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NUMERICAL SOLUTION OF A NONLINEAR

EIGENVALUE PROBLEM ARISING IN OPTIMAL

INSULATION

SÖREN BARTELS AND GIUSEPPE BUTTAZZO

Abstract. The optimal insulation of a heat conducting body by a thin
film of variable thickness can be formulated as a nondifferentiable, non-
local eigenvalue problem. The discretization and iterative solution for
the reliable computation of corresponding eigenfunctions that determine
the optimal layer thickness are addressed. Corresponding numerical ex-
periments confirm the theoretical observation that a symmetry break-
ing occurs for the case of small available insulation masses and provide
insight in the geometry of optimal films. An experimental shape opti-
mization indicates that convex bodies with one axis of symmetry have
favorable insulation properties.

1. Introduction

Improving the mechanical properties of an elastic body by surrounding it
by a thin reinforcing film of a different material is a classical and well un-
derstood problem in mathematical analysis [BCF80, Fri80, AB86, CKU99].
A recent result in [BBN17] proves the surprising fact that in the case of a
small amount of material for the surrounding layer, an unexpected break of
symmetry occurs, i.e., a nonuniform arrangement on the surface of a ball
leads to better material properties than a uniform one.
The case of the heat equation is similar, and a model reduction for thin
films leads, in the long-time behavior, to a partial differential equation with
Robin type boundary condition, e.g.,

−∆u = f in Ω, ` ∂nu+ u = 0 on ∂Ω,

i.e., the heat flux −∂nu trough the boundary is given by the temperature
difference divided by the scaled nonnegative layer thickness `. A vanishing
tickness thus leads to a homogenous Dirichlet boundary condition which
prescribes the external temperature (set to zero), while as ` → +∞ the
boundary condition above approaches the Neumann one, corresponding to
a perfect insulation. The long-time insulation properties (decay rate of the
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2 SÖREN BARTELS AND GIUSEPPE BUTTAZZO

temperature) are determined by the principal eigenvalue of the correspond-
ing differential operator, i.e.,

λ` = inf

{∫
Ω
|∇u|2 dx+

∫
∂Ω
`−1u2 ds :

∫
Ω
u2 dx = 1

}
The optimality of the layer is characterized by minimality of λ` among ad-
missible arrangements ` : ∂Ω → R+ with prescribed total mass m, i.e.,
‖`‖L1(∂Ω) = m. Interchanging the minimization with respect to ` and u
leads to an explicit formula for the optimal `, through the nonlinear eigen-
value problem

λm = inf

{
λ` :

∫
∂Ω
` ds = m

}
= inf

{∫
Ω
|∇u|2 dx+

1

m

(∫
∂Ω
|u| ds

)2
:

∫
Ω
u2 dx = 1

}
.

The calculation shows that optimal layers ` are proportional to traces of
nonnegative eigenfunctions um on ∂Ω.
The results in [BBN17] prove in a nonconstructive way that for the unit
ball nonradial eigenfunctions exist if and only if 0 < m < m0, where m0 is a
critical mass corresponding to the first nontrivial Neumann eigenvalue of the
Laplace operator. In particular, the symmetry breaking occurs if and only
if λN < λm < λD, where λN and λD denote the first (nontrivial) eigenvalues
of the Laplacian with Neumann and Dirichlet boundary conditions.
While the proof of the result above implies that optimal nonradial insulating
films have to leave gaps (i.e. regions on ∂Ω where ` = 0) on the surface of the
ball, the analysis does not characterize further properties such as symmetry
or connectedness of the gaps. It is therefore desirable to gain insight of
qualitative and quantitative features via accurate numerical simulations.
Computing solutions for the nonlinear eigenvalue problem defining λm is
a challenging task since this requires solving a nondifferentiable, nonlocal,
constrained minimization problem. To cope with these difficulties we adopt
a gradient flow approach of a suitable regularization of the minimization
problem, i.e., we consider the evolution problem

(∂tu, v) + (∇u,∇v) +
1

m

(∫
∂Ω
|u|ε ds

)∫
∂Ω

uv

|u|ε
ds = 0.

Here, (·, ·) denotes the L2 inner product on Ω. The regularized modulus is

defined via |a|ε = (a2 + ε2)1/2 and the constraint ‖u‖L2 = 1 is incorporated
via the conditions

(∂tu, u) = 0, (v, u) = 0.

With the backward difference quotient dtu
k = (uk − uk−1)/τ for a step size

τ > 0 we consider a semi-implicit discretization defined by the sequence
of problems that determines the sequence (uk)k=0,1,... for a given initial u0
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recursively via

(dtu
k, v) + (∇uk,∇v) +m−1

(∫
∂Ω
|uk−1|ε ds

)∫
∂Ω

ukv

|uk−1|ε
ds = 0,

for all test functions v subject to the constraints

(dtu
k, uk−1) = 0, (v, uk−1) = 0.

Note that every step only requires the solution of a constrained linear elliptic
problem. Crucial for this is the semi-implicit treatment of the nondifferen-
tiable and nonlocal boundary term and the normalization constraint. We
show that this time-stepping scheme is nearly unconditionally energy de-
creasing in terms of τ and ε and that the constraint is approximated appro-
priately. The stability analysis is related to estimates for numerical schemes
for mean curvature and total variation flows investigated in [Dzi99, BDN17].
The spatial discretization of the minimization problem and the iterative
scheme require an appropriate numerical integration of the boundary terms.
We provide a full error analysis for the use of a straightforward trapezoidal
rule avoiding unjustified regularity assumptions. This leads to a convergence
rate for the approximation of λm incorporating both the mesh size h >
0 and the regularization parameter ε > 0. The good stability properties
of the discrete gradient flow and the accuracy of the spatial discretization
are illustrated by means of numerical experiments. These reveal that for
moderate triangulations with a few thousand elements a small number of
iterations is sufficient to capture the characteristic properties of solutions
of the nonlinear eigenvalue problem and thereby gain understanding in the
features of optimal nonsymmetric insulating films for the unit ball in two
and three space dimensions.
We also investigate the idea of improving the insulation properties by mod-
ifying the shape of a heat conducting body. In the case of two space dimen-
sions we use a shape derivative and deform a given domain via a negative
shape gradient obtained via appropriate Stokes problems. Corresponding
numerical experiments confirm the observation from [BBN17] that the disk
is not optimal when the total amount m of insulating material is small and
that instead convex domains with one axis of symmetry lead to smaller
principal eigenvalues.
In three or more space dimensions the situation is more complex: indeed an
optimal shape does not exist. In fact, if Ω is composed of a large number n
of small disjoint balls of radius rn → 0 we may define

u =

{
1 on one of the balls

0 on the remaining ones

and we obtain, if B is the ball where u = 1,

λm(Ω) ≤
1
m(|∂B|)2

|B|
=
d2ωd
m

rd−2
n ,
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where ωd denotes the Lebesgue measure of the unit ball in Rd. If d ≥ 3
we then obtain that λm(Ω) may be arbitrarily close to zero. Nevertheless,
starting with a ball as the initial domain and performing a shape variation
among rotational bodies, we numerically identify ellipsoids and egg-shaped
domains that have good insulation properties.
In spite of the nonexistence argument above, it is desirable to prove (or
disprove) that an optimal domain exists in a restricted class, as for instance
the class of convex domains. The numerical experiments of Section 6 indicate
that convex bodies are optimal among rotational bodies, which is a good
sign for the existence of an optimal body among convex ones.
The article is organized as follows. In Section 2 we outline the derivation of
the nonlinear eigenvalue problem. In Section 3 we investigate the stability
properties of the semi-implicit discretization of the gradient flow used as an
iterative scheme for computing eigenfunctions. Section 4 is devoted to the
analysis of the spatial discretization of the problem. Experiments confirming
the stability and approximation properties and revealing the qualitative and
quantitative properties of optimal insulating films are presented in Section 5.
In Section 6 we experimentally investigate the numerical optimization of the
shape of insulated conducting bodies.

2. Nonlinear eigenvalue problem

We consider a heat conducting body Ω ⊂ Rd that is surrounded by an
insulating material of variable normal thickness ε` ≥ 0, cf. Fig. 1. A model
reduction for vanishing conductivity ε → 0 in the insulating layer leads,
for the stationary temperature u under the action of heat sources f , to an
elliptic partial differential equation, with Robin type boundary condition,
i.e.,

−∆u = f in Ω, ` ∂nu+ u = 0 on ∂Ω,

cf. [BCF80, AB86] for details. The boundary condition states that the heat
flux through the boundary is given by the temperature difference divided by
thickness of the insulating material.

−∆u = f

ε`(s) ≥ 0

u = 0 in Rd \ Ωε`

−ε∆u = 0

Ωε` \ Ω

Ω

Figure 1. Conducting body surrounded by insulating ma-
terial of variable normal thickness ε` ≥ 0.

It has to be noticed that the only interesting case occurs when the conduc-
tivity and the thickness of the insulating material have the same order of
magnitude. Indeed, if conductivity is significantly smaller than thickness
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the limit problem is the Neumann one, while in the converse situation one
obtains the Dirichlet problem.
The optimization of the thickness of the thin insulating layer, once the total
amount of insulator ‖`‖L1 is prescribed, is illustrated in [BBN17]. Here we
deal with the case when no heat source is present, so that the temperature
u, starting from its initial datum, tends to zero as t→ +∞. It is well known
that the temperature decays exponentially in time at a rate given by the
first eigenvalue λ` of the differential operator A` defined by

〈A`u, v〉 =

∫
Ω
∇u · ∇v dx+

∫
∂Ω
`−1uv ds, u, v ∈ H1(Ω).

We have then

λ` = min

{
〈A`u, u〉 :

∫
Ω
|u|2 dx = 1

}
and, if we look for the distribution of insulator around Ω which gives the
slowest decay in time, we have to solve the optimization problem

min

{
λ` :

∫
∂Ω
`ds = m

}
,

where m represents the total amount of insulator at our disposal.
Since λ` is given by a minimum too, we may interchange the minima over `
and u obtaining that for a given u ∈ H1(Ω) the optimal ` is such that u2/`2

is constant on ∂Ω and hence given by

`(z) =
m|u(z)|∫
∂Ω |u| ds

for z ∈ ∂Ω.

An optimal thickness ` is thus directly obtained from a solution of the non-
linear eigenvalue problem

λm = min

{
Jm(u) :

∫
Ω
|u|2 dx = 1

}
where Jm is the functional defined on H1(Ω) by

Jm(u) =

∫
Ω
|∇u|2 dx+

1

m

(∫
∂Ω
|u| ds

)2
.

The mapping m 7→ λm is a continuous and strictly decreasing function with
the asymptotic values

lim
m→0

λm = λD, lim
m→∞

λm = 0,

which represent the first Dirichlet and Neumann eigenvalues of the Lapla-
cian.
When Ω is a ball, denoting by

λN = min

{∫
Ω
|∇u|2 dx :

∫
Ω
u2 dx = 1,

∫
Ω
udx = 0

}
the first nontrivial Neumann eigenvalue, we have 0 < λN < λD and there
exists m0 > 0 such that (cf. Fig. 2) λm0 = λN .
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m0
m

λD

λN

m 7→ λm

Figure 2. Dependence of the principal eigenvalue λm of
A` on available mass m > 0 in the case of a ball.

We summarize below the main result concerning this break of symmetry
and refer to [BBN17] for details.

Theorem 2.1 ([BBN17]). Let Ω be a ball. If m > m0 every solution um of
the minimization problem defining λm is radial, hence the optimal thickness `
of the insulating film around Ω is constant. On the contrary, if 0 < m < m0

the solution um is not radial and so the optimal thickness ` is not constant.

The proof of the theorem also shows that nonuniform optimal insulations `
leave gaps, i.e., the support of an optimal ` is a strict subset of ∂Ω.

3. Iterative minimization

We aim at iteratively minimizing the regularized functional

Jm,ε(u) = ‖∇u‖2 +
1

m
‖u‖2L1

ε(∂Ω)

among functions u ∈ H1(Ω) with ‖u‖2 = 1 and with the regularized L1

norm defined via the regularized modulus

|a|ε = (a2 + ε2)1/2.

Minimizers satisfy the eigenvalue equation

(∇u,∇v) +
1

m
‖u‖L1

ε(∂Ω)

∫
∂Ω

uv

|u|ε
ds = λm(u, v)

for all v ∈ H1(Ω). To define an iterative scheme we consider the corre-
sponding evolution problem which seeks for given u0 ∈ H1(Ω) a family
u : [0, T ]→ H1(Ω) with u(0) = u0, ‖u(t)‖2 = 1 for all t ∈ [0, T ], and

(∂tu, v)∗ + (∇u,∇v) +
1

m
‖u‖L1

ε(∂Ω)

∫
∂Ω

uv

|u|ε
ds = λm(u, v)

for all t ∈ (0, T ] and v ∈ H1(Ω). Here, (·, ·)∗ is an appropriate inner prod-
uct defined on H1(Ω). Noting that (∂tu, u) = 0 it suffices to restrict to
test functions v ∈ H1(Ω) with (u, v) = 0 so that the right-hand side with
the unknown multiplier λm disappears. Replacing the time derivative by a
backward difference quotient and discretizing the nonlinear boundary term
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and the constraint (∂tu, u) = 0 semi-implicitly to obtain linear problems in
the time steps leads to the following numerical scheme.

Algorithm 3.1. Let ε, τ > 0 and u0 ∈ H1(Ω) with ‖u0‖2 = 1; set k = 1.
(1) Compute uk ∈ H1(Ω) such that (dtu

k, uk−1) = 0 and

(dtu
k, v)∗ + (∇uk,∇v) +

1

m
‖uk−1‖L1

ε(∂Ω)

∫
∂Ω

ukv

|uk−1|ε
ds = 0

for all v ∈ H1(Ω) with (v, uk−1) = 0.
(2) Stop if ‖dtuk‖∗ ≤ εstop; increase k → k + 1 and continue with (1)
otherwise.

The iterates of Algorithm 3.1 approximate the continuous evolution equation
and satisfy an approximate energy estimate on finite intervals [0, T ].

Proposition 3.2. Assume that the induced norm ‖ · ‖∗ on H1(Ω) is such
that we have the trace inequality

(1 + ε)‖v‖2L1(∂Ω) ≤ c
2
Tr‖v‖2∗ + ‖∇v‖2

for some constant cTr > 0 and all v ∈ H1(Ω). Then Algorithm 3.1 is energy-
decreasing in the sense that for every K = 0, 1, . . . , bT/τc we have

Jm,ε(u
K) + 2

(
1−

c2
Trτ

2m

)
τ

K∑
k=1

‖dtuk‖2∗ ≤ Jm,ε(u0) +
ε

m
T (1 + ε)|∂Ω|2.

Moreover, if ‖u0‖2 = 1 we have that

‖uK‖2 = 1 + τ2
K∑
k=1

‖dtuk‖2,

i.e., ‖uK‖ ≥ 1 and if ‖v‖ ≤ c∗‖v‖∗ for all v ∈ H1(Ω) then
∣∣‖uK‖2−1

∣∣ ≤ cUτ .

Proof. Choosing v = dtu
k in Step (1) of Algorithm 3.1 shows that

‖dtuk‖2∗ +
1

2
dt‖∇uk‖2 +

τ

2
‖∇dtuk‖2

+
1

m
‖uk−1‖L1

ε(∂Ω)

∫
∂Ω

(1/2)
(
dt|uk|2 + τ |dtuk|2

)
|uk−1|ε

ds = 0.

We expect the last term on the left-hand side to be related to a discrete
time derivative of the square of the regularized L1 norm on the boundary.
To verify this, we note that we have

dt|uk|ε = dt
|uk|2ε
|uk|ε

=
dt|uk|2ε
|uk−1|ε

− |u
k|εdt|uk|ε
|uk−1|ε

=
(1/2)

(
dt|uk|2ε − τ |dt|uk|ε|2

)
|uk−1|ε

.
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Using that dt|uk|2ε = dt|uk|2 we combine the two identities to verify that

‖dtuk‖2∗ +
1

2
dt‖∇uk‖2 +

τ

2
‖∇dtuk‖2 +

1

m
‖uk−1‖L1

ε(∂Ω)dt‖uk‖L1
ε(∂Ω)

+
τ

2m
‖uk−1‖L1

ε(∂Ω)

∫
∂Ω

|dt|uk|ε|2 + |dtuk|2

|uk−1|ε
ds = 0.

Note that the last term on the left-hand side is non-negative. We use that

‖uk−1‖L1
ε(∂Ω)dt‖uk‖L1

ε(∂Ω) =
1

2
dt‖uk‖2L1

ε(∂Ω) −
τ

2
‖dtuk‖2L1

ε(∂Ω)

to deduce

‖dtuk‖2∗ +
1

2
dt
(
‖∇uk‖2 +

1

m
‖uk‖2L1

ε(∂Ω)

)
+
τ

2
‖∇dtuk‖2 ≤

τ

2m
‖dtuk‖2L1

ε(∂Ω)

≤ (1 + ε)
τ

2m
‖dtuk‖2L1(∂Ω) +

τ

2m

(
ε+ ε2

)
|∂Ω|2.

The condition that

(1 + ε)‖v‖2L1(∂Ω) ≤ c
2
Tr‖v‖2∗ + ‖∇v‖2

and a summation over k = 1, 2, . . . ,K imply the stability estimate. We
further note that due to the orthogonality (dtu

k, uk) = 0 we have

‖uk‖2 = ‖uk−1‖2 + τ2‖dtuk‖2

and an inductive argument yields the second asserted estimate. �

Remarks 3.3. (i) If ‖ · ‖∗ is the norm in H1(Ω) then the continuity of the
trace operator implies the assumption. In case of the L2 norm it depends on
the geometry of Ω via the operator norm of the trace operator.
(ii) The iterates of Algorithm 3.1 approximate an eigenfunction and since
the values of Jm are (nearly) decreasing we expect to approximate λm since
other eigenvalues correspond to unstable stationary configurations.
(iii) Since ‖uK‖ ≥ 1 we may normalize uK and obtain an approximation of
λm via Jm(ũK) with ũK = uK/‖uK‖ even if τ = O(1).

4. Spatial discretization

Given a regular triangulation Th of Ω with maximal mesh-size h > 0 we
consider the minimization of Jm,ε in the finite element space

S1(Th) =
{
vh ∈ C(Ω) : vh|T ∈ P1(T ) for all T ∈ Th

}
.

For a direct implementability we include quadrature by considering the func-
tional

Jm,ε,h(uh) = ‖∇uh‖2 +
1

m
‖uh‖2L1

ε,h(∂Ω)

with the discretized and regularized L1 norm

‖uh‖L1
ε,h(∂Ω) =

∫
∂Ω
Ih|uh|ε ds =

∑
z∈Nh∩∂Ω

βz|uh(z)|ε.
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Here, Ih : C(Ω)→ S1(Th) is the nodal interpolation operator and Nh is the
set of nodes in Th so that we have

βz =

∫
∂Ω
ϕz ds

for the nodal basis function ϕz associated with z ∈ Nh. It is a straight-
forward task to show that the result of Proposition 3.2 carries over to the
spatially discretized functional Jm,ε,h. The following proposition determines
the approximation properties of the discretized functional.

Proposition 4.1. Assume that there exists a minimizer u ∈ H2(Ω) for Jm
with ‖u‖2 = 1. We then have

0 ≤ min
uh∈S1(Th)

Jm(uh)− Jm(u) ≤ ch‖u‖2H2(Ω).

Moreover, if Th is quasiuniform then for every uh ∈ S1(Th) we have with
α ≥ 1/2 ∣∣Jm,ε,h(uh)− Jm(uh)

∣∣ ≤ c(‖uh‖H1(Ω) + 1)2(ε+ hα).

If uh is uniformly H1-regular on the boundary, i.e., if ‖∇uh‖L2(∂Ω) ≤ c for
all h > 0, then we have α ≥ 1.

Proof. (i) We define ũh = Ihu/‖Ihu‖ which is well defined for h sufficiently
small since ‖u− Ihu‖ = O(h2). We have that

‖u− ũh‖+ h‖∇[u− ũh]‖ ≤ cIh2‖D2u‖.

With the continuity properties of the trace operator we deduce that

Jm(ũh)− Jm(u)

≤
(
∇[ũh + u],∇[ũh − u]

)
+

1

m

(
‖ũh‖L1(∂Ω) + ‖u‖L1(∂Ω)

)
‖ũh − u‖L1(∂Ω)

≤ ch‖u‖2H2(Ω),

which implies the first estimate.
(ii) Noting that 0 ≤ |a|ε − |a| ≤ ε it follows that

Jm,ε(uh)− Jm(uh) =
1

m

(
‖uh‖L1

ε(∂Ω) + ‖uh‖L1(∂Ω)

)(
‖uh‖L1

ε(∂Ω) − ‖uh‖L1(∂Ω)

)
≤ c(‖uh‖H1(Ω) + 1)ε.

We further note that we have∫
∂Ω

∣∣|uh|ε − Ih|uh|ε∣∣ ds ≤ ch‖∇|uh|ε‖L2(∂Ω) ≤ ch‖∇uh‖L2(∂Ω).

Using that for elementwise polynomial functions φh ∈ L∞(Ω) we have

‖φh‖L2(∂Ω) ≤ ch−1/2‖φh‖L2(Ω)
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implies that∣∣Jm,ε,h(uh)− Jm,ε(uh)
∣∣

=
1

m

(
‖uh‖L1

ε,h(∂Ω) + ‖uh‖L1
ε(∂Ω)

)∣∣‖uh‖L1
ε,h(∂Ω) − ‖uh‖L1

ε(∂Ω)

∣∣
≤ c
(
‖∇uh‖+ 1

)
h1/2‖∇uh‖,

which proves the second estimate. �

The estimates of the proposition imply the Γ-convergence of the functionals
Jm,ε,h to Jm as (ε, h) → 0. We formally extend the discrete functionals
Jm,ε,h by the value +∞ in H1(Ω) \ S1(Th). Note that the functional Jm is
continuous, convex, and coercive on H1(Ω).

Corollary 4.2. The functionals Jm,ε,h converge to Jm as (ε, h)→ 0 in the
sense of Γ-convergence with respect to weak convergence in H1(Ω).

Proof. (i) Let (uh)h>0 be a sequence of finite element functions with uh ⇀ u
in H1(Ω). The weak lower semicontinuity of Jm yields that

Jm(u) ≤ lim inf
h→0

Jm(uh).

Since by the second estimate of Proposition 4.1 we have

Jm,ε,h(uh)− Jm(uh)→ 0

as (ε, h)→ 0, we deduce that

Jm(u) ≤ lim inf
h→0

Jm,ε,h(uh).

(ii) Let u ∈ H1(Ω) and δ > 0. By continuity of Jm there exists h0 > 0 such

|Jm(u)− Jm(uh)| ≤ δ/2

for all uh ∈ S1(Th) with ‖u− uh‖H1(Ω) ≤ h0. By Proposition 4.1 we have

|Jm(uh)− Jm,ε,h(uh)| ≤ δ/2

for (ε, h) sufficiently small. By density of the spaces S1(Th) in H1(Ω) we
may thus select a sequence (uh)h>0 with uh → u in H1(Ω) and

Jm,ε,h(uh)→ Jm(u)

as (ε, h)→ 0. �

5. Numerical experiments

We illustrate the efficiency of the proposed numerical method and identify
features of optimal insulating layers via several examples.

Example 5.1 (Unit disk). Let d = 2, Ω = B1(0), and m = 0.4.
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The Neumann and Dirichlet eigenvalues for the Laplace operator on the unit
disk coincide with certain squares of roots of Bessel functions and are given
by

λD ≈ 5.8503, λN ≈ 3.3979.

We initialized Algorithm 3.1 with random functions on approximate trian-
gulations of Ω = B1(0). Table 1 displays the number of nodes and triangles
in Th, the number of iterations K needed to satisfy the stopping criterion

‖dtuKh ‖∗ ≤ εstop,

and the approximations

λm,ε,h =
Jm,ε,h(uKh )

‖uKh ‖2

with the final iterate uKh . We used a lumped L2 inner product to define the
evolution metric (·, ·)∗. The regularization parameter, the step size, and the
stopping criterion were defined via

ε = h/10, τ = 1, εstop = h/10.

Plots of the numerical solutions in Example 5.1 on triangulations with 1024
and 4096 triangles are shown in Figure 3. The break of symmetry becomes
appearant and is stable in the sense that it does not change with the dis-
cretization parameters. From the numbers in Table 1 we see that the itera-
tion numbers grow slower than linearly with the inverse of the mesh size and
that the approximations of λm converge without a significant preasymptotic
range. For a comparison we computed the eigenvalue of the operator A`
with constant function `(s) = m/|∂Ω| and obtained the value λm,` ≈ 5.095
for m = 0.4, i.e., the nonuniform distribution of insulating material reduces
the eigenvalue by approximately 0.5%.

Figure 3. Eigenfunctions for different triangulations in Example 5.1.

Example 5.2 (Unit square). Let d = 2, Ω = (0, 1)2, and m = 0.1.

On the unit square we have

λD = 2π2, λN = π2,
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h #Nh #Th K λm,ε,h
2−1 13 16 9 4.938 371
2−2 41 64 9 5.018 139
2−3 145 256 8 5.063 251
2−4 545 1024 16 5.070 124
2−5 2113 4096 70 5.071 488
2−6 8321 16384 107 5.071 643
2−7 33025 65536 161 5.071 725
2−8 131585 262144 224 5.071 721
2−9 525313 1048576 260 5.071 709

Table 1. Iteration numbers and discrete eigenvalues in Example 5.1.

and the qualitative properties of optimal insulations differ significantly from
those for the unit disk. Figure 4 displays numerical solutions on triangula-
tions of Ω = (0, 1)2 with 289 and 1089 triangles in Example 5.2. We observe
that the computed solutions reflect the symmetry properties of the domain
but also correspond to a nonuniform distribution of insulating material. In
this experiment significantly smaller iteration numbers are observed which
appear to be related to the symmetry and corresponding uniqueness prop-
erties of solutions. The fact that the computed eigenvalues shown in Table 2
may increase for enlarged spaces is due to the use of the mesh-dependent
regularization and quadrature.

Figure 4. Eigenfunctions for different triangulations in Example 5.2.

Example 5.3 (Unit ball). Let d = 3, Ω = B1(0), and m = 5.0.

The effect of a nonuniform insulating layer is slightly stronger in three-
dimensional situations. For the setting of Example 5.3 and two different
triangulations we obtained the distributions shown in Figure 5. As in two
space dimensions the insulation leaves a connected gap which is here ap-
proximately circular. The thickness continuously increases to a maximal
value that is attained at a point on the boundary which is opposite to the
gap of the insulation. Note that the position of the gap is arbitrary and
depends on the initial data and the discretization parameters. For a uni-
form distribution of the insulation material we obtain the Robin eigenvalue
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h #Nh #Th K λm,ε,h
2−1 9 8 6 14.648 110
2−2 25 32 6 16.734 246
2−3 81 128 7 17.060 456
2−4 289 512 9 17.090 222
2−5 1089 2048 14 17.093 521
2−6 4225 8192 13 17.094 441
2−7 16641 32768 16 17.091 990
2−8 66049 131072 21 17.090 093
2−9 263169 524288 25 17.089 322

Table 2. Iteration numbers and discrete eigenvalues in Example 5.2.

λR = 4.7424 so that the nonuniform distribution reduces the slightly larger
limiting value of Table 3 by approximately 1%.

Figure 5. Eigenfunctions for different triangulations (top)
and approximate indicator functions of the insulation gaps
after rotation (bottom) in Example 5.3.

6. Shape variations

6.1. Shape optimization. The insulation properties of a conducting body
can further be improved by modifying its shape keeping its volume fixed.
Taking perturbations of the domain gives rise to a shape derivative of the
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h #Nh #Th K λm,ε,h
2−1 33 87 9 4.587 743
2−2 257 1069 11 4.696 848
2−3 2205 11162 45 4.693 606
2−4 17461 96384 133 4.692 364
2−5 138745 796358 161 4.692 733

Table 3. Iteration numbers and discrete eigenvalues in Example 5.3.

eigenvalue λm regarded as a function of the domain Ω, i.e., for a vector
field w : Ω → Rd and a number s ∈ R we consider the perturbed domain
(id + sw)(Ω) and define

δλm(Ω)[w] = lim
s→0

λm
(
(id + sw)(Ω)

)
− λm

(
Ω
)

s
.

It follows from, e.g., [HP05, BBN17], that with the outer unit normal n on
∂Ω we have

δλm(Ω)[w] =

∫
∂Ω
jm(u)w · n ds,

where jm(u) is for a sufficiently regular, nonnegative eigenfunction u ∈
H1(Ω) corresponding λm and the mean curvature H on ∂Ω, normalized
so that H = d− 1 for the unit sphere, given by

jm(u) = |∇u|2 − 2|∂nu|2 − λmu2 +
2

m
‖u‖L1(∂Ω)Hu.

To preserve the volume of Ω we restrict to divergence-free vector fields and
compute a representative v = ∇Stλm(Ω) ∈ H1(Ω;Rd) of δλm(Ω) via the
Stokes problem{

(v, w) + (∇v,∇w) + (p,divw) = δλm(Ω)[w],

(q,div v) = 0,

for all w ∈ H1(Ω;Rd) and q ∈ L2(Ω). Since δλm(Ω)[w] only depends on the
normal component w · n on ∂Ω it follows that the tangential component of
the solution v ∈ H1(Ω;Rd) vanishes. To optimize λm with respect to shape
relative to a reference domain Ω ⊂ Rd we evolve the domain by the negative
shape gradient, i.e., beginning with Ω0 = Ω we define a sequence of domains
(Ωk)k=0,1,... via

Ωk+1 = (id + τkvk)(Ωk), vk = −∇Stλm(Ωk),

with positive step sizes τk > 0. Starting from a maximal initial step size
τmax, we decreased the step size τk in the k-th step of the gradient descent
until a relative decrease of the objective below 0 < θ < 1 is achieved. The
new step size is then defined by τk+1 = min{τmax, 2τk}; we stop the iteration
if τk+1 ≤ ε′stop.
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Figure 6. Eigenfunctions um and corresponding optimized
two-dimensional shapes Ω∗ obtained from the unit disk Ω =
B1(0) with m = 0.4, 0.9, 1.4, 1.9 (top to bottom).
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6.2. Optimization from the unit disk. Starting from the unit disk and
using different values m for the available insulation mass we carried out a
shape gradient descent iteration using a discretization of the Stokes problem
with a nonconforming Crouzeix–Raviart method. The numerical solutions
vkh were projected onto conforming P1 finite element vector fields before
the triangulation of the current domain was deformed. Figure 6 shows the
computed nearly stationary shapes for m = 0.4, 0.9, 1.4, 1.9 along with eigen-
functions um. We see that the boundary is flatter along the parts which are
not insulated and that the domains are convex with one axis of symmetry.
The reduction of the eigenvalues via shape optimization is rather small as
is documented in Table 4 in which the eigenvalues λuni

R (Ω), λm,h(Ω), and
λm,h(Ω∗) for the uniform and nonuniform insulation of the unit disk and the
optimized domains Ω∗, respectively, are displayed.

m 0.4 0.9 1.4 1.9
λuni
R (Ω) 5.0951 4.3803 3.8085 3.3519
λm,h(Ω) 5.0714 4.3383 3.7819 3.3503
λm,h(Ω∗) 5.0664 4.3296 3.7718 3.3378

Table 4. Decrease of the nonlinear eigenvalues via shape
optimization for different total masses and comparison to uni-
form insulations on the unit disk Ω = B1(0).

6.3. Three-dimensional rotational shapes. The optimization of λm(Ω)
among domains Ω ⊂ Rd is ill-posed when d ≥ 3 as explained in the intro-
duction. The same phenomenon is obtained by taking Ω = Br1 ∪ Br2 the
union of two disjoint balls with radii r1 and r2 and

u =

{
1 on Br1
0 on Br2

which gives

λm(Ω) ≤
1
m(|∂Br1 |)2

|Br1 |
=
d2ωd
m

rd−2
1 .

Again, λm(Ω) can be made arbitrarily small, keeping the measure of Ω fixed
and letting r1 → 0.
Instabilities in numerical experiments confirm the general ill-posedness in
the three-dimensional setting. It is expected that optimal shapes exist
among convex bodies of fixed volume and we therefore carried out a one-
dimensional optimization among ellipsoids

Ωa = ellipsoid with radii (a, ra, ra).

The radii ra are chosen such that |Ωa| = c0. Letting c0 = |B1(0)| and
m = 5.0 be the volume of the unit ball and total mass we plotted in Figure 7
the values λm(Ωa) as a function of a ∈ [1, 1.5]. For numerical efficiency
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λm(Ωa)
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Figure 7. Eigenvalues λm(Ωa) for different symmetric el-
lipsoids and optimal assembled half-ellipsoids λm(Ω∗ab) and
references to corresponding shapes shown in Figure 8.

Figure 8. Profile, eigenfunction (gray shading), and
boundary film (scaled by ε = 1/10) for the unit ball Ω1

(top), the optimal ellipsoid Ωa with a = 1.225 (middle), and
the optimal assembled half-ellipsoids Ω∗ab with a = 1.607 and
b = 0.657 (bottom).
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we exploited the rotational symmetry of the domains and discretized the
dimensionally reduced setting. We obtain an optimal value for the radius
a ≈ 1.225. The profile of this ellipsoid and a corresponding eigenfunction um
are displayed in the top and middle plot of Figure 8. We further optimized
the eigenvalue within a larger class of rotational bodies defined as assembled
half-ellipsoids, i.e., by considering

Ωab =
(
Ωa ∩ {x1 ≤ 0}

)
∪
(
Ωb ∩ {x1 ≥ 0}

)
,

and adjusting the radii ra = rb such that |Ωab| = c0. Optimizing among the
radii (a, b) we find the optimal shape shown in the bottom plot of Figure 8.
The corresponding discrete eigenfunction is visualized by the gray shading
and suggests a gap in the insulation at the pointed and a thicker insulation
on the blunt end on the surface of the egg-like optimal domain.
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