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Legendre forms are used in the literature for second-order sufficient opti-
mality conditions of optimization problems in (reflexive) Banach spaces. We
show that if a Legendre form exists on a reflexive Banach space, then this
space is already topologically equivalent to a Hilbert space.
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1 Introduction

A Legendre form is a quadratic form Q : X → R (where X is a normed vector space) that
is sequentially weakly lower semi-continuous and has the property that xn → x whenever
xn ⇀ x and Q(xn)→ Q(x), see Definition 2.21.

Legendre forms have their origin in the calculus of variations. They are discussed in
a Hilbert space setting in [Hestenes, 1951] and [Ioffe, Tihomirov, 1979]. However, the
definition of a Legendre form naturally extends to Banach spaces. Most notably, in
[Bonnans, Shapiro, 2000] they are defined in arbitrary Banach spaces and used in reflexive
Banach spaces. Legendre forms are useful in reflexive Banach spaces for second-order
sufficient optimality conditions. For instance, if the second derivative corresponds to a
quadratic form Q(x) that is a Legendre form, then it suffices to show that Q(x) > 0 for
all x ∈ C \ {0} for some closed convex cone C ⊂ X (instead of the usual coercivity of
∗Technische Universität Chemnitz, Faculty of Mathematics, Professorship Numerical Mathemat-
ics (Partial Differential Equations), 09107 Chemnitz, Germany, felix.harder@mathematik.tu-
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1 The term “Legendre form” is different from the object of the same name that appears in the area of
elliptic curves.

http://www.ams.org/mathscinet/msc/msc2010.html?t=49K27
http://www.ams.org/mathscinet/msc/msc2010.html?t=46B03
mailto:felix.harder@mathematik.tu-chemnitz.de
mailto:felix.harder@mathematik.tu-chemnitz.de
https://www.tu-chemnitz.de/mathematik/part_dgl/people/harder/index.php


Legendre forms in reflexive Banach spaces Felix Harder

the second derivative), see [Bonnans, Shapiro, 2000, Lemma 3.75]. The condition that
a certain quadratic form is a Legendre form also plays an important role in many other
theorems in [Bonnans, Shapiro, 2000] that are formulated in the setting of a reflexive
Banach space.

It is well known that if a coercive quadratic form exists on a Banach space X, then X
is already Hilbertizable, i.e., topologically equivalent to a Hilbert space (see Proposi-
tion 4.7). As a consequence, coercive quadratic forms do not exist on Banach spaces that
are not Hilbertizable.

The question arises whether Legendre forms (which can be interpreted as a generalization
of coercive quadratic forms) suffer from the same problem or if there exist Legendre forms
on Banach spaces that are not Hilbertizable.

For reflexive Banach spaces, we are able to prove the following theorem, which answers
this question.

Theorem 1.1. Let Q be a Legendre form on a reflexive Banach space X. Then X is
Hilbertizable.

This theorem will be proven in Section 4.

An important consequence of this result is that one should not attempt to apply theorems
in which the existence of a Legendre form is assumed to reflexive Banach spaces that are
not Hilbertizable. An example for such spaces would be Lp(Ω) where p ∈ (1,∞)\{2} and
Ω ⊂ Rd is a measurable set. Some of these theorems that are formulated in a reflexive Ba-
nach space and where a Legendre form appears in the conditions are [Bonnans, Shapiro,
2000, Theorem 3.128, Theorem 5.5], [Wachsmuth, 2016, Theorem 5.7]. The reflexivity in
these and other theorems is usually used to obtain the weak sequential compactness of
the closed unit ball, which plays an important role in the proofs. Therefore the question
whether there exist Legendre forms in non-reflexive Banach spaces is less relevant for
applications.

In this paper, we will proceed as follows. We start with introducing some notation and
giving precise definitions in Section 2. Then in Section 3 we will give a brief overview
of the established results regarding Legendre forms in Hilbert spaces. In Section 4 we
provide a proof of Theorem 1.1 and some intermediate results. Finally, in Section 5 we
address extended Legendre forms, discuss the situation in non-reflexive Banach spaces,
and give a conclusion.

2 Definitions and notation

We start with defining terminology that is related to quadratic forms.
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Definition 2.1. Let X be a normed vector space. We call a function Q : X → R a
quadratic form if there exists a bilinear form B : X ×X → R such that

Q(x) = B(x, x) ∀x ∈ X.

For a quadratic form Q we say that two subsets Y1, Y2 ⊂ X are Q-orthogonal, denoted
as Y1 ⊥Q Y2, if

Q(y1 + y2) = Q(y1) +Q(y2) ∀ y1 ∈ Y1, y2 ∈ Y2.

We call Q coercive (or elliptic) if it is continuous and

Q(x) ≥ γ‖x‖2 ∀x ∈ X

for a constant γ > 0.

We say that Q is positive (or negative) if Q(x) > 0 (or Q(x) < 0) for all x ∈ X \ {0}.

Note that a quadratic form does not need to be continuous. However, due to Lemma 4.6
all quadratic forms that we use in Sections 3 and 4 turn out to be continuous.

In the case that Q is a continuous quadratic form, it is always possible to uniquely choose
a continuous operator A : X → X∗ in such a way, that

Q(x) = 〈Ax, x〉X∗×X and 〈Ax, y〉X∗×X = 〈Ay, x〉X∗×X ∀x, y ∈ X (2.1)

holds. Thus, we set the convention that whenever there is a continuous quadratic form
Q, we denote by A the unique operator that is given by (2.1). We note that if X is
reflexive, we know that A is self-adjoint. Using the operator A it, it is easy to check that
the equivalence

Y1 ⊥Q Y2 ⇔ 〈Ay1, y2〉X∗×X = 0 ∀ y1 ∈ Y1, y2 ∈ Y2

holds. This gives us an alternative description of Q-orthogonality. We will also use the
notation y1 ⊥Q Y2 for {y1} ⊥Q Y2 and in the same spirit we abbreviate {y1} ⊥Q {y2}
with y1 ⊥Q y2.
It can be shown that if a function Q : X → R is a quadratic form then the parallelogram
law

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) ∀x, y ∈ X

holds. The converse is true if we assume Q to be continuous. In this case, the operator
A : X → X∗ that satisfies (2.1) can be recovered by the polarization identity

〈Ax, y〉X∗×X =
1

4
(Q(x+ y)−Q(x− y)).

Having discussed quadratic forms, we give the definition of a Legendre form.

3



Legendre forms in reflexive Banach spaces Felix Harder

Definition 2.2. Let X be a normed vector space. We call a quadratic form Q : X → R
a Legendre form if Q is sequentially weakly lower semi-continuous and if xk ⇀ x and
Q(xk)→ Q(x) imply xk → x for all sequences {xk}k∈N in X.

Note that as a consequence of Lemma 4.6 all Legendre forms are continuous if X is a
Banach space. In this case, it is possible to replace x with 0 in the above definition, i.e.
if a quadratic form Q on a Banach space is sequentially weakly lower semi-continuous
and (xk ⇀ 0 ∧ Q(xk) → 0) ⇒ xk → 0 holds for all sequences {xk}k∈N ⊂ X, then Q is
already a Legendre form.

Finally, we mention that for linear subspaces Y1, Y2, Z of a vector space X we will use
the notation Z = Y1+̇Y2 if Z = Y1 + Y2 and Y1 ∩ Y2 = {0}.

3 Legendre forms in Hilbert spaces

In this section we give some results from the literature that discuss Legendre forms in
Hilbert spaces. Note that with the use of Theorem 1.1 these results extend to reflexive
Banach spaces.

The following theorem is due to [Hestenes, 1951, Theorem 11.6] and yields a good char-
acterization of Legendre forms in Hilbert spaces. Moreover, it is useful for constructing
examples of Legendre forms.

Theorem 3.1. A quadratic form Q on a Hilbert space X is a Legendre form if and only
if it can be expressed as

Q(x) = Q1(x)−Q2(x)

where Q1 is a coercive quadratic form and Q2 is a sequentially weakly continuous
quadratic form.

It can be shown that a quadratic form Q(x) = 〈Ax, x〉 in a Hilbert space is weakly
sequentially continuous if and only if A is compact, see [Ioffe, Tihomirov, 1979, Theorem 1
in 6.2.3]. A consequence is that in a finite dimensional space all quadratic forms are
Legendre forms. We note that if A : X → X∗ is a compact operator, the quadratic
form Q(x) = 〈Ax, x〉 does not need to be weakly continuous. For instance, the compact
operator A : `2 → `2 given by Aen = 1

nen ∀n ∈ N yields a sequentially weakly continuous
quadratic form Q that is not weakly continuous. Indeed, Q(x) = 1 for all x ∈ S :=
{
√
nen : n ∈ N} but Q(0) = 0 and 0 is in the weak closure (but not in the weak

sequential closure) of S.

A simple combination of [Hestenes, 1951, Theorem 7.1, Theorem 11.3] yields a statement
that can give us an idea how to prove Theorem 1.1.
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Theorem 3.2. Let Q be a Legendre form on a Hilbert space X. Then there is a
orthogonal and Q-orthogonal decomposition

X = Y++̇Y0+̇Y−

with closed subspaces Y+, Y0, Y− ⊂ X such that Q is coercive on Y+, −Q is coercive on
Y−, and Q = 0 on Y0. Moreover, Y0 and Y− are finite-dimensional.

It should be noted that it is not possible to simply prove this result (without orthogonal-
ity) in reflexive Banach spaces in a way that is analogous to the original proof in Hilbert
spaces. This is because the proof of [Hestenes, 1951, Theorem 7.1] uses that a quadratic
form can be expressed as a difference of two nonnegative quadratic forms. However, this
is not possible in the Banach spaces `p where p ∈ (1, 2), see [Kalton, Konyagin, Veselý,
2008, Corollary 1.7].

4 Legendre forms in reflexive Banach spaces

4.1 Basic results from functional analysis

In this section we will recall some established results from the literature of functional
analysis. We will need those in Sections 4.2 and 4.3. Additionally, we provide a result
that states that lower semi-continuous quadratic forms are continuous, which yields a
very basic property of Legendre forms.

Lemma 4.1. A reflexive Banach space is finite dimensional if and only if every weakly
convergent sequence is norm-convergent.

This result follows from [Rudin, 1991, Theorem 1.22] and the fact that every bounded
sequence has a weakly convergent subsequence.

The next result which states that finite-dimensional subspaces can be complemented can
be found in [Rudin, 1991, Lemma 4.21].

Lemma 4.2. Let X be a Banach space with a closed subspace Y . If dimY < ∞ or
dim(X/Y ) <∞ then there is a closed subspace Z ⊂ X such that X = Y +̇Z.

The following lemma will be useful when we want to generalize the property “Hilberti-
zable” (which means that there exists a scalar product such that the induced norm is
equivalent to the original norm) to a larger space.

Lemma 4.3. Let X = Y +̇Z be a Banach space with closed subspaces Y,Z and dimZ <
∞. If Y is Hilbertizable, then X is Hilbertizable.
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Proof. Because Z is finite dimensional, we know that Z is also Hilbertizable.

As the product of two Hilbertizable Banach spaces, Y × Z (which is algebraically iso-
morphic to X) can be equipped with an inner product. As a consequence of the open
mapping theorem, it follows that Y ×Z equipped with the norm ‖(y, z)‖ := ‖y‖+ ‖z‖ is
even topologically isomorphic to X, i.e. the norms are equivalent.

When we obtain intermediate results that are formulated in a reflexive Banach space,
we often intend to apply these results to a closed subspace of a reflexive Banach space.
Similarly, we will often apply results where a Legendre form is relevant to closed subspaces
of a Banach space, where the Legendre form is defined on the whole Banach space. The
following two lemmas guarantee that this is possible.

Lemma 4.4. A closed subspace of a reflexive Banach space is itself reflexive.

For this result, see [Conway, 1990, Corollary V.4.3].

Lemma 4.5. Let Q be a Legendre form on a normed vector space X and let Y be a
linear subspace of X. Then Q is also a Legendre form on Y .

Proof. Every sequence {yn}n∈N in Y that converges in the weak topology on Y to y ∈ Y ,
also converges in the weak topology on X. The claim follows.

The previous two lemmas will be used frequently without always referencing them.

Finally, we give a results that shows that quadratic forms are continuous if they are lower
semi-continuous. A similar result is known for convex functions, see [Bonnans, Shapiro,
2000, Proposition 2.111]. However, a quadratic form does not need to be convex.

Lemma 4.6. Let Q be a quadratic form on a Banach space X. If Q is lower semi-
continuous then it is continuous.

Proof. Our first goal is to find x ∈ X, ε > 0 such that Q is bounded on B2ε(x). In order
to do this, consider the sets Cn := {y ∈ X : Q(y) ≤ n} for n ∈ N. Because Q is lower
semi-continuous, these sets are closed. Since X =

⋃
n∈NCn, by Baire’s theorem one of

the sets Cn has to contain a nonempty open set. Therefore Q is bounded from above on
some nonempty open set. Since Q is lower semi-continuous, it is also locally bounded
from below.

Thus we know that there exist x ∈ X, ε > 0, C > 0 such that |Q(y)| < C whenever
‖y − x‖ < 2ε. Using the parallelogram law, we have

|Q(z)| = 1

2
|Q(x+ z) +Q(x− z)− 2Q(x)| ≤ 2C ∀z ∈ B2ε(0).
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Now let B : X ×X → R be given such that Q(x) = B(x, x) for all x ∈ X. Without loss
of generality we can assume that B is symmetric. Moreover, if y1, y2 ∈ Bε(0), we have
|B(y1, y2)| = 1

4 |Q(y1 + y2)−Q(y1 − y2)| ≤ C. Thus B is bounded in a neighborhood of
0 and therefore continuous. The claim follows.

Because sequentially weakly lower semi-continuous functions are lower semi-continuous,
an important consequence of this lemma is that on a Banach space every Legendre form
is continuous.

4.2 Proving Hilbertizability under various assumptions

In this section, we will prepare the proof of Theorem 1.1. We do this by proving results,
which are similar to Theorem 1.1 but need additional assumptions. We start with the
statement that X is Hilbertizable if Q is coercive, see Proposition 4.7. We then relax this
assumption to positive quadratic forms in Proposition 4.8 and then nonnegative quadratic
forms in Proposition 4.10. In Section 4.3 we will then provide a proof of Theorem 1.1
with the additional assumption that the operator A is injective, see Proposition 4.14.

We start with formulating the following well-known result:

Proposition 4.7. Let Q be a coercive quadratic form on a Banach space X. Then X
is Hilbertizable.

The proof uses that Q(·)
1
2 defines a norm on X which is equivalent to the original norm,

see, e.g. [Bonnans, Shapiro, 2000, p. 195].

In order to generalize the result to positive Legendre forms, it suffices to show that a
positive Legendre form is already coercive. This is done in the proof of the next result.

Proposition 4.8. Let Q be a positive Legendre form on a reflexive Banach space X.
Then X is Hilbertizable.

Proof. Assume that Q is not coercive. Then there is a sequence {xn}n∈N in X with
Q(xn)→ 0 and ‖xn‖ = 1∀n ∈ N.
Because xn is bounded in a reflexive Banach space, there is a weakly convergent sub-
sequence of {xn}n∈N. Without loss of generality, xn ⇀ x for some x ∈ X. We have
0 ≤ Q(x) ≤ lim inf Q(xn) = 0. It follows that Q(x) = 0 and therefore xn ⇀ x = 0.
Applying the definition of a Legendre form yields xn → 0 which is a contradiction to
‖xn‖ = 1.

Thus, Q is coercive. Due to Proposition 4.7 it follows that X is Hilbertizable.

So far we have investigated positive Legendre forms. Now we briefly turn our attention
to nonpositive Legendre forms and provide a lemma that will be helpful later on.
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Lemma 4.9. Let Q be a Legendre form on a reflexive Banach space X. If Q ≤ 0 on X,
then X is finite-dimensional.

Proof. Because −Q ≥ 0 is a quadratic form, it is convex, see e.g. [Bonnans, Shapiro,
2000, Proposition 3.71]. Thus −Q is sequentially weakly lower semi-continuous. As a
consequence, Q is sequentially weakly continuous.

Let {xn}n∈N be an arbitrary sequence in X such that xn ⇀ x for some x ∈ X. From
xn ⇀ x it follows that Q(xn)→ Q(x). Consequently, ‖xn − x‖ → 0.

Thus every sequence that converges weakly in U converges strongly in U . Applying
Lemma 4.1 yields the desired result.

With the help of Lemma 4.9 we are now able to extend the result of Proposition 4.8 to
nonnegative Legendre forms.

Proposition 4.10. Let Q be a Legendre form on a reflexive Banach space X. If Q ≥ 0
on X, then X is Hilbertizable.

Proof. Define Y0 := {x ∈ X : Q(x) = 0}. In [Bonnans, Shapiro, 2000, Proposition 3.72] it
is shown that Y0 is a linear subspace of X. Applying Lemma 4.9 yields that dimY0 <∞.
This allows us to apply Lemma 4.2, which states that we can find a closed subspace Y+
such that X = Y++̇Y0. Because Q > 0 on Y+ \ {0}, we know by Proposition 4.8 that Y+
is Hilbertizable. Applying Lemma 4.3 yields the result.

4.3 Completion of the proof

Our next goal is to prove the statement of Theorem 1.1 with the additional assumption
that kerA = {0}, i.e. A is injective. The idea for our proof will be to find closed subspaces
Y−, Y+0 such that X = Y+0+̇Y− where Q is negative on Y− and Q ≥ 0 on Y+0. The next
three lemmas will be a preparation for this, and we start with proving the existence of a
maximal closed subspace Y−.

Lemma 4.11. Let Q be a Legendre form on a reflexive Banach space X. Then there
exists a maximal closed subspace Y− (w.r.t. set inclusions) such that Q is negative on
Y−.

Proof. Suppose there is no maximal closed subspace with the desired property. Then
we can construct a sequence of linear subspaces (Zi)i∈N such that Zi ( Zi+1 and Q is
negative on Zi for all i ∈ N. If we define the Z :=

⋃
i∈N Zi we have that Z is an infinite-

dimensional closed subspace with Q ≤ 0 on Z. By Lemma 4.9 this is a contradiction.
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The following lemma allows us to show that a subspace Y− is not maximal under certain
conditions.

Lemma 4.12. Let Q be a quadratic form on a finite dimensional vector space X :=
Y−+̇ lin(y)+̇ lin(x). We assume that Q is negative on Y−, Q(y) = 0, y ⊥Q Y−, and
〈Ay, x〉 6= 0.

Then there is a linear subspace Ỹ− ) Y− such that Q is negative on Ỹ−.

Proof. Because Y− is finite dimensional, we can find a Q-orthogonal basis (yi)
d
i=1 of Y−

with the property that Q(yi) = −1 for all i ∈ {1, . . . , d}. We define

zα := x+ αy +

d∑
i=1

〈Ax, yi〉yi

for α ∈ R. Then it can be shown that zα ⊥Q Y− for all α ∈ R. Indeed,

〈Ayj , zα〉 = 〈Ayj , x〉+〈Ayj , y〉+
d∑
i=1

〈Ax, yi〉〈Ayj , yi〉 = 〈Ayj , x〉+〈Ax, yj〉〈Ayj , yj〉 = 0

is true for every basis vector yj of Y−. Now we will calculate Q(zα). We have

Q(zα) = 〈Azα, x+ αy〉 = Q(x+ αy) +
d∑
i=1

〈Ax, yi〉〈Ayi, x+ αy〉

= Q(x) + 2α〈Ax, y〉+
d∑
i=1

〈Ax, yi〉2.

Due to 〈Ax, y〉 6= 0 we can choose α ∈ R such that Q(zα) < 0. Finally, if we set
Ỹ− := Y−+̇ lin(zα) it is easy to check Q < 0 on Ỹ− \ {0} by using zα ⊥Q Y−.

If a subspace Y+0+̇Y− is not equal to the full space X, the next lemma enables us to find
an element outside of Y+0+̇Y− that is Q-orthogonal to that linear subspace.

Lemma 4.13. Let Q be a Legendre form on a reflexive Banach space X. We assume
that A is injective. Let Y := Y+0+̇Y− be a subspace with closed subspaces Y+0, Y− ⊂ X.
Furthermore, assume that Y− is a maximal closed subspace (w.r.t. to set inclusions) with
the property that Q is negative on Y−.

If X 6= Y , then there exists z ∈ X \ Y such that z ⊥Q Y .

Proof. Consider the set Y ⊥Q
:= {x ∈ X : x ⊥Q Y }. First, we make the assumption that

Y ⊥
Q ⊂ Y holds.

9
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Let x ∈ X \ Y be given. Note that because Y− is finite dimensional according to
Lemma 4.9 and the sum of a closed subspace and a finite dimensional subspace is closed
(see, e.g., [Rudin, 1991, Theorem 1.42]) we know that Y is closed. Therefore we can
invoke Hahn-Banach to find x∗ ∈ X∗ such that 〈x∗, x〉 = 1 and 〈x∗, y〉 = 0∀ y ∈ Y .

Assume that there exists y ∈ X such that Ay = x∗. Then y ∈ Y ⊥Q and thus y ∈ Y .
Therefore, Q(y) = 〈Ay, y〉 = 0 and y ⊥Q Y−. Since also 〈Ay, x〉 6= 0 is true, we can
apply Lemma 4.12 to Y−+̇ lin(x)+̇ lin(y). This yields a contradiction to the maximality
of Y−.

Thus we know that x∗ 6∈ range(A). However, using that A is injective and self-adjoint,
we also know that range(A) is dense in X∗. Thus, let {xn}n∈N be a sequence in X such
that Axn → x∗. We claim that ‖xn‖ → ∞ has to hold. Indeed, if {xn}n∈N has a bounded
subsequence, it must also have a weakly convergent subsequence. A weak limit z ∈ X
would have to satisfy Az = x∗, which is a contradiction to x∗ 6∈ range(A).

We define the sequence {yn}n∈N via yn := 1
‖xn‖xn. Note that Ayn → 0 and ‖yn‖ =

1 ∀n ∈ N. Because {yn}n∈N is bounded, it has a weakly convergent subsequence. Hence,
without loss of generality, yn ⇀ z for some z ∈ X. Therefore, Ayn → 0 implies Az = 0,
hence z = 0. We also know that Q(yn) = 〈Ayn, yn〉 → 0. Using the definition of a
Legendre form, we have yn → 0, which is a contradiction to ‖yn‖ = 1.

Thus our initial assumption Y ⊥Q ⊂ Y is false, and any z ∈ Y ⊥Q \ Y satisfies z ⊥Q Y .

Now we are able to prove Hilbertizability if A is injective.

Proposition 4.14. Let Q be a Legendre form on a reflexive Banach space X. If A is
injective then X is Hilbertizable.

Proof. First, we use Lemma 4.11 to choose a maximal closed subspace Y− such that Q
is negative on Y−.

We will apply Zorn’s Lemma to the collection of linear subspaces

F := {Z ⊂ X : Z closed subspace, Q ≥ 0 on Z,Z ⊥Q Y−}

with the ordering “⊂”. Let us check the requirements for Zorn’s Lemma. Due to {0} ∈ F
it is clear that F is nonempty. Let (Zi)i∈I be a given (totally ordered) chain of sets
Zi ∈ F for an arbitrary index set I. Then Z̃ :=

⋃
i∈I Zi is an upper bound on that chain,

and it is easy to see that Z̃ ∈ F . Thus the requirements for Zorn’s Lemma are satisfied
and F contains a maximal element.

We denote a maximal element of F by Z and assume that X 6= (Z+̇Y−). We can apply
Lemma 4.13 and find x ∈ X \ (Z+̇Y−) such that x ⊥Q (Z+̇Y−). Consider the case
Q(x) ≥ 0. Then Q ≥ 0 on the closed subspace Z+̇ lin(x), which is a contradiction to the
maximality of Z. On the other hand, if Q(x) < 0, then Q < 0 holds on (Y−+̇ lin(x))\{0},

10
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which is a contradiction to the maximality of Y−. Thus our assumption is wrong and
X = (Z+̇Y−).

Finally, we can combine Proposition 4.10 and Lemma 4.9 with Lemma 4.3, which com-
pletes the proof.

Now it remains to generalize the result of Proposition 4.14 to arbitrary Legendre forms
Q and dropping the condition that A is injective.

Proof of Theorem 1.1. Using Lemma 4.9, it follows that kerA is finite dimensional. By
Lemma 4.2 there exists a closed subspace V of X with X = V +̇ kerA.

Consider the restriction of Q to V and the corresponding self-adjoint operator AV : V →
V ∗. We will show that kerAV = {0}. Indeed, let z ∈ kerAV be given. Then for each
v ∈ V, x0 ∈ kerA we have

0 = 〈AV z, v〉V ∗×V = 〈Az, v〉X∗×X + 〈Ax0, z〉X∗×X = 〈Az, v + x0〉X∗×X .

Thus 〈Az, x〉 = 0 for all x ∈ X = V +̇ kerA and therefore z ∈ kerA ∩ V = {0}.
Now, we can apply Proposition 4.14 in the subspace V , hence V is Hilbertizable. Thus
we can apply Lemma 4.3 to X = V +̇ kerA, which completes the proof.

We note that our proof yields a Q-orthogonal decomposition X = Z+̇Y− such that Q ≥ 0
on Z and Q is negative on Y−, which has similarities with Theorem 3.2.

5 Further remarks and conclusion

5.1 Extended Legendre forms

In [Bonnans, Shapiro, 2000, Definition 3.73] the concept of an extended Legendre form
is introduced.

Definition 5.1. An extended Legendre form is a continuous and sequentially weakly
lower semi-continuous function Q : X → R that has the properties Q(tx) = t2Q(x) ∀x ∈
X, t > 0 and

(Q(xn)→ Q(x) ∧ xn ⇀ x)⇒ xn → x

for all sequences {xn}n∈N in X.

Note that an extended Legendre form does not have to be a quadratic form. The question
arises whether Theorem 1.1 holds for extended Legendre forms. The following example
shows that this is not the case.

11
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Example 5.2. Let p ∈ (1,∞) \ {2} be given. Then the function

Q : Lp(0, 1)→ R, Q(x) = ‖x‖2Lp(0,1)

is an extended Legendre form on a reflexive Banach space.

Proof. It is clear that Q is continuous, sequentially weakly lower semi-continuous and
has the property Q(tx) = t2Q(x) for x ∈ X, t ∈ R.
Let {xn}n∈N be a sequence in Lp(0, 1) such that xn ⇀ x ∈ X and ‖xn‖2Lp(0,1) →
‖x‖2Lp(0,1). Then according to [Brezis, 2011, Proposition 3.32] it follows that xn → x (we
can apply this proposition because Lp(0, 1) is uniformly convex, see [Clarkson, 1936]).

5.2 Legendre forms in non-reflexive Banach spaces

In this subsection we will give a counterexample to show that Theorem 1.1 does not hold
for non-reflexive Banach spaces. This will be done using the space `1.

Example 5.3. There exists a Legendre form on the Banach space `1, although `1 is not
Hilbertizable.

Proof. It is clear that `1 is not Hilbertizable. According to [Conway, 1990, Proposi-
tion V.5.2] every weakly convergent sequence in `1 converges in norm. As a consequence,
every quadratic form on `1 is a Legendre form. It remains to show the existence of a
quadratic form on `1. This is indeed the case, the simplest example being Q(x) = 0.

However, as already mentioned in the introduction, Legendre forms are rarely relevant in
non-reflexive Banach spaces such as `1, because there can be bounded sequences without
a weakly convergent subsequence.

In the case, that a Banach space X has a separable predual space, the sequential version
of the Banach-Alaoglu theorem guarantees that every bounded sequence has a weakly-∗
convergent subsequence. In these Banach spaces it would be more reasonable to rede-
fine Legendre forms using weakly-∗ convergent sequences instead of weakly convergent
sequences in Definition 2.2. It is an open question, whether one can show a result similar
to Theorem 1.1 for these adapted Legendre forms.

5.3 conclusion

We were able to show that if a Legendre form is defined on a reflexive Banach space, this
space is already (topologically) equivalent to a Hilbert space. As an example, Legendre
forms cannot exist on `p or Lp(Ω), where p ∈ (1,∞) \ {2} and Ω ⊂ Rd is an open subset.
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As a simple consequence, the characterization of Legendre forms in Hilbert spaces in
Theorem 3.1 also holds in reflexive Banach spaces.

Our results for Legendre forms in reflexive Banach spaces do not generalize to non-
reflexive Banach spaces or to extended Legendre forms.
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