŝ(1,−1) = {x ∈ R2 | x1 ≥ 0 and x2
2 ≤ x1} .

For the remaining definite signatures, one obtains Ŝ(−1,1) = {x ∈ R2 | x1 ≤ 0} and

the degenerate polyhedron Ŝ(−1,−1) = {x ∈ R2 | x1 ≤ 0, x2 = 0} with

R(−1,1) = R(−1,−1) = {(−v1, 0) | v1 ∈ R} .

It follows that they intersect the positive orthant only on its boundary for v1 ≤ 0.
This can be also seen from the nonzero left null vectors 0 6= µ = (0, µ2)> ∈ R2, µ2 > 0,
confirming the violation of MFCQ. As stated in Cor. 2.9, one has

rank(J(1,1)) = rank(J(1,−1)) = rank(J(−1,−)) = rank(J(−1,−1)) = 1

10



and all Jacobians have the same nullspace with the basis u = (0, 1)>.
If Ž has full row rank, and thus represents a surjective mapping from Rn onto

R|α̊|, then the criterion given by Eq. (24) is always satisfied. Other than that we do
not know of any simple condition on Ž and possibly Ľ that would guarantee that all
Jσ and thus the corresponding Ŝσ satisfy MFCQ. For this reason, we define as an
extension of the definition of LIKQ in [7]:

Definition 2.10 (LIKQ and MFKQ). For ϕ ∈ C1
abs(D) according to Defini-

tion 2.1 consider the reduced quantities Ž and Ľ as defined in Lemma 2.8 at a point
x̊. Then we say that LIKQ is satisfied if Ž ∈ R|α̊|×n has full rank |α̊|. More generally,
we say that MFKQ holds if for all σ � σ̊ the vector inequality Jσv > 0 is solvable
for some v ∈ Rn unless the problem is trivial in that Jσv ≥ 0 has only the solution
v = 0 ∈ Rn.

Similar to the situation for smooth optimization, it follows easily that LIKQ implies
MFKQ. In [7] we showed that the two nonsmooth versions of the chained Rosenbrock
function suggested according to [10] by Nesterov satisfy LIKQ everywhere, and that
it holds for their natural abs-normal representation, i.e., without any modification or
preprocessing. That allowed the complete characterization of the unique minimizer,
excluding in particular the exponential number of stationary points that may entrap
BFGS and other (generalized) gradient based solvers. An optimization algorithm that
makes this distinction constructively is currently under development.

While LIKQ just requires a rank determination for Ž, we have so far not found
a way to avoid the combinatorial effort of testing the weaker condition MFKQ for
each branch problem defined by σ̂ � σ̊. Indeed, we conjecture that MFKQ can not
be tested in polynomial time.

Lemma 2.11 (Kink qualifications for example problems). With respect to the kink
qualifications LIKQ and MFKQ as introduced above, one obtains the following results
at x̊ = 0 ∈ R and x̊ = 0 ∈ R2, respectively:

HUL
Eq. (11) Eq. (12) abs-sin half pipe gradient cube lemon squeezer

LIKQ � X X � X �
MFKQ X X X � X X

Proof. For the HUL example and the representation given by Eq. (11), one has
for x̊ = 0 ∈ R2 that s = 4, n = 2, and α̊ = {2, 3, 4}. Therefore, LIKQ is obviously
violated, since three out of four switching variables are active, see Fig. 5a. In the
neighborhood of x̊, there are 6 polyhedra, i.e., less than 2s, and they are all open. It
also follows immediately from Fig. 5a that MFKQ holds, since ϕ(x) is already linear
and therefore the linearizations of all sets Sσ have a nonempty interior. The dashed
lines represent hidden kinks, where intermediate quantities undergo nonsmooth tran-
sitions, but the final function ϕ(x) is completely smooth. Such hidden kinks might
slow down the progress of an algorithm, but should not prevent it from functioning
properly.

For the alternative representation given by Eq. (12), one has for x̊ = 0 ∈ R2 that
s = 3 and α̊ = {1, 3} with

Z =

 0 1
2 0
2 0

 and Ž =

(
0 1
2 0

)
,

11
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Figure 5. Kink structure for different formulations of Eq. (10)

such that LIKQ holds and hence also MFKQ. One can check that indeed all points
where kinks intersect are LIKQ points, since always only two of the three switching
variables are active and their gradients are linearly independent, see Fig. 5b. Here,
the dotted lines represent possibly active switches that occur in the theoretical formu-
lation. However, they never can be actually active due to contradicting requirements
on x1 and x2.

For the abs-sin example, one has s = 1, z1 = sin(x),

∇zσα(0) = ∇zσ(0) = cos(0) = 1, L = 0, a = 0, b = 1 ,

such that LIKQ holds, which implies also MFKQ.
For the half pipe example, the representation

ϕ(x1, x2) = 1
2

(
x2

2 − 1
2 (x1 + |x1|) +

∣∣x2
2 − 1

2 (x1 + |x1|)
∣∣)

defines the switching variables

z1 = x1 and z2 = x2
2 − 1

2 (x1 + |z1|)

as already considered in Eq. (26), which means that at x̊ = 0

Ž = Z =

[
1 0
− 1

2 0

]
, Ľ = L =

[
0 0
− 1

2 0

]
, a = (−0.25 0)>, and b = (−0.25 0.5)> .

This implies immediately that we do not have LIKQ since Z does not have full row
rank. As shown already above, also MFKQ is violated for these matrices, since MFCQ
cannot hold for σ = (1, 1).

For the gradient cube example, Eq. (15) yields the switching variables

z1 = x1 and z2 = x2 − |z1| ,

so that

Ž = Z = I, Ľ = L =

[
0 0
−1 0

]
, a = (0 0)>, and b = (ε 1)> .

for all x ∈ R2. Hence, LIKQ does hold at x̊ implying also MFKQ.

12



Finally, one obtains for the lemon squeezer example the s = 8q + 4 switching
variables

z1 = x1, z2 = x2, z3 = x1 + x2, z4 = x1 − x2,

z4i+1 = x1 + i x2, z4i+2 = x1 − i x2, z4i+3 = x1 + x2/i, z4i+4 = x1 − x2/i

for i = 1, . . . , 2q. Hence,

Ž = Z =

(
1 0 1 1 · · · 1 1 1 1 · · ·
0 1 1 −1 · · · i −i 1/i −1/i · · ·

)>
∈ R(8q+4)×2,

a = 0, and b = (1, 1, ε, ε, 1, 1, 1, 1, , ε, ε, ε, ε, . . .) ,

and obviously LIKQ can not hold a x̊. Since L = 0 ∈ Rs×s, one has Jσ = Σ−1Ž = ΣŽ.
Since σ̊ = 0 ∈ Rs, MFKQ requires that either Jσv > 0 is solvable for some v ∈ R2

or Jσv ≥ 0 has only the trivial solution for all Σ ∈ {−1, 1}s. The strict inequality
Jσv > 0 yields the inequalities

σ1v1 > 0, σ2v2 > 0, σ3(v1 + v2) > 0, σ4(v1 − v2) > 0

σ4i+1(v1 + iv2) > 0, σ4i+2(v1 − iv2) > 0,

σ4i+3(v1 + v2/i) > 0, σ4i+4(v1 − v2/i) > 0 for i = 1, . . . , 2q .

Therefore, either one can find for a given Σ values of v1 and v2 such that all inequalities
are fulfilled or there are contradicting strict inequalities yielding v = 0 ∈ Rs as the
only solution of Jσv ≥ 0. It follows that MFKQ holds at x̊ = 0 ∈ R2 for all q ∈ N.

As can be seen from the HUL example, the representation of a function may have a
considerable influence on the kink qualifications. To avoid that LIKQ is violated one
should try to introduce as few kinks as possible.

3. Convexity Conditions. Smooth optimality conditions for local minima usu-
ally combine a stationarity condition with a convexity condition. Even in the uncon-
strained smooth but singular case, functions need not be convex in the vicinity of
minimizers, e.g.,

ϕ(x1, x2) ≡ x2
2 − 2x2x

2
1 + εx4

1 = (x2 − x2
1)2 + (ε− 1)x4

1 for ε > 1 .

Taking the root
√
ϕ to eliminate the singularity of the Hessian one obtains a nons-

mooth problem that is still nonconvex. In some applications like multiphase equilibria
of mixed fluids lack of convexity may lead to the instability of single phase equilibria
as discussed in the introduction. Therefore we will examine conditions for convexity
in the vicinity of a given point, irrespective of whether the point is even stationary or
not, later in this section in more detail. Such a verification of convexity is of interest
not only for optimality but for example also for computer graphics. For a different
class of piecewise defined functions, such convexity tests were defined for example in
[1, 3]. Like for optimality, see [7] and [8], we can obtain necessary first order conditions
for convexity. We begin with a review of various established concepts for generalized
derivatives and their relation for Cdabs functions.

Some Generalized Derivatives of Cdabs Functions. One possibility is to de-
fine subdifferentials according to [17, 20]:

13



Definition 3.1 (Mordukhovich subgradients). For a function ϕ : Rn 7→ R and a
point x ∈ Rn the subderivative dϕ(x)(.) : Rn 7→ R is defined as

dϕ(x)(w) = lim inf
h↘0,w̄→w

ϕ(x+ hw̄)− ϕ(x)

h
,

and the set of regular subgradients is given by

∂̂Mϕ(x) =
{
g ∈ Rn

∣∣ 〈g, w〉 ≤ dϕ(x)(w) for all w ∈ Rn
}
.

This allows to define the set of (general) subgradients as the outer semi-continuous
envelop

∂Mϕ(x) = {g ∈ Rn
∣∣∣∃{xk}k∈N : xk → x, ϕ(xk)→ ϕ(x),

gk ∈ ∂̂Mϕ(xk), gk → g
}
.

(27)

The function ϕ(.) is called regular at x with ∂Mϕ(x) 6= ∅ if ϕ(.) is locally lower

semi-continuous at x and ∂̂Mϕ(x) = ∂Mϕ(x).

Since we consider Cdabs functions ϕ(.) throughout the whole paper, all ϕ(.) are lower
semi-continuous and ∂Mϕ(x) 6= ∅ holds everywhere. Hence, we only have to verify

∂̂Mϕ(x) = ∂Mϕ(x) to show regularity of ϕ(.) in a given point x.
Another widely used derivative concept is based on limits of classical gradients.

For this purpose, one exploits Rademacher’s theorem that guarantees that Lipschitz
continuous functions like the Cdabs functions considered in this paper are almost ev-
erywhere differentiable. Let Dϕ ⊂ D denote the set where the Cdabs function ϕ is
differentiable in the classical sense, i.e., for each x ∈ Dϕ the classical gradient ∇ϕ(x)
exists. Then one has:

Definition 3.2 (Limiting gradients and Clark subdifferential). For a locally
Lipschitz continuous function ϕ : D 7→ R and a point x ∈ D the set of limiting
gradients is given by

∂Lϕ(x) =
{
g ∈ Rn

∣∣∣∃{xk}k∈N : xk ∈ Dϕ, xk → x,∇ϕ(xk)→ g
}
.

This set is frequently also called Bouligand subdifferential. It forms the basis for the
Clarke subdifferential defined by

∂Cϕ(x) = conv
{
∂Lϕ(x)

}
.

Finally, for the Cdabs functions considered here, one can define the following rather
new derivative concept using the piecewise linearization as introduced in Eq. (1):

Definition 3.3 (Conical gradients). For a Cdabs function ϕ : D 7→ R and a point
x ∈ Rn the set of conical gradients is given by

∂Kϕ(x) =
{
g ∈ Rn |g ∈ ∂L∆x∆ϕ(x; ∆x)

∣∣
0

}
.

These conical gradients and their generalization conical Jacobians are for example
considered in [11, 12]. For the elements g ∈ ∂Kϕ(x), there must exist a signature
vector σ ∈ {−1, 0, 1}s with g = gσ as defined in Eq. (6) such that the tangent cone of
the coincidence set {x ∈ Rn |ϕ(x) = ϕσ(x)} at x̊ has a nonempty interior, see [4].
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Example 3.4 (Generalized derivatives for the abs-sin example). The function
introduced in Eq. (13) is not differentiable in the classical sense at x̊ = 0 ∈ R. For
the other derivative concepts, one obtains

dϕ(0)(w) = |w| ⇒ ∂̂Mϕ(0) = [−1, 1] = ∂Mϕ(0) ,

∂Lϕ(0) = {−1, 1} ⇒ ∂Cϕ(0) = [−1, 1] .

The linearization of ϕ(.) at x̊ = 0 is given by ∆ϕ(0; ∆x) = |∆x|, which is a convex
function despite the fact that ϕ(.) itself is not convex at x̊ = 0. It follows from this
linearization that

∂L∆ϕ(0; 0) = {−1, 1} = ∂Kϕ(0) .

As one can see, for this example, one obtains the inclusions

∂Kϕ(0) ( ∂̂Mϕ(0) = ∂Mϕ(0) and ∂Kϕ(0) = ∂Lϕ(0) ( ∂Cϕ(0) .

Example 3.5 (Generalized derivatives for the half pipe example). For the func-
tion given by Eq. (14), one can check that ϕ(.) is indeed differentiable in the classical
sense at x̊ = 0 ∈ R2 with ∇ϕ(0) = (0, 0). Furthermore, one finds that

∂̂Mϕ(0) = {(0, 0)} ( ∂Mϕ(0) = {(0, 0), (−1, 0)} = ∂Lϕ(0)

⇒ ∂Cϕ(0) = {(v, 0) | v ∈ [−1, 0]} .

Hence, in this case ∂̂Mϕ(0) is a proper subset of ∂Mϕ(0), such that ϕ(.) is not regular
at x̊ = 0. Since ∆ϕ(0; ∆x) ≡ 0, one has

∂Kϕ(0) = ∂L∆ϕ(0; 0) = {(0, 0)} .

This yields the inclusions

{∇ϕ(0)} = ∂̂Mϕ(0) ( ∂Mϕ(0) = ∂Lϕ(0) and ∂Kϕ(0) ( ∂Cϕ(0) .

Note, that the generalized derivatives may contain more elements than the classical
gradient since {∇ϕ(0)} is a proper subset of ∂Mϕ(0), ∂Lϕ(0), and ∂Cϕ(0).

Example 3.6 (Generalized derivatives for the gradient cube example). The func-
tion of the gradient cube example is again not differentiable at x̊ = (0, 0)> ∈ R2.
Possible candidates for a regular subgradient are given by the gradients of the selec-
tion functions ϕi(.), 1 ≤ i ≤ 4, i.e.,

g1 = (−1 + ε, 1), g2 = (1− ε, 1), g3 = (−1− ε,−1), and g4 = (1 + ε,−1) .

The property of g being a regular subgradient of ϕ(.) at the argument x̊ is equal to

lim inf
x→x̊,x 6=x̊

ϕ(x)− ϕ(̊x)− 〈g, x− x̊〉
‖x− x̊‖

≥ 0 .(28)

One can now check, that this inequality holds for g1 and g2, if ε ≥ 1. For g3 and g4,
the condition holds if ε ≥ −1. This yields

∂̂Mϕ(0) = conv {g1, g2, g3, g4} = ∂Mϕ(0) if ε ≥ 1 ,
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Figure 6. Mordukovich subdifferentials for Gradient Cube problem

since ϕ(.) is a convex function for ε ≥ 1 and then the second equality is given by
Prop. 8.12 of [20]. For ε ∈ [−1, 1) one has to examine the situation more closely, since
ϕ(.) is no longer convex. As can be seen from Fig. 2, in this case the gradients of ϕ3(.)
and ϕ4(.) define supporting hyperplanes for ϕ(.). A third supporting hyperplane is
determined by the function values for x1 = x2 > 0 and −x1 = x2 > 0 the normal
vector of which is given by g5 ≡ (0, ε). For this vector, one can again check that
Eq. (28) holds if ε ∈ [−1, 1]. It follows that

∂̂Mϕ(0) = conv {g3, g4, g5} ,

whereas Eq. (27) yields with ∂̂Mϕ(0) ⊂ ∂Mϕ(0) according to [20, Theo. 8.6]

∂Mϕ(0) = ∂̂Mϕ(0) ∪ conv {g1, g4} ∪ conv {g2, g3} .

Finally, for ε < −1, one has

∂̂Mϕ(0) = ∅ and ∂Mϕ(0) = conv {g1, g4} ∪ conv {g2, g3} .

Figure 6 illustrates the Mordukovich subdifferentials for different values of ε as blue
areas and lines. Since ϕ(.) is already piecewise linear, one has ϕ(x) = ∆ϕ(0;x) and

∂Kϕ(0) = ∂Lϕ(0) = {g1, g2, g3, g4} and ∂Cϕ(0) = conv {g1, g2, g3, g4}

for all values of ε.

Example 3.7 (Generalized derivatives for the lemon squeezer example). The cor-
responding ϕ(.) is not differentiable at x̊ = (0, 0)> ∈ R2. For notational simplicity,
we only consider the case q = 1 here. Possible candidates for a regular subgradient
are given by the gradients of the linear selection functions ϕi(.), 1 ≤ i ≤ 24, i.e.,

g1 = (5 + 6ε, 1) g2 = (5 + 4ε, 1 + 6ε) g3 = (3 + 4ε, 5 + 6ε)
g4 = (3 + 2ε, 5 + 8ε) g5 = (1 + 2ε, 6 + 8ε) g6 = (1, 6 + 26ε/3)
g7 = (−1, 6 + 26ε/3) g8 = (−1− 2ε, 6 + 8ε) g9 = (−3− 2ε, 5 + 8ε)
g10 = (−3− 4ε, 5 + 6ε) g11 = (−5− 4ε, 1 + 6ε) g12 = (−5− 6ε, 1
g13 = (−5− 6ε,−1) g14 = (−5− 4ε,−1− 6ε) g15 = (−3− 4ε,−5− 6ε)
g16 = (−3− 2ε,−5− 8ε) g17 = (−1− 2ε,−6− 8ε) g18 = (−1,−5− 26ε/3)
g19 = (1,−6− 26ε/3) g20 = (1 + 2ε,−6− 8ε) g21 = (3 + 2ε,−5− 8ε)
g22 = (3 + 4ε,−5− 6ε) g23 = (5 + 4ε,−1− 6ε) g24 = (5 + 6ε,−1) .

For ε ≥ 0, ϕ(.) is convex yielding

∂̂Mϕ(0) = conv {gi, i = 1, . . . , 24} = ∂Mϕ(0) .
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For ε < 0, it can be shown, that the kinks between gi and gi+1 yield a convex part if
i is even and a concave part if i is odd, see also the right hand side of Fig. 3. Hence,
for i even, i.e., in the convex case, all elements of the convex hull of gi and gi+1 are
regular subgradients, whereas when i is odd, i.e., in the concave case, the set of regular
subgradients at this kink is empty. This yields for 0 > ε > −9/13

∂Mϕ(0) =
⋃

i∈{2,4,...,22}

conv {gi, gi+1} ∪ {g24, g1} .

and an even more complicated set ∂̂Mϕ(0) which is therefore not stated here. If
ε < −9/13 the kinks defined by the selection functions ϕ6(.) and ϕ7(.) as well as
ϕ18(.) and ϕ19(.) attain negative values. Hence, no supporting hyperplane exists at
x̊ = 0 yielding

∂̂Mϕ(0) = ∅ .

Since ϕ(.) is itself already piecewise linear, it follows that

∂Kϕ(0) = ∂Lϕ(0) = {gi, i = 1, . . . , 24} and ∂Cϕ(0) = conv {gi, i = 1, . . . , 24}

for all values of ε.

As illustrated by these small examples, the relations of the different concepts for
generalized derivatives are by no means trivial. For this reason, we will examine these
relations now more closely.

Relations Between Generalized Derivatives. Exploiting the Cdabs structure,
one obtains the following results:

Proposition 3.8 (Limiting, Mordukovich, and Clark subdifferentials). For the
Cdabs function ϕ : D → R, D ⊂ Rn, and x ∈ Rn, the inclusions

∅ 6= ∂Lϕ(x) ⊂ ∂Mϕ(x) ⊂ ∂Cϕ(x)

hold. Furthermore, the function ϕ(.) is regular in x ∈ Rn if and only if

∂Mϕ(x) = ∂Cϕ(x)

Proof. It follows from Def. 3.2, that for an element g ∈ ∂Lϕ(x) there exists a
sequence {xk}k∈N such that ϕ(.) is differentiable at xk and ∇ϕ(xk) → g. According

to [20, Ex. 8.8a], then one has {∇ϕ(xk)} = ∂̂Mϕ(xk) yielding g ∈ ∂Mϕ(x).
Now assume that g ∈ ∂Mϕ(x). If ϕ(.) is smooth in a neighborhood of x, then one

has according to [20, Ex. 8.8b]

{∇ϕ(xk)} = ∂Lϕ(x) = ∂Mϕ(x) = ∂Cϕ(x).

If ϕ(.) is not smooth in a neighborhood of x, then at least one switching variable
is active at x. To illustrate the situation, assume that only one switching variable
vanishes, i.e., at x one has ϕ(x) = ϕσ1(x) = ϕσ2(x) with the two gradients gσ1(x)
and gσ2

(x). It follows from the definition of ∂Mϕ(x) that gσ1
(x), gσ2

(x) ∈ ∂Mϕ(x).
Furthermore, if Eq. (28) also holds for the convex combinations of gσ1

(x) and gσ2
(x)

then they are also contained in ∂Mϕ(x). That is, one of the following two cases occurs:

∂Mϕ(x) = {gσ1
(x), gσ2

(x)} or ∂Mϕ(x) = conv{gσ1
(x), gσ2

(x)},

17



see also Exam. 3.5 and Exam. 3.4, respectively, for an illustration. Therefore, it
follows that

∂Mϕ(x) ⊂ conv{gσ1
(x), gσ2

(x)} = conv
{
∂Lϕ(x)

}
= ∂Cϕ(x) .

If more switching variables vanish at x, if follows similarly that the corresponding
gradients gσi(x), i = 1, . . . , l, of the l selection functions with ϕ(x) = ϕσi(x), are
contained in ∂Mϕ(x). Depending on Eq. (28), also convex combinations of these gra-
dients or of a proper subset of these gradients are elements of ∂Mϕ(x), see Exam. 3.6
with ε < 1 for an illustration. This yields

∂Mϕ(x) ⊂ conv{gσi
(x) |ϕ(x) = ϕσi

(x), i = 1, . . . , l} = conv
{
∂Lϕ(x)

}
= ∂Cϕ(x) .

For proving the second assertion, first assume that ϕ(.) is regular in x. Then one

has that ∂̂Mϕ(x) = ∂Mϕ(x) is convex, see [20, Theo. 8.6]. Using the same argument
as above it follows for the selection functions with ϕ(x) = ϕσi

(x), i = 1, . . . , l, that

∂Mϕ(x) = conv{gσi
(x) |ϕ(x) = ϕσi

(x), i = 1, . . . , l} = conv
{
∂Lϕ(x)

}
= ∂Cϕ(x) .

Now assume that ∂Mϕ(x) = ∂Cϕ(x) holds. Then, ∂Mϕ(x) is a convex set. This can
only be the case if

∂Mϕ(x) = conv{gσi
(x) |ϕ(x) = ϕσi

(x), i = 1, . . . , l} .

Then, if follows from the Cdabs structure of the functions considered here and the

definition of the regular Mordukovich subgradient that ∂Mϕ(x) = ∂̂Mϕ(x) must hold.
Hence, ϕ(.) is regular in x.

Proposition 3.9 (Conical and limiting gradients). Let ϕ : D → R, D ⊂ Rn, be
a Cdabs function. Then, one has

∂Kϕ(x) ⊂ ∂Lϕ(x)

for all x ∈ Rn. Furthermore, if MFKQ holds at x̊ ∈ D, then

∂Kϕ(̊x) = ∂Lϕ(̊x) .(29)

Proof. The first inclusion was already shown in [4, Prop. 9]. Therefore, we only
have to prove the second equality. Due to the piecewise smoothness of ϕ, every
limiting gradient is the gradient of a selection function ϕσ, which coincides with ϕ on
Sσ. Because of MFKQ, the tangent cone of Sσ coincides with that of its linearization
and has a nonempty interior. Thus the assertion follows from [4, Cor. 1], which states
that the gradient of ϕσ must then be conical.

Hence, since MFKQ holds at x̊ = 0 for the Examples 2.4 and 2.6, the equality of
the conical and limiting gradients at x̊ = 0 derived in the Examples 3.4 and 3.6,
respectively, is to be expected. On the other hand, MFKQ does not hold at x̊ = 0 for
Example 2.5. As illustrated in Example 3.5, in this case ∂Kϕ(x) is a proper subset of
∂Lϕ(x), which is possible since MFKQ is not satisfied.

Relations Between Different Convexity Properties. Based on the lin-
earization Eq. (1) given above, we introduce the concept of first order convexity in
the following way:
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Definition 3.10 (First order convexity (FOC)). The Cdabs function ϕ : Rn → R
is said to be convex of first order at a point x̊ if its piecewise linearization ∆ϕ(̊x; ·) :
Rn → R is convex on some ball about the argument ∆x = 0.

Hence, a function ϕ(.) is called first order convex in some ball about x̊ if its lineariza-
tion, i.e., first order model, in x̊ is convex. For this new concept, one has

Theorem 3.11 (Regularity and FOC). The Cdabs function ϕ : Rn → R is first
order convex in some ball about x̊ if ϕ(.) is regular at x̊. Furthermore, if MFKQ holds
at x̊ ∈ Rn, then ϕ(.) is first order convex in some ball about x̊ if and only if ϕ(.) is
regular at x̊.

Proof. Assume that ϕ(.) is regular at x̊. Then, it follows from Prop. 3.8 that

∂̂Mϕ(̊x) = ∂Mϕ(̊x) = ∂Cϕ(̊x) = conv
{
∂Lϕ(̊x)

}
.

Furthermore, one obtains from Prop. 3.9 that

∂Kϕ(̊x) ⊂ ∂Lϕ(̊x) .

This yields for g ∈ ∂Lϕ(̊x) as limiting gradient of the linearization ∆ϕ(x; .) at the

argument ∆x = 0, that g ∈ ∂Kϕ(̊x) ⊂ ∂̂Mϕ(̊x). Hence, g defines a supporting
hyperplane of ϕ(̊x) at x̊. Using this property and the approximation order given by
Eq. (1) it follows that g defines also a supporting hyperplane for ∆ϕ(̊x; .) at ∆x = 0.
Since this holds for all elements g ∈ ∂L∆ϕ(̊x; 0), ∆ϕ(̊x; .) must be convex in some
ball about ∆x = 0. Therefore ϕ(.) is first order convex in some ball about x̊.

Now assume in addition that MFKQ holds for ϕ(.) at x̊. It is left to show that then
FOC implies regularity of ϕ(.) at x̊. Using again Prop. 3.9, the approximation order
of the linearization, and FOC, it follows that all elements of ∂Lϕ(̊x) are supporting
hyperplanes of ϕ(.) at x̊ yielding

∂Lϕ(̊x) ⊂ ∂̂Mϕ(̊x) .

Since the definition of ∂̂Mϕ(̊x) includes then also all convex combinations of two
arbitrary elements of ∂Lϕ(̊x), one obtains

∂Cϕ(̊x) = conv
{
∂Lϕ(̊x)

}
⊂ ∂̂Mϕ(̊x) ⊂ ∂Mϕ(̊x) ⊂ ∂Cϕ(̊x) .

yielding

∂̂Mϕ(̊x) = ∂Mϕ(̊x)

and therefore regularity of ϕ(.) at x̊.

As can be seen, FOC implies the inclusion ∂Lϕ(x) ⊂ ∂Mϕ(x). One might assume that
this inclusion on the other hand also implies FOC and therefore regularity. However,
Exam. 2.6 for ε ∈ [−1, 1) shows that this is not the case.

The findings so far can be summarized in the following way. For a Cdabs function
ϕ(.), we have

• in the general case

∅ 6= ∂Kϕ(x) ⊂ ∂Lϕ(x) ⊂ ∂Mϕ(x) ⊂ ∂Cϕ(x)

as well as

ϕ(.) regular in x̊ ⇔ ∂Cϕ(̊x) = ∂Mϕ(̊x) ⇒ ϕ(.) FOC in x̊.
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• If MFKQ holds in x̊, one has additionally

∂Kϕ(̊x) = ∂Lϕ(̊x) and ϕ(.) regular at x̊ ⇔ ϕ(.) FOC at x̊.

As an immediate corollary the implication chain CON =⇒ REG =⇒ FOC,
that is, convexity of Cdabs functions is inherited by their piecewise linearizations, holds
as we already claimed in the introduction:

Corollary 3.12. The Cdabs function ϕ : Rn → R can only be convex on some
ball about a point x̊ if its piecewise linearization ∆ϕ(̊x; .) : Rn → R is convex for ∆x
in some ball about the origin, i.e., if ϕ(.) is first order convex at x̊.

Proof. If ∆ϕ(̊x; ∆x) is not convex on a ball about the origin on which it is homo-
geneous then there exist increments u 6= v from within this ball such that

∆ϕ(̊x; (u+ v)/2) = ε+ 1
2 [∆ϕ(̊x;u) + ∆ϕ(̊x; v)] with ε > 0 .

Due to the homogeneity we find for τ ∈ (0, 1)

∆ϕ(̊x; τ (u+ v)/2) = τε+ 1
2 [∆ϕ(̊x; τ u) + ∆ϕ(̊x; τ v)] .

Since ∆ϕ(̊x; ∆x) is a second order approximation of ϕ(̊x+ ∆x)− ϕ(̊x), we have

ϕ(̊x+ τ(u+ v)/2)) +O(τ2) = ϕ(̊x) + ∆ϕ(̊x; τ (u+ v)/2)

= τε+ 1
2 [ϕ(̊x+ τu) + ϕ(̊x+ τv)] +O(τ2) .

Hence, it is clear that for τ small enough the positive τε term will dominate the two
O(τ2) terms, which shows that ϕ itself cannot be convex yielding a contradiction.

One has to note that the convexity of ∆ϕ(̊x; .) is only necessary but not sufficient for
the convexity of ϕ(.) as illustrated by Exam. 2.4.

Now the question is of course, how we can determine whether the piecewise linear
approximation is convex. This can be answered as follows.

Theorem 3.13. Suppose that for the Cdabs function ϕ : Rn → R the corresponding
abs-normal form is localized at x̊, i.e., α̊ = α(̊x) = {1, . . . s}. Furthermore, assume
that LIKQ holds at x̊ so that s ≤ n. Then the piecewise linearization of ϕ at x̊ is
locally convex if and only if componentwise

b>(I −DL)−1 ≥ 0 if |D| ≤ 1 ,(30)

where D ranges over all diagonal matrices. In the nonlocalized case, L and b in
Eq. (30) must be replaced by Ľ as defined in Eq. (23) and b̌ = (bi)i∈α̊.

Proof. For notational simplicity let us assume that ϕ itself is piecewise linear,
that x is the origin and ϕ(0) = 0 so that ∆ϕ(0;x) = ϕ(x). Consider any definite
signature σ ∈ {−1, 1}s and the corresponding Σ = diag(σ). Then Pσ is a convex
cone in which the function −Σzσ has by Eq. (9) the Jacobian (I − LΣ)−1Z yielding

(31) N ≡ Σ∇zσ = Σ(I − LΣ)−1Z = (Σ− L)−1Z ∈ Rs×n .

The ith row νi ≡ e>i N represents the outward normal of Pσ on the n− 1 dimensional
interface with its neighbor cone Pσi defined by

(32) σij =

{
σj if j 6= i
−σi if j = i

.
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Therefore, the corresponding diagonal matrices satisfy

Σi = diag(σi) = Σ− 2σieie
>
i .(33)

By Eq. (6) the gradients of ϕ in Pσ and Pσi are given by

gσ = a> + b>(Σ− L)−1Z and gσi = a> + b>(Σi − L)−1Z .

Convexity across the boundary between Pσ and Pσi is given if and only if we have
(gσi − gσ)>νi ≥ 0. The difference between the two gradients can be worked out by
the Sherman and Morrison formula as

gσi − gσ = b>(Σ− 2σieie
>
i − L)−1Z − b>(Σ− L)−1Z

= b>
[
(Σ− L)−1 + 2σi

(Σ− L)−1eie
>
i (Σ− L)−1

1− 2σie>i (Σ− L)−1ei
− (Σ− L)−1

]
Z .

Because of the triangular nature of L the denominator reduces to 1− 2σ2
i = −1 and

we obtain

(34) gσi − gσ = −2b>(Σ− L)−1eiσie
>
i (Σ− L)−1Z = 2b>(Σ− L)−1σieiν

i .

Hence, we see that convexity requires b>(Σ− L)−1σiei ≥ 0 for all i and thus b>(Σ−
L)−1Σ ≥ 0 componentwise. Moreover this vector inequality must hold for all definite
signatures σ ∈ {−1, 1}s. Since b>(D−L)−1 ≥ 0 is multilinear in the components of the
entries of a diagonal matrix D we conclude that the condition given in the assertion is
indeed necessary for local convexity of the piecewise linear function ϕ(x) = ∆ϕ(0;x).
So all we still have to show is that it is also sufficient. Take again any two points u 6= v
in the homogeneous vicinity of 0. We have to show that ϕ((u+v)/2) ≤ (ϕ(u)+ϕ(v))/2.
Clearly ϕ(u(1− τ) + τv) is a piecewise linear function of τ ∈ (0, 1). By an arbitrary
small perturbation of u and v we can ensure that the line segment between them
moves repeatedly from one cone Pσ to one of its neighbors penetrating the interface
transversally. Any one of these finitely many kinks is convex, i.e., bend upwards so
that the whole piecewise linear function is convex. By continuity that follows then
for the original, unperturbed pair (u, v) as well.

If the abs-normal form of ϕ is nonlocalized at x̊, the analysis is very similar. As
above, one obtains that νi ≡ e>i N , i ∈ α̊(̊x), represents the outward normal of Pσ
on the interface with its neighbor cones Pσi with the signature matrices Σi, i ∈ α̊(̊x),
where Σi is defined as in Eq. (33). Exactly along the same lines as above, one obtains
that the inequalities

b>(D − L)−1ei ≥ 0

must hold for all i ∈ α̊(̊x) and all

D = Σ(̊x) +
∑
i∈α̊(̊x)

dieie
>
i , with |D| ≤ 1 .

Then, one can argue again that this property is also sufficient.

4. Complexity Analysis. We proved in [7] that when LIKQ holds then sta-
tionarity and normal growth, i.e., first order optimality, can be tested in polynomial
time. So far, we did not succeed in deriving a test that is polynomial in time for
testing stationarity under MFQK. Even testing for MFQK at x̊ seems to be expensive
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it that it is not polynomial in time since the existence of a vector v with Jσv > 0 for
all σ � σ̊ has to be verified.

Whereas these statements remain conjectures for the time being, we will prove
here that the convexity test derived in the proof of Theo. 3.13 is co-NP-complete. For
this purpose, it can be stated as follows:

Definition 4.1 (CONV). For a given pair (b, L) with b ∈ Rs and L ∈ Rs×s
strictly lower triangular, the verification of

b>(Σ− L)−1Σ ≥ 0 ∀ Σ = diag(σ) with σ ∈ {−1, 1}s

is equal to the convexity test for a corresponding Cdabs function ϕ : Rn → R having the
vector b and the matrix L as parts of its abs-normal form at a point x̊. Using again
Σ = diag(σ), the convexity test can be rewritten as

∀σ ∈ {−1, 1}s ∀i ∈ {1, . . . , s} :
(
b>(Σ− L)−1Σ

)
i
≥ 0 . (CONV)

Its complement is given by

∃ σ ∈ {−1, 1}s ∃ i ∈ {1, . . . , s} :
(
b>(Σ− L)−1Σ

)
i
< 0 . (CONV )

Lemma 4.2. The problem CONV is an element of the complexity class co-NP.

Proof. We have to show that CONV is an element of the complexity class NP.
Then its complement, i.e., CONV is an element of co-NP. For any given σ ∈ {−1, 1}s,
one can compute the whole vector v ≡ b>(Σ − L)−1Σ by one forward substitution
using O(s2) operations. Then, one needs at most additional s operations to check
whether there exists an index i such that one component of the vector v is less than
zero. It follows that given an instance σ ∈ {−1, 1}s one can decide in polynomial time
whether CONV holds for this particular σ or not. Therefore, CONV is an element
of the complexity class NP.

To show, that CONV is also co-NP-complete we will reduce a co-NP-complete decision
problem in polynomial time to the decision problem CONV.

Definition 4.3 (TAUTOLOGY). The decision problem

∀x ∈ {0, 1}N : ψ(x) =

m∧
i=1

ψi(x) = 1 ,

where each clause ψi(x), i = 1, . . . ,m, is limited to a disjunction of at most three
literals and a literal is either a variable or the negation of a variable is called TAU-
TOLOGY.

Usually, TAUTOLOGY is not restricted to this specific form of conjunctions of special
clauses but similar to the general SAT problem and its restriction to 3-SAT, one can
consider this special form of TAUTOLOGY.

Theorem 4.4. The decision problem CONV is co-NP-complete.

Proof. The proof comprises two parts. First we construct a polynomial reduction
algorithm f that maps a given instance ψ of a TAUTOLOGY decision problem into
one specific instance f(ψ) of CONV. Then we show that ψ is a tautology if and only
if the convexity test holds for the instance f(ψ) of CONV.
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To derive the reduction algorithm, we exploit the fact: For a given instance

∀x ∈ {0, 1}N : ψ(x) =

m∧
i=1

ψi(x) = 1 ,

of TAUTOLOGY, one can define for each clause ψi(x) involving three variables
xi1, xi2, xi3 corresponding σij , j = 0, . . . , 3 by

σi0 ∈ {−1, 1} arbitrarily

σij =

{
−1 + 2xij if xij occurs in ψi(x)
1− 2xij if the negation of xij occurs in ψi(x)

j = 1, 2, 3 .(35)

Then, one can show by a simple truth table that

ψi(x) = 1 ⇔ σi1 + σi2 + σi3 ≥ −1 and ψi(x) = 0 ⇔ σi1 + σi2 + σi3 = −3 .

This observation will be used to construct f . First, we define for each clause ψi(x)
a corresponding block Li of a strictly lower triangular matrix L̃ = diag((Li)i=1,...,m)
in the following way. The clause ψi(x) involves three variables xi1, xi2, xi3. Define
Σi = diag(σi0, σi1, σi2, σi3), and bi = (1, 1, 1, 1)>. Then, one obtains with

Li =


0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 that (Σi − Li)−1Σi =


1 0 0 0
σi1 1 0 0
σi2 0 1 0
σi3 0 0 1

 and(36)

b>i (Σi − Li)−1Σi = (1 + σi1 + σi2 + σi3, 1, 1, 1) .(37)

Setting

bψ = (bi)i=1,...,m and L̃ = diag((Li)i=1,...,m) ,

one obtains already one important part of an instance f(ψ). It follows that

ψi(x) = 1 ⇒ 1 + σi1 + σi2 + σi3 ≥ 0 and

ψi(x) = 0 ⇒ 1 + σi1 + σi2 + σi3 = −2 < 0 .

Hence, if ψi(x) = 1 for all x one obtains that 1 + σi1 + σi2 + σi3 ≥ 0 holds for the
corresponding entry of the vector b>ψ(Σ−L̃)−1Σ when defining Σ according to Eq. (35).
All remaining entries of this vector are greater than zero by definition. However, so
far the different σij representing the same component xl, 1 ≤ l ≤ N, of x are not
coupled. Hence, one might have for one Σψ = diag(σ10, . . . , σm3) that

b>ψ(Σψ − Lψ)−1Σψ ≥ 0 ,

but it is not possible to reconstruct a corresponding x such that ψ(x) = 1 since Σψ
might contain contradicting values for one component of x. Therefore, we introduce
in addition coupling conditions such that all xij corresponding to the same component
xl of x have a consistent value. For this purpose, we count for each component of x
how often it occurs in ψ(x). This number can be determined in polynomial time and
is denoted by cl, l = 1, . . . , N . Setting

M ≡
N∑
l=1

2(cl − 1), Ml ≡
l−1∑
k=1

2(ck − 1), and m̂ ≡ 4m ,
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we will construct a strictly lower triangular matrix

L =

(
0M×M 0M×m̂
C L̃

)
,

where C defines the coupling of the xij corresponding to the same component xl. This
coupling will be done in the following way: If xl appears only once in ψ(x) nothing
has to be done. For cl > 1 assume that xl occurs for the kth time, k ∈ {1, . . . , cl− 1},
in the clause ψi at place ji and the next appearance of xl, i.e., the (k+ 1)th one, is in
ψı̂ at place jı̂. Then, one places a 1 in the entry (Mj + 2(k− 1) + 1, 4(i− 1) + 1 + ji),
i.e., in the column Mj + 2(k− 1) + 1 and row 4(i− 1) + 1 + ji. The entry in row jı̂ in
the same column depends on the specific appearance of xl in ψi and ψı̂. It is set to

1 if xl occurs in ψi and its negation in ψı̂
1 if the negation of xl occurs in ψi and xl in ψı̂
−1 if xl occurs in ψi and also in ψı̂
−1 if the negation of xl occurs in ψi and also in ψı̂

.

all remaining entries of this column in C are set to zero. Hence, there are only two
nonzero entries in the column Mj + 2(k− 1) + 1 of C, each with the absolute value of
one. The next column Mj + 2(k− 1) + 2 of C is set to the column Mj + 2(k− 1) + 1
of C times −1. For an illustration of this construction see Exam. 4.5. Now, we have
to examine the matrix (Σ− L)−1Σ for which one has

(Σ− L)−1Σ =

(
IM×M 0M×m̂
C̃ (Σψ − Lψ)−1Σψ

)
,

where the upper part follows immediately from the structure of L, the lower right
part was already examined above and only the lower left part C̃ has to be derived.
If cl > 1 and xl occurs for the kth time, k ∈ {1, . . . , cl − 1}, in clause ψi at place ji
and the next appearance of xl, i.e., the (k + 1)th one, is in ψı̂ at place jı̂, then the
entry (Mj + 2(k− 1) + 1, 4(i− 1) + 1 + ji), i.e., in column Mj + 2(k− 1) + 1 and row
4(i−1)+1+ji is σiji . The entry in the row jı̂ in the same column is the corresponding

entry in C multiplied with σı̂jı̂ . Once more, the column Mj + 2(k−1) + 2 of C̃ equals
column Mj + 2(k− 1) + 1 multiplied by -1. Setting now b = (0M , 1m̂)>) the coupling
conditions yield if xl occurs in ψi and ψı̂ or if the negation of xl occurs in ψi and also
in ψı̂ the condition

σiji − σı̂jı̂ ≥ 0 in column Mj + 2(k − 1) + 1
−σiji + σı̂jı̂ ≥ 0 in column Mj + 2(k − 1) + 2

requiring that σiji = σı̂jı̂ . If xl occurs in ψi and its negation in ψı̂ or if the negation
of xl occurs in ψi and xl in ψı̂, one gets

σiji + σı̂jı̂ ≥ 0 in column Mj + 2(k − 1) + 1
−σiji − σı̂jı̂ ≥ 0 in column Mj + 2(k − 1) + 2

requiring that σiji = −σı̂jı̂ . Since all appearances of xl are covered that way one can
reconstruct from all Σ that fulfill the convexity condition for f(ψ) a corresponding
x that fulfills ψ. It also follows immediately that all x with ψ(x) = 1 define a
corresponding Σ such that the convexity condition holds. This yields the assertion
that CONV is co-NP-complete.
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The following example serves to illustrate this rather involved reduction from a in-
stance of TAUTOLOGY to an instance of CONV:

Example 4.5 (Polynomial reduction). Consider for x ∈ {0, 1}4 the instance

ψ(x) = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

yielding

c1 = 3, c2 = 2, c3 = 3, c4 = 1,M = 10,M1 = 0,M2 = 4,M3 = 6, m̂ = 12 .

Furthermore, using the polynomial reduction introduced in the proof of Theo. 4.4, one
has that x1 is represented by σ11, σ21, and σ31, x2 by σ12 and σ32, x3 is represented
by σ13, σ22, and σ33, and x4 by σ23. The coupling matrix is given by

C = (c1,−c1, c2,−c2, c3,−c3, c4,−c4, c5,−c5) ∈ R12×10 with

c1 = e2 − e6, c2 = e6 − e10, c3 = e3 − e11, c4 = e4 + e7, c5 = e7 + e12 ,

where ei denotes the ith unit vector in R12. Then one has

(Σ− L)−1Σ =

(
IM×M 0M×m̂
C̃ L̃ψ

)
with

C̃ =



0 0 0 0 0 0 0 0 0 0
σ11 −σ11 0 0 0 0 0 0 0 0

0 0 0 0 σ12 −σ12 0 0 0 0
0 0 0 0 0 0 σ13 −σ13 0 0
0 0 0 0 0 0 0 0 0 0

−σ21 σ21 σ21 −σ21 0 0 0 0 0 0
0 0 0 0 0 0 σ22 −σ22 σ22 −σ22

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 −σ31 +σ31 0 0 0 0 0 0
0 0 0 0 σ32 −σ32 0 0 0 0
0 0 0 0 0 0 0 0 σ33 −σ33


and L̃ψ is a block diagonal matrix according to Eq. (36). Using now b = (0M , 1m̂)>,
one obtains from b>(Σ− L)−1Σ that

σ11 − σ21 ≥ 0 −σ11 + σ21 ≥ 0 ⇒ σ11 = σ21

σ21 − σ31 ≥ 0 −σ21 + σ31 ≥ 0 ⇒ σ21 = σ31

σ12 + σ32 ≥ 0 −σ12 − σ32 ≥ 0 ⇒ σ12 = −σ32

σ13 + σ22 ≥ 0 −σ13 − σ22 ≥ 0 ⇒ σ13 = −σ22

σ22 + σ33 ≥ 0 −σ22 − σ33 ≥ 0 ⇒ σ22 = −σ33

and therefore consistent values for the components of x.

5. Summary and Outlook. In this paper, we first generalize the kink qual-
ifications for Cdabs functions under LIKQ to the more general case of the new kink
qualification MFKQ. In contrast to LIKQ, it is so far not possible to verify MFKQ in
polynomial time. Next we studied convexity conditions for Cdabs functions and their
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piecewise linearization under LIKQ and MFKQ. This includes also an analysis of the
relation of different derivative concepts and regularity. Here, the main result is that
under MFKQ first order convexity and regularity are equivalent. Furthermore, we
proved that testing for convexity co-NP complete even under LICQ and thus cer-
tainly under MFKQ. Thus we conclude that on the class of Cdabs functions regularity
is a rather theoretical, nonconstructive concept. The complexity analysis for the test
whether MFKQ holds at a given point is still open and subject of future research.
Generally speaking, it seems that the combinatorial aspect and its computational
complexity deserves more attention in nonsmooth analysis.
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