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Abstract

This paper deals with generalized Nash equilibrium problems (GNEPs) in Banach
spaces. We prove an existence result for normalized equilibria of jointly convex
GNEPs and then propose an augmented Lagrangian-type algorithm for their
computation. A thorough convergence analysis is conducted which considers the
existence of subproblem solutions as well as feasibility and optimality of limit
points. We then apply our investigations to a class of multiobjective optimal
control problems which are governed by a linear partial differential equation and
provide some numerical results to demonstrate the performance of the method.

1 Introduction

We consider the following generalized Nash equilibrium problem (GNEP). Let N ∈ N
be the number of players, each in control of a variable xν ∈ Xν , where Xν is a (real)
Banach space. We write X := X1 × . . .×XN for the strategy space of all players. In the
following, x−ν denotes the strategies of all players except the ν-th player, and X−ν the
corresponding strategy space. We use the notations x = (xν , x−ν) and X = Xν ×X−ν
to emphasize the role of player ν’s variable xν . Each player ν attempts to solve the
optimization problem

minimize
xν∈Xν

θν(x
ν , x−ν) subject to (xν , x−ν) ∈ F . (1)

Here, θν : X → R denotes the objective or utility function of player ν and F ⊆ X is a
nonempty closed convex set. We will also assume that the objective functions θν(·, x−ν)
∗This research was supported by the German Research Foundation (DFG) within the priority program
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are convex and continuously differentiable for any given x−ν ; in this setting, the GNEP
(1) is usually called jointly convex. Note that if F = F1 × . . . × FN for closed convex
sets Fν ⊆ Xν , then (1) reduces to the standard Nash equilibrium problem (NEP) where
each player attempts to solve

minimize
xν∈Xν

θν(x
ν , x−ν) subject to xν ∈ Fν . (2)

In the past years a substantial amount of research has been conducted for GNEPs in finite
dimensions, particularly for the jointly convex case. For a broad overview of the finite-
dimensional case we refer the reader to the survey papers [10, 12]. However, until now
there is not much literature about infinite-dimensional GNEPs and their applications. In
[6] Carlson extended the work of Rosen [30] to infinite dimensional games with strategies
in Banach spaces. He provided conditions for existence and uniqueness of normalized
Nash equilibriums.

Some work has been done for standard NEPs in certain specific problem settings
[5, 27, 28, 29, 31, 32, 33]. For GNEPs, we are only aware of the papers [8, 13, 14], the
latter two of which are confined to an optimal control setting. It is not difficult to see
that GNEPs of this type can be reformulated to fit into our general framework (1). In
the optimal control setting, each player has a control variable and the players’ problems
are coupled via the (joint) state variable which is the unique solution of a linear PDE.
Working in the reduced formulation, we can simply define F as the set of all admissible
controls where the corresponding state satisfies the given state constraints (if any), see
also Section 6.

To the best of our knowledge, the only paper which considers “generic” jointly convex
GNEPs in infinite dimensions is [8], where a relaxation method is presented. The aim
of the present paper is to discuss some theoretical background on GNEPs in infinite
dimensions and to provide an alternative algorithm. Our main approach is to apply an
augmented Lagrangian (or multiplier-penalty) scheme to eliminate some or all of the
constraints in (1) and therefore reduce the GNEP to a sequence of “easier” problems.
This idea is not completely new: in [18], an augmented Lagrangian method was presented
for finite-dimensional GNEPs. Furthermore, in [20] an augmented Lagrangian method
for optimization problems in Banach spaces was considered. Motivated by the promising
results of these two works, we want to combine them and extend the given approaches to
infinite-dimensional GNEPs in a general setting.

This paper is organized as follows. In Section 2, we deal with some preliminary results
like existence of solutions of the GNEP and state the KKT-conditions of the considered
problem. Section 3 contains a detailed description of our proposed multiplier-penalty
method. Section 4 is dedicated to the convergence analysis, where we cover solvability
of the arising penalized subproblems as well as feasibility and Nash optimality of every
weak limit point generated by the presented algorithm. Section 5 leads us to strong
convergence of the primal iterates and weak-* convergence of the corresponding multiplier
sequence under certain regularity assumptions. Since some well-known applications of
jointly convex GNEPs are given in the optimal control setting, a description how these
type of problems fit in our convergence analysis is given Section 6, where we also include
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some numerical results. Section 7 contains some final remarks.
Notation: Throughout the paper, X and Y are Banach spaces, and we denote strong

and weak convergence by → and ⇀, respectively. Moreover, duality pairings are written
as 〈·, ·〉, scalar products in Hilbert spaces as (·, ·), and norms are denoted by ‖ · ‖ with
an appropriate subscript to emphasize the corresponding space (e.g. ‖ · ‖X). If S is a
nonemtpy closed convex subset of a Hilbert space, we denote by PS and dS the projection
and distance function to S, respectively. The partial derivative with respect to xν is
denoted by Dxν .

2 Preliminaries

This section is dedicated to the existence of solutions of the jointly convex GNEP and
its KKT conditions. Before we analyze these two topics we want to recall the definitions
of generalized Nash equilibria and normalized equilibria first.

2.1 Equilibria and Normalized Equilibria

For the definition of the two types of equilibria, recall that F is the joint constraint set
of all players. For a given point x−ν ∈ X−ν , we write

Fν(x−ν) = {xν ∈ Xν : (xν , x−ν) ∈ F}

for the feasible set of player ν’s optimization problem. Note that this set might be empty
for some (or many) x−ν . If we are dealing with a standard NEP, then Fν is independent
of x−ν , see (2). Hence, in that case, Fν is always nonempty.

Definition 2.1. Let x̄ ∈ F be a feasible point. We say that x̄ is a

(a) generalized Nash equilibrium or simply a solution of the GNEP if, for every ν,

θν(x̄
ν , x̄−ν) ≤ θν(y

ν , x̄−ν) for all yν ∈ Fν(x̄−ν). (3)

(b) normalized (Nash) equilibrium if

N∑
ν=1

θν(x̄
ν , x̄−ν) ≤

N∑
ν=1

θν(y
ν , x̄−ν) for all y ∈ F . (4)

Note that every normalized equilibrium is also a generalized Nash equilibrium, which
can be seen by inserting points of the form y := (yν , x̄−ν) into (4). The converse however
is not true in general. For NEPs, both concepts are equivalent.

The existence of Nash equilibria is a rather delicate topic, even when restricted to
standard NEPs or finite-dimensional problems. Most existence results [1, 3, 10, 25]
assume

(i) compactness of the set F , and
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(ii) appropriate continuity of the functions θν .

In the infinite-dimensional setting, condition (i) effectively forces us to work in the
weak topology of the underlying space; however, this introduces certain problems with
condition (ii), since few functions are actually continuous in the weak topology. Note
that (weak) lower semicontinuity of θν with respect to xν is not enough for existence:
consider, for instance, the NEP given by

θ1(x, y) :=

{
x2 if y < 1

−x if y = 1
, θ2(x, y) :=

1

2
y2 + (x− 1)y, F := [0, 1]2,

where x, y are the respective player variables. Then both objective functions are continu-
ous and convex with respect to the corresponding variable, but θ1 is not continuous with
respect to y. It is easily verified that this problem does not admit a Nash equilibrium.

On the other hand, the compactness of F is also hard to relax, even in seemingly
“good” cases. For instance, the unconstrained NEP [10, Example 4.5] given by

θ1(x, y) :=
1

2
x2 − xy, θ2(x, y) :=

1

2
y2 − (x+ 1)y,

where x, y again are the respective player variables, does not admit a Nash equilibrium,
even though both objective functions are strongly convex, and uniformly so with respect
to the rival’s variable.

It follows from the above observations that a careful approach to the existence of
Nash equilibria is necessary in our setting. To this end, we consider the existence of
normalized equilibria, and define the Nikaido-Isoda (NI) function [26]

Ψ(x, y) :=
N∑
ν=1

[
θν(x

ν , x−ν)− θν(yν , x−ν)
]
. (5)

It is evident that a point x̄ ∈ F is a normalized equilibrium if and only if

Ψ(x̄, y) ≤ 0 ∀y ∈ F . (6)

which is equivalent to x̄ being a solution of the maximization problem

max
y

Ψ(x̄, y) s.t. y ∈ F (7)

Problems of the type (6) are usually referred to as equilibrium problems [16, 17]. Taking
into account the existence theory for equilibrium problems, we are prompted to make
the following assumption.

Assumption 2.2. The Nikaido-Isoda function (5) is weakly lower semicontinuous with
respect to x.

Before we discuss this assumption, let us first give a direct consequence which is an
existence theorem for normalized equilibria.
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Theorem 2.3. Let Assumption 2.2 hold and assume that F is nonempty and weakly
compact. Then the GNEP admits a normalized equilibrium.

Proof. This follows from the Ky-Fan theorem, cf. [11, Thm. 1] or [17, Thm. 1.1].

The assumption that Ψ is weakly lower semicontinuous (lsc) with respect to x arises
naturally from the Ky-Fan theorem. However, in general, this is a nontrivial assumption
due to the minus sign in (5). Clearly, a sufficient condition is the weak lower semicontinuity
of the functions

x 7→ θν(x
ν , x−ν)− θν(yν , x−ν)

for all ν and fixed yν , which can be expected to hold in certain applications. It is also
easy to verify that Assumption 2.2 is always satisfied in the optimal control framework
from [13, 14]; some examples will be given in Section 6.

2.2 Cones, Convexity and the KKT Conditions

For a nonempty convex set S and a point x in some Banach space (e.g. X), we denote by

RS(x) = {α(s− x) | α ≥ 0, s ∈ S}, TS(x) = RS(x)

the radial cone (or cone of feasible directions) and the tangent cone of S at x, respectively.
Furthermore, we write

S+ = {ϕ ∈ X∗ : 〈ϕ, s〉 ≥ 0 ∀s ∈ S}, S◦ = −S+

for the dual and polar cones of S.
We now consider a special case of (1) where the constraint set F is given by

F = {x ∈ C : g(x) ∈ K}. (8)

Here, the function g : X → Y represents the joint constraints (i.e. the constraint that
couples the players’ individual strategies), Y is assumed to be a Banach space, and
K ⊆ Y is a nonempty closed convex cone. The set C denotes the players’ individual
constraints which are given by

C = C1 × . . .× CN .

To make the feasible set F convex and the GNEP a jointy convex one, recall that the
cone K induces the order relation

y ≤K z :⇐⇒ z − y ∈ K, (9)

which allows us to extend various familiar concepts from finite-dimensional optimization
theory to our setting. For instance, we say that g is concave if

g(αx+ (1− α)y) ≥K αg(x) + (1− α)g(y)
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holds for all x, y ∈ X and α ∈ [0, 1]. Other notions which involve an order such as
increasing, decreasing or convex functions are also defined in a straightforward way. For
instance, the distance function dK : Y → R is decreasing since z ≥K y implies z = y + k,
k ∈ K, and

dK(z) = dK(y + k) ≤ ‖y + k − (PK(y) + k)‖ = ‖y − PK(y)‖ = dK(y), (10)

where the inequality uses the convexity of K. It turns out that concavity of g with
respect to K is the appropriate condition to ensure the convexity of the set F . This
result along with some other useful observations is formulated in the following lemma.

Lemma 2.4. Assume that g : X → Y is concave. If m : Y → R is convex and decreasing,
then m ◦ g is convex. In particular:

(a) The function dK ◦ g : X → R is convex.

(b) If λ ∈ K◦, then 〈λ, g〉 : X → R is convex, where 〈λ, g〉 (x) := 〈λ, g(x)〉.

(c) The set F = {x ∈ C : g(x) ∈ K} is convex.

Proof. Let x, y ∈ X and xα = αx+(1−α)y, α ∈ (0, 1). Then g(xα) ≥K αg(x)+(1−α)g(y)
by the concavity of g. Applying m on both sides yields

m(g(xα)) ≤ m(αg(x) + (1− α)g(y)) ≤ αm(g(x)) + (1− α)m(g(y)),

where we used the monotonicity and the convexity of m. Hence, the real-valued mapping
m ◦ g is convex in the usual sense. Assertion (a) now follows because dK is decreasing
(see above) and convex [2, Cor. 12.12]. Similarly, for (b), the function y 7→ 〈λ, y〉 with
λ ∈ K◦ is obviously a convex function, and it is decreasing because 〈λ, k〉 ≤ 0 for all
k ∈ K. Finally, for (c), note that

M = {x ∈ C : g(x) ∈ K} = C ∩ {x ∈ X : dK(g(x)) ≤ 0}.

The second set is a lower level set of the convex function dK ◦ g. Hence, F is convex.

We now discuss the KKT conditions of the GNEP.

Definition 2.5. A tuple (x̄, λ̄1, . . . , λ̄N) ∈ X × (Y ∗)N is a KKT point of the GNEP if

Dxνθν(x̄) + (Dxνg(x̄))∗ λ̄ν ∈ TCν (x̄ν)+,

x̄ ∈ F , λ̄ν ∈ K◦, and
〈
λ̄ν , g(x̄)

〉
= 0

hold for all ν.

The connection between the GNEP and its KKT conditions is well-known and essentially
follows from the fact that the KKT system of the GNEP is just the concatenation of the
KKT systems of each player. Since the player problems are convex, it follows that KKT
points are always solutions of the GNEP. Moreover, if x̄ is a solution of the GNEP and
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an appropriate constraint qualification is satisfied, then there are multipliers λ̄1, . . . , λ̄N

such that (x̄, λ̄1, . . . , λ̄N) is a KKT point of the GNEP. In this case, the joint constraint
yields separate multipliers λ̄ν for each player.

For normalized equilibria (cf. Definition 2.1), it is possible to obtain a stronger notion
of KKT points, cf. [6]. To this end, recall that x̄ is a normalized equilibrium if and only
if Ψ(x̄, y) ≤ 0 for all y ∈ F or, equivalently, if x̄ solves the concave maximization problem
(7). Assuming a suitable constraint qualification, which will be given later, for the set F ,
this problem is equivalent to its KKT conditions, which are given by

−DyΨ(x̄, x̄) + g′(x̄)∗λ̄ ∈ TC(x̄)+,

x̄ ∈ F , λ̄ ∈ K◦, and
〈
λ̄, g(x̄)

〉
= 0,

where Dy is the derivative with respect to y. Recalling the definition of the NI function
and the product form of the set C, we get TC(x̄)+ = TC1(x̄

1)+ × . . .×TCN (x̄N )+ (see [24,
Prop. 1.2]), and the first inclusion can be reformulated as

Dxνθν(x̄) +Dxνg(x̄)∗λ̄ ∈ TCν (x̄ν)+

for all ν. In other words, x̄ satisfies the KKT conditions from Definition 2.5 with λ̄ν := λ̄
for each ν, i.e. the multiplier is the same for every player.

3 The Multiplier-Penalty Method

The method which we present in this section aims to compute normalized equilibria
of GNEPs whose constraint set has the form (8) with g : X → Y a concave operator.
For the construction of the method, we assume that there is a (linear and continuous)
embedding e : Y → H for some Hilbert space H, and that KH ⊆ H is a closed convex
cone with e−1(KH) = K. Hence, we have

M = {x ∈ C : g(x) ∈ K} = {x ∈ C : e(g(x)) ∈ KH}.

Moreover, we use the Moreau decomposition theorem, which can be stated as follows.

Lemma 3.1. Every y ∈ H can be uniquely written as y = y+ + y− with y+ ∈ KH ,
y− ∈ K◦H , and y+ ⊥ y−. Moreover, we have y+ = PKH (y) and y− = PK◦H (y).

In the following, (·)− and (·)+ will always denote the projections from the Moreau
decomposition. We now turn to the multiplier-penalty method for the GNEP (1). The
main idea of the method is to replace the (supposedly difficult) GNEP by a sequence of
standard NEPs which include the constraint g within a penalty term. For the formal
description of the method, we define the Lagrangian of player ν as

Lν : X ×H → R, Lν(x, λ) = θν(x) + (λ, g(x)) , (11)

and the corresponding augmented Lagrangian as

Lνρ : X ×H → R, Lνρ(x, λ) = θν(x) +
ρ

2

∥∥∥∥(g(x) +
λ

ρ

)
−

∥∥∥∥2

H

. (12)
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Recall that ‖(·)−‖ is the distance to KH by the Moreau decomposition. Moreover, we
note that there are other variants of Lρ in the literature. However, these differ from (12)
only by an additive constant (with respect to x).

For the definition of our penalty updating scheme, we also define the utility function

V (x, λ, ρ) =

∥∥∥∥g(x)−
(
g(x) +

λ

ρ

)
+

∥∥∥∥
H

. (13)

This enables us to formulate our algorithm as follows.

Algorithm 3.2. (Multiplier-penalty method)

(S.0) Choose (x0, λ0) ∈ X × H, a bounded set B ⊆ K◦H , parameters ρ0 > 0, γ > 1,
τ ∈ (0, 1), and set k := 0.

(S.1) If (xk, λk) satisfies a suitable stopping criterion: STOP.

(S.2) Choose wk ∈ B and compute an approximate KKT point (see Assumption 3.3) xk+1

of the NEP consisting of the minimization problems

min
xν

Lνρk(x
ν , x−ν , wk) s.t. xν ∈ Cν . (14)

(S.3) Update the multiplier estimate to

λk+1 := (wk + ρkg(xk+1))− .

(S.4) If k = 0 or
V (xk+1, wk, ρk) ≤ τV (xk, wk−1, ρk−1) (15)

holds, set ρk+1 := ρk. Otherwise, set ρk+1 := γρk.

(S.5) Set k ← k + 1 and go to (S.1).

Some comments are due. First, note that we consider the case k = 0 separately in Step
4, since wk−1 and ρk−1 are not defined for k = 0. This treatment has no influence on our
convergence theory.

Secondly, let us emphasize the importance of the sequence (wk) in the above method.
It is best to think of wk as a safeguarded analogue of λk whose boundedness is enforced by
requiring that wk ∈ B for all k. This simple fact will be crucial for our convergence analysis.
Note that similar bounding schemes have been used, e.g., for augmented Lagrangian
methods in nonlinear optimization [4], and that the resulting algorithm possesses strictly
stronger convergence properties than the classical augmented Lagrangian method (which
uses the possibly unbounded sequence wk := λk), see also the example in [19].

We now consider the subproblems occurring in Algorithm 3.2, which we refer to as
the augmented NEPs. Note that we have not specified what constitutes an “approximate
KKT point” in Step 2. Before we make this more precise, let us introduce the notation

Lνk(x
ν , x−ν) := Lνρk(x

ν , x−ν , wk)
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for the utility function of player ν in the augmented NEP at iteration k. Therefore, xνk+1

should be an approximate KKT point of Lνk(·, x−νk+1). This is reflected in the following
assumption.

Assumption 3.3. We have xk+1 ∈ C for all k and there is a zero sequence (εk) ⊆ X∗ =
X∗1 × . . .×X∗N such that

DxνL
ν
k(xk+1) ∈ TCν (xνk+1)+ + ενk (16)

for all ν and k.

The above is a fairly natural assumption which basically asserts that xk+1 is an approx-
imate stationary point of the subproblem, and the degree of inexactness vanishes as
k →∞. Note that we assumed that each iterate xk+1 satisfies the additional constraint
x ∈ C exactly. This assumption is not strictly necessary for our analysis, but it is
nevertheless convenient and usually satisfied in practice since the set C is assumed to
consist of “simple” constraints.

4 Convergence to Nash Equilibria

We now analyze the convergence properties of Algorithm 3.2. In finite-dimensional
optimization, a standard way of stating convergence theorems is to assert optimality for
any accumulation point of the sequence of iterates. Since we are dealing with possibly
infinite-dimensional spaces, it is more natural to consider the case of weak limit points.
The resulting convergence theorems obviously cover the case where the sequence (xk)
has a strong limit point, since any such point is also a weak limit point.

Throughout this section, we will make extensive use of Assumption 2.2 which asserts
the weak lower semicontinuity of the Nikaido-Isoda function with respect to x. As we
will see, this condition is not only useful for the existence of equilibria, cf. Theorem 2.3,
but also implies certain convergence properties for our Algorithm 3.2.

Before we proceed, recall that g : X → Y is assumed to be concave with respect to
K. In the context of our multiplier-penalty method, we used the embedding e : Y → H
into the Hilbert space H and the closed convex cone KH ⊆ H with e−1(KH) = K. In
this setting, it is quite easy to see that concavity of g with respect to K is equivalent
to concavity of e ◦ g with respect to KH . This should be kept in mind when applying
results related to convexity such as Lemma 2.4.

Before we proceed, we give an auxiliary result.

Lemma 4.1. The functions hk(x) := ‖(g(x) + wk/ρk)−‖2
H are convex, continuously

differentiable, and weakly lower semicontinuous.

Proof. By Lemma 2.4 it is not difficult to see that hk is continuous and convex, hence
weakly lower semicontinuous [2, Thm. 9.1]. The continuous differentiability follows from
[2, Cor. 12.30].
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4.1 Existence of Subproblem Solutions

In every iteration of Algorithm 3.2, we have to solve the augmented NEP for the given
values wk and ρk. Since the existence of Nash equilibria is not trivial in general (see also
the example in Section 2.1), we want to state a result regarding this question.

Lemma 4.2. Let Assumption 2.2 be satisfied. If C is weakly compact, then the augmented
NEPs (14) admit solutions for all k.

Proof. Let k ∈ N and define hk(x) as in Lemma 4.1. Consider now the function

Ψk(x, y) := Ψ(x, y) +
ρk
2

[
hk(x)− hk(y)

]
,

where Ψ is the usual NI function. Then Ψk is weakly lsc with respect to x in view of
Assumption 2.2 and Lemma 4.1. Hence, as in Theorem 2.3, there is a point x̂ ∈ C with
Ψk(x̂, y) ≤ 0 for all y ∈ C. We claim that x̂ is a solution of the penalized NEP (14). To
this end, let µ be an arbitrary player index and let yµ ∈ Cµ. With y := (yµ, x̂−µ) ∈ C we
obtain

0 ≥ Ψk(x̂, y) =
N∑
ν=1

[
θν(x̂

ν , x̂−ν)− θν(yν , x̂−ν)
]

+
ρk
2

[
hk(x̂)− hk(y)

]
= θµ(x̂µ, x̂−µ)− θµ(yµ, x̂−µ) +

ρk
2

[
hk(x̂)− hk(y)

]
= Lµk(x̂)− Lµk(y).

This completes the proof.

Lemma 4.2 yields the existence of solutions of the subproblem for a set C that is weakly
compact. If C is not weakly compact (e.g. unbounded), then the existence of penalized
Nash equilibria becomes much more complicated. In theory, an appropriate form of
coercivity should yield the existence of solutions of the subproblems, but this is a rather
delicate topic due to the involved nature of NEPs and GNEPs, see the discussion in
Section 2 and in [10].

4.2 Convergence to Nash Equilibria

The aim of this section is to show feasibility and optimality of every weak limit point of
the sequence (xk) generated by Algorithm 3.2. We start by addressing feasibility.

Lemma 4.3. Every weak limit point of (xk) is feasible.

Proof. Recall that ‖g−‖H measures the distance of g(x) to KH . Exploiting the properties
of a distance function we get that ‖g−‖H is convex and continuous, hence weakly lower
semicontinuous. Let us first consider the case where (ρk) remains bounded. The penalty
updating scheme (15) yields∥∥∥∥g(xk+1)−

(
g(xk+1) +

wk
ρk

)
+

∥∥∥∥
H

→ 0.
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But (g(xk+1) +wk/ρk)+ ∈ KH , therefore ‖g−(xk+1)‖H = dK(g(xk+1))→ 0, and the result
follows. We now assume that ρk →∞, and define hk(x) as in Lemma 4.1. Let xk+1 ⇀K x̄
for some K ⊆ N and assume that x̄ is infeasible, i.e. ‖g−(x̄)‖H > 0. Since F is nonempty,
there is a point y ∈ F , and we get

lim inf
k∈K

[
hk(xk+1)− hk(y)

]
= lim inf

k∈K
hk(xk+1) = lim inf

k∈K
‖g−(xk+1)‖2

H ≥ ‖g−(x̄)‖2
H > 0.

Hence, there is a constant c1 > 0 such that hk(xk+1)−hk(y) ≥ c1 for all k ∈ K sufficiently
large. Since hk is convex and continuously differentiable by Lemma 4.1, it follows that

〈h′k(xk+1), y − xk+1〉 ≤ hk(y)− hk(xk+1) ≤ −c1 (17)

for all k ∈ K sufficiently large. Now, let (εk) be the sequence from Assumption 3.3. Then

〈εk, y − xk+1〉 ≤
N∑
ν=1

〈
DxνL

ν
k(xk+1), yν − xνk+1

〉
=

N∑
ν=1

[
Dxνθν(xk+1)(yν − xνk+1)

]
+
ρk
2
〈h′k(xk+1), y − xk+1〉

≤
N∑
ν=1

[
θν(y

ν , x−νk+1)− θν(xk+1)
]

+
ρk
2
〈h′k(xk+1), y − xk+1〉

=
ρk
2
〈h′k(xk+1), y − xk+1〉 −Ψ(xk+1, y),

where Ψ is the NI-function from (5). By Assumption 2.2, Ψ is weakly lsc with respect to
the first argument; hence, there is a constant c2 ∈ R such that Ψ(xk+1, y) ≥ c2 for all
k ∈ K. This together with (17) implies

〈εk, y − xk+1〉 ≤ −
ρkc1

2
− c2 → −∞

and therefore contradicts εk → 0.

The feasibility of the iterates or their (weak) limit points is obviously a crucial issue
for the success of Algorithm 3.2, since the method is essentially a penalty-type method.
Before proving the optimality of weak limit points, we first need a technical lemma which
will also be of use later on.

Lemma 4.4. We have lim infk→∞ 〈λk+1, g(xk+1)〉 ≥ 0.

Proof. Using the Moreau decomposition, we obtain

(λk+1, g(xk+1)) =
1

ρk
(λk+1, wk + ρkg(xk+1))− 1

ρk
(λk+1, wk)

=
1

ρk

[
‖λk+1‖2

H − (λk+1, wk)
]
. (18)

11



Now, if (ρk) is bounded, then (15) implies∥∥∥∥(g(xk+1) +
wk
ρk

)
−
− wk
ρk

∥∥∥∥
H

=

∥∥∥∥g(xk+1)−
(
g(xk+1) +

wk
ρk

)
+

∥∥∥∥
H

→ 0.

But the latter is obviously equal to ‖λk+1 − wk‖H/ρk. Therefore, ‖λk+1 − wk‖H →
0, which implies the boundedness of (λk+1) in H as well as ‖λk+1‖2

H − (λk+1, wk) =
(λk+1, λk+1 − wk)→ 0. Hence, the desired result follows from (18). We now assume that
ρk → ∞. Note that (18) is a quadratic function in λ. A simple calculation therefore
shows that

(λk+1, g(xk+1)) ≥ − 1

4ρk
‖wk‖2

H .

This completes the proof.

Exploiting the feasibility from Lemma 4.3 and the result from Lemma 4.4 we are now able
to prove that every weak limit point of (xk) is a normalized equilibrium of the GNEP.

Theorem 4.5. Every weak limit point of (xk) is a normalized equilibrium of the GNEP.

Proof. Let xk+1 ⇀K x̄ for some K ⊆ N (recall that x̄ is feasible by Lemma 4.3), and let
y ∈ F be any point. An easy calculation shows that DxνL

ν
k(xk+1) = DxνL

ν(xk+1, λk+1)
for all k. Since yν ∈ Cν for all ν, Assumption 3.3 implies〈

ενk, y
ν − xνk+1

〉
≤
〈
DxνL

ν
k(xk+1), yν − xνk+1

〉
≤ θν(y

ν , x−νk+1)− θν(xk+1) +
〈
λk+1, Dxνg(xk+1)(yν − xνk+1)

〉
,

where we used the convexity of θν with respect to xν in the last estimate. Summing this
inequality over all ν and using the convexity of x 7→ 〈λk+1, g(x)〉 by Lemma 2.4 yields

〈εk, y − xk+1〉 ≤ −Ψ(xk+1, y) + 〈λk+1, g
′(xk+1)(y − xk+1)〉

≤ −Ψ(xk+1, y) + 〈λk+1, g(y)− g(xk+1)〉
≤ −Ψ(xk+1, y)− 〈λk+1, g(xk+1)〉 .

Taking the limit k →K ∞ on both sides and using Lemma 4.4, εk → 0 as well as the weak
lower semicontinuity of Ψ with respect to the first argument, we see that Ψ(x̄, y) ≤ 0.
Since y ∈ F was arbitrary, we conclude that x̄ is a normalized equilibrium.

5 Further Convergence Results

In this section we deal with further convergence results under stronger assumptions than
those used in Section 4. After establishing an auxiliary result we prove two central results:
(i) the strong convergence of the primal iterates to the unique normalized equilibrium,
and (ii) the weak-* convergence of the multiplier sequence.

For the remainder of this section, let F : X → X∗ be given by

F (x) =
(
Dx1θ1(x) · · · DxN θN(x)

)
.

12



It is well-known and easy to verify that the normalized equilibria of the GNEP can be
characterized by means of the variational inequality

x ∈ F , 〈F (x), y − x〉 ≥ 0 ∀y ∈ F . (19)

We refer the reader to [9] for a proof of this relationship in finite dimensions which
directly extends to the infinite-dimensional case. Alternatively, one may simply observe
that (19) is the first-order necessary condition of the concave maximization problem (7).

5.1 Strong Convergence of the Primal Iterates

Theorem 5.1. Assume that X is reflexive and that F is strongly monotone on C, i.e.
there is a c > 0 such that

〈F (x)− F (y), x− y〉 ≥ c‖x− y‖2
X ∀x, y ∈ C. (20)

Then there is a unique normalized equilibrium x̄ of the GNEP. Moreover, if Assumption
3.3 holds, then xk → x̄.

Proof. Existence and uniqueness of x̄ for the equivalent variational inequality (19) follow
from standard arguments, see, e.g., [21]. For the proof of convergence, we first show that
(xk) is bounded. By Assumption 3.3, we have DxνL

ν
k(xk+1) ∈ TCν (xk+1)

+ + ενk with a
zero sequence (εk) ⊆ X∗. Concatenating these relations for all ν and using the formula
(12) of the augmented Lagrangian yields

F (xk+1) + g′(xk+1)∗(wk + ρkg(xk+1))− ∈ TC(xk+1)+ + εk, (21)

where TC(xk+1)+ = TC1(x
1
k+1)+× . . .×TCN (xNk+1)+ (see [24, Prop. 1.2]). Writing Fk(x) :=

F (x) +g′(x)∗(wk +ρkg(x))−, we see that Fk is the sum of the strongly monotone function
F and the gradient of the convex function x 7→ (ρk/2)‖(g(x) + wk/ρk)−‖2

H . Hence, Fk is
strongly monotone for all k with the same modulus c as in (20). This yields

c‖xk+1 − x̄‖2
X ≤ 〈Fk(x̄)− Fk(xk+1), x̄− xk+1〉 ≤ 〈Fk(x̄)− εk, x̄− xk+1〉 .

Recall that dKH is monotonically decreasing by (10). This implies ‖(wk + ρkg(x̄))−‖H ≤
‖(wk)−‖H = ‖wk‖H for all k. Hence, (Fk(x̄)) is bounded, and we obtain the existence of
a c1 > 0 with c‖xk+1 − x̄‖2

X ≤ c1‖xk+1 − x̄‖X . This yields the boundedness of (xk).
We now prove the strong convergence of (xk) to x̄. Since (xk) is bounded and X is

reflexive, it follows from Theorem 4.5 that xk ⇀ x̄. Now, using (20), it follows that

c‖xk+1 − x̄‖2
X ≤ 〈F (xk+1)− F (x̄), xk+1 − x̄〉 .

Since xk+1 ⇀ x̄, we see that 〈F (x̄), xk+1 − x̄〉 → 0. Hence, to conclude the proof, it
suffices to show that lim supk→∞ 〈F (xk+1), xk+1 − x̄〉 ≤ 0. Using (21) and the definition
of λk+1, we see that

〈F (xk+1) + g′(xk+1)∗λk+1, x̄− xk+1〉 ≥ −‖εk‖X∗ · ‖x̄− xk+1‖X .

Therefore, it suffices to show lim supk→∞ rk ≤ 0, where rk := 〈g′(xk+1)∗λk+1, x̄− xk+1〉.
By Lemma 2.4, x 7→ 〈λk+1, g(x)〉 is convex. This yields rk ≤ 〈λk+1, g(x̄)− g(xk+1)〉 and,
hence, rk ≤ −〈λk+1, g(xk+1)〉. Therefore, the result follows from Lemma 4.4.
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5.2 Convergence of the Multipliers

Having proved the strong convergence of the primal iterates, in the following theorem we
want to show convergence of the multiplier sequence. Recall that the radial cones RC ,
RK to C and K are defined in Section 2.2.

Theorem 5.2. Let Assumption 3.3 be satisfied. If xk → x̄ and the Zowe-Kurcyusz
regularity condition

g′(x̄)RC(x̄)−RK(g(x̄)) = Y, (22)

is satisfied, then (λk) is bounded in Y ∗. Furthermore, every weak-∗ limit point of (λk) is
a Lagrange multiplier corresponding to x̄.

Proof. By Assumption 3.3 and Lemma 4.4, we have

F (xk+1) + g′(xk+1)∗λk+1 ∈ TC(xk+1)+ + εk

and lim inf
k→∞

〈λk+1, g(xk+1)〉 ≥ 0
(23)

with a zero sequence (εk) ⊆ X∗ and λk+1 ∈ K◦. Since x̄ is feasible (Lemma 4.3), this
implies the second statement. We now show the boundedness of (λk) in Y ∗. By [35,
Thm. 2.1], there is an r > 0 such that

BY
r ⊆ g′(x̄)

[
(C − x̄) ∩BX

1

]
− (K − g(x̄)) ∩BY

1 ,

where BX
r and BY

r are the closed r-balls around zero in X and Y , respectively. Since
xk → x̄, we can choose choose k0 ∈ N such that

‖g(xk)− g(x̄)‖Y ≤
r

4
and ‖g′(xk)− g′(x̄)‖L(X,Y ) ≤

r

4

for all k ≥ k0. Now, let u ∈ BY
r . It follows that −u = g′(x̄)w − z with ‖w‖X , ‖z‖Y ≤ 1,

and w = w1 − x̄, z = z1 − g(x̄) for some w1 ∈ C, z1 ∈ K. Furthermore,

〈λk, z〉 =
〈
λk, z

1 − g(x̄)
〉
≤ 〈λk,−g(x̄)〉 ≤ 〈λk,−g(xk)〉+

r

4
‖λk‖Y ∗ . (24)

Moreover, by (23), ϕk := F (xk) + g′(xk)
∗λk − εk−1 ∈ RC(xk)

+ for all k ≥ 2. Hence,

〈λk, g′(x̄)w〉 = 〈g′(x̄)∗λk, w〉 ≥ 〈g′(xk)∗λk, w〉 −
r

4
‖λk‖Y ∗

= 〈εk−1 + ϕk − F (xk), w〉 −
r

4
‖λk‖Y ∗ .

(25)

We now use the fact that both 〈λk, g(xk)〉 and 〈εk−1 + ϕk − F (xk), w〉 are bounded from
below independently of w, which is an easy consequence of (23) and εk → 0. Putting
together (24) and (25), we obtain

〈λk, u〉 = 〈λk, z〉 − 〈λk, g′(x̄)w〉 ≤ r

2
‖λk‖Y ∗ + c

for some constant c > 0. This implies

‖λk‖Y ∗ = sup
‖u‖≤r

〈
λk,

1

r
u

〉
≤ 1

r

(
c+

r

2
‖λk‖Y ∗

)
and, hence, ‖λk‖Y ∗ ≤ 2c/r.
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Note that the above result obviously remains true if we assume that xk →K x̄ on a subset
K ⊆ N. In this case, we get the boundedness of (λk)K in Y ∗ and the same assertion
about weak-* limit points of this subsequence.

6 Applications

In the following we give some applications and numerical examples for Algorithm 3.2.
Optimal control problems state a suitable problem class for infinite-dimensional general-
ized Nash equilibrium problems. Therefore, we have chosen two examples of this problem
class from the literature. The first example is a state constrained elliptic optimal control
problem. First we give a detailed overview of this example and analyse in detail why
this type of problem is suitable for our convergence analysis. After that, we examine
another example that is control constrained only.

All implementations in this section were done in FEniCS [22] using the DOLFIN
[23] Python interface and the domain Ω = (0, 1)2. Unless stated otherwise, we choose
ρ0 = 1.0, τ = 0.1 and γ = 10 as the parameters for the algorithm.

Let us introduce a slight change of notation for this section. In the optimal control
setting the players’ strategies xν ∈ Xν are called the controls uν ∈ L2(Ω). The so called
state y ∈ Y is in general the solution of a PDE constraint that is dependent of the players
controls u = (uν , u−ν). Here Y depends on the kind of partial differential equation. Each
player’s cost functional in this context is denoted by Jν(y, u

ν).

6.1 State-Constrained Elliptic Optimal Control Problems

Let us start with a multiobjective optimal control problem including tracking type cost
functionals and elliptic PDE constraints as well as state constraints. Problems of this
type have also been investigated in detail in [13] where a Moreau-Yosida regularization
has been used to handle the state constraints. Each player ν is equipped with a cost
functional Jν(y, u), where the state y is dependent on the decisions u−ν ∈ L2(Ω)

N−1
of

the other competitors. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with C1,1-boundary
Γ. Then player ν wants to minimize

1

2
‖y − yνd‖

2
L2(Ω) +

αν
2
‖uν‖2

L2(Ω) (26)

over all (y, uν) ∈ (H1
0 (Ω)∩C(Ω̄))×L2(Ω) subject to the partial differential equation and

pointwise control and state constraints

Ay =
N∑
i=1

χΩνu
ν , uν ∈ Uν

ad, and y ≥ ψ a.e. in Ω, (27)

where A is a suitable elliptic differential operator (e.g. A = −∆) and Uν
ad ⊆ L2(Ω)

is a nonempty closed convex set. The given data satisfy yνd ∈ L2(Ω), α > 0, and
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ψ ∈ C(Ω̄). Moreover, χΩν : Rd → {0, 1} denotes the characteristic function of a suitable
player-specific domain Ων ⊆ Ω. The sets Uν

ad are given by

Uν
ad = {uν ∈ L2(Ω) : uνa(x) ≤ uν(x) ≤ uνb (x) a.e. in Ω}

with uνa, u
ν
b ∈ L2(Ω) and uνa ≤ uνb for all ν, and we define Uad := U1

ad×· · ·×UN
ad. Obviously,

Uad and U1
ad, . . . , U

N
ad are closed, bounded, and convex. Using the control-to-state mapping

S : u 7→ y, L2(Ω)→ H1(Ω) ∩ C(Ω̄), Su =
N∑
i=1

Sνu
ν

we get the reduced formulation of the optimal control problem that coincides with the
definition of a jointly convex GNEP:

min
uν

Jν(u) :=
1

2
‖Su− yνd‖

2
L2(Ω) +

αν
2
‖uν‖2

L2(Ω) ,

s.t. uν ∈ Uν
ad, Su ≥ ψ a.e. in Ω.

(28)

In the notation of our abstract setting (1), (8), we have C = Uad, Cν = Uν
ad for every ν,

g(u) = Su− ψ, and K is the nonnegative cone in C(Ω̄). The feasible set F as defined in
(8) takes on the form F = {u ∈ Uad : Su ≥ ψ} and is closed, bounded, and convex. The
Nikaido-Isoda function of the GNEP is given by

Ψ(u,w) =
N∑
ν=1

[
Jν(u

ν , u−ν)− Jν(wν , u−ν)
]
, (29)

where w = (wν , w−ν) and u,w ∈ L2(Ω). The next lemma gives us the weak lower semi-
continuity of the corresponding Nikaido-Isoda function, i.e. Assumption 2.2 is satisfied.

Lemma 6.1. The Nikaido-Isoda function (29) is weakly lower semicontinuous with
respect to u.

Proof. The result follows from the weak lower semicontinuity of the norm and the
compactness of the solution operator S, i.e. weakly convergent sequences uk ⇀ u are
mapped onto strongly convergent sequences Suk → Su.

Lemma 6.1 has a number of important consequences. First, the weak lower semicontinuity
of Ψ together with the weak compactness of F implies the existence of a normalized
Nash equilibrium by Theorem 2.3. Moreover, it follows that the augmented Lagrangian
subproblems generated by Algorithm 3.2 always admit solutions (Lemma 4.2) and every
weak limit point of the sequence of controls (uk) is a normalized Nash equilibrium of the
GNEP (Theorem 4.5).
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Strong Monotonicity of the Mapping F

We now show that the mapping F induced by the GNEP (28) is strongly monotone in
the sense of Theorem 5.1. This function is given by

F (u) =
(
Du1J1(u) · · · DuNJN(u)

)
.

Recall that strong monotonicity of F implies the strong convergence of the whole sequence
(uk) to the unique normalized Nash equilibrium ū.

Lemma 6.2. The operator F is strongly monotone.

Proof. Splitting the cost functional Jν into two parts Jν(u) = J1
ν (u) + J2

ν (u) with

J1
ν (u) := ‖Su− yνd‖

2
L2(Ω) , J2

ν (u) :=
αν
2
‖uν‖2

L2(Ω)

yields F (u) = F1(u) + F2(u) with F1(u) = (Du1J
1
1 (u), . . . , DuNJ

1
N(u)) and F2 defined

similarly. For the first part, we use Su =
∑N

ν=1 Sνu
ν and obtain

(F1(u)− F1(u′), u− u′) =
N∑
ν=1

(S∗ν(Su− yνd)− S∗ν(Su′ − yνd), uν − uν′)

=
N∑
ν=1

(S(u− u′), Sν(uν − uν
′
)) = ‖S(u− u′)‖2

L2(Ω) ≥ 0.

We now analyze F2 and set α := min{α1, . . . , αN} > 0. Then

(F2(u)− F2(u′), u− u′) =
N∑
ν=1

(αν(u
ν − uν′), uν − uν′) ≥ α‖u− u′‖2

L2(Ω),

and the proof is complete.

Let us remark here that the Tikhonov terms in the objective functions are of great
importance since they yield the strong monotonicity of the operator F . In particular,
F1(u) is only monotone and not strongly monotone since there is no constant c > 0 with

‖Su‖H1(Ω)∩C(Ω̄) ≥ c ‖u‖L2(Ω) for all u ∈ L2(Ω).

For instance, if uk ⇀ 0 and ‖uk‖L2(Ω) = 1, then Suk → 0 by the compactness of S,
yielding a contradiction.

Existence and Convergence of Multipliers

Note that the GNEP (28) admits a normalized equilibrium by Lemma 6.1 and Theorem
2.3. Denoting by ū such an equilibrium, we obtain a corresponding optimal state ȳ = Sū.
Using a suitable constraint qualification, we can furthermore establish the existence of a
Lagrange multiplier λ̄. To this end, we use the following Slater condition.
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Assumption 6.3. We assume that there are û ∈ Uad and σ > 0 such that

Sû(x) ≥ ψ(x) + σ ∀x ∈ Ω̄. (30)

The above assumption essentially boils down to Sû − ψ lying in the interior of the
nonnegative cone of Y . Note that Y = H1(Ω) ∩ C(Ω̄) and, therefore, the nonnegative
cone has a nonempty interior (as opposed to spaces such as L2(Ω)). Furthermore, since
S is linear, it is easy to see that Assumption 6.3 is equivalent to the linearized Slater
condition

∃u ∈ Uad : Sū(x) + S(u− ū)(x) ≥ ψ(x) + σ,

e.g. by taking u := û with û as in (30). The linearized Slater condition in turn implies
the Zowe-Kurcyusz regularity condition which we used in Section 5 (see [34, p. 332]).

The above discussion implies two things: first, the optimal control and state (ū, ȳ)
admit a Lagrange multiplier λ̄ ∈ C(Ω̄)

∗
such that the first-order necessary conditions

Aȳ =
N∑
i=1

χΩν ū
ν , (31a)

A∗p̄ν = ȳ − yνd + λ̄, (31b)

(p̄ν + αν ū
ν , z − ūν) ≥ 0 ∀z ∈ U ν

ad, (31c)

〈λ̄, ψ − ȳ〉M(Ω̄),C(Ω̄) = 0, λ̄ ≤ 0, (31d)

are satisfied for all ν, cf. [7] and the discussion in Section 2.2. Here, p̄ν ∈ W 1,s,
1 < s < N/(N − 1), is the adjoint state of player ν, and the inequality λ̄ ≤ 0 has to be
understood as

〈
λ̄, ϕ

〉
M(Ω̄),C(Ω̄)

≤ 0 for all ϕ ∈ C(Ω̄) with ϕ ≥ 0. In other words, λ̄ lies in

the polar of the nonnegative cone of C(Ω̄).
The second implication of the Slater condition (or, equivalently, of the Zowe-Kurcyusz

condition) is that the assertions of Theorem 5.2 hold, i.e. the multiplier sequence (λk)
generated by Algorithm 3.2 is bounded in C(Ω̄)

∗
and each of its weak-∗ limit points is a

Lagrange multiplier satisfying the optimality system (31).
Now, let us briefly consider the subproblems which occur in every iteration of the

algorithm. We know that, by Lemmas 6.1 and 4.2, these problems always admit a
Nash equilibrium ūk. Since the problem is convex and control constrained only, first-
order necessary optimality conditions can be established without any further regularity
assumptions. Setting ȳk := Sūk, there exist unique adjoint states p̄νk ∈ H1(Ω) which
satisfy (compare with (31)) the system

Aȳk =
N∑
i=1

χΩν ū
ν
k, (32a)

A∗p̄νk = ȳk − yνd + λ̄k, (32b)

(p̄νk + αν ū
ν
k, z − ūνk) ≥ 0 ∀z ∈ Uν

ad, (32c)

λ̄k = (λk + ρk(Sūk − ψ))− (32d)

for all ν.
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Summary of the Convergence Properties

We can associate with each iterate uk and its state yk = Suk the adjoint states pνk =
G∗(yk − yνd + λk), where G := ES and E is the canonical embedding from H1(Ω) ∩C(Ω̄)
into L2(Ω). Using standard arguments (e.g. [15, Lemma 2.6]), it is easy to show that
pνk ⇀ p̄ν in L2(Ω) for all i.

Concluding, as k → ∞ we have for the sequence (yk, u
ν
k, u

−ν
k , pνk, λk) generated by

Algorithm 3.2 that

(yk, uk)→ (ȳ, ū) in (H1(Ω) ∩ C(Ω̄))× L2(Ω),

pνk ⇀ p̄ν in L2(Ω),

λk
∗
⇀ λ̄ in C(Ω̄)

∗
.

Numerical Results

In the following let us report about numerical results. As a test problem, we chose the
four-player game presented in [13], which is a special instance of the problem presented
above, where Ωi = Ω for all i and f ≡ 1. The vector of Tikhonov-parameters is given by
α = (2.8859, 4.3374, 2.5921, 3.9481), and the control constraints are defined by uνa ≡ −12,
uνb ≡ 12 for all ν. The state has to fulfill the state constraint for

ψ(x1, x2) = cos(5
√

(x1 − 0.5)2 + (x2 − 0, 5)2 + 0.1.

Defining
ξν(x1, x2) := 103 max(0, 4(0.25−max(|x1 − z1

ν |, |x2 − z2
ν |)))

with z1 := (0.25, 0.75, 0.25, 0.75) and z2 := (0.25, 0.25, 0.75, 0.75), we set

y1
d := ξ1 − ξ4, y2

d := ξ2 − ξ3,

y3
d := ξ3 − ξ2, y4

d := ξ4 − ξ1.

The algorithm was stopped as soon as the quantities ‖(ψ − yk)+‖C(Ω̄) and |(λk, yk − ψ)|
drop below 10−4. The subproblems arising within the computation are solved by applying
an active set method to the corresponding KKT conditions (32).

Table 6.1 denotes some iteration numbers for different discretizations as well as the
maximum penalty parameter ρmax reached during the given iterations. Note that the
inner iterations are accumulated over the whole outer iterations.

n 16 32 64 128 256
outer it. 10 11 11 11 11
inner it. 25 35 36 40 45

ρmax 107 109 1010 1010 1010

It is worth noting that the outer iteration numbers stay approximately the same as n
increases. Moreover, the same holds for the final penalty parameter ρmax, which is equal
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to 1010 for n ≥ 64. This observation suggests that our algorithm works quite well for the
given optimal control problem.

The Figures 1, 2 and 3 show the numerical solution of Example 1. All figures depict
results gained for a triangular mesh with n = 128 grid points.

Figure 1: (Example 1) Left: Computed discrete optimal state yh (transparent, up) and
state constraint ψ, Right: computed Lagrange multiplier λh

Figure 2: (Example 1) Computed optimal control ūh = (ū1
h, ū

2
h, ū

3
h, ū

4
h).

Figure 3: (Example 1) Computed adjoint state p̄h = (p̄1
h, p̄

2
h, p̄

3
h, p̄

4
h).

6.2 Control-Constrained Optimal Control Problems

The following example does not include constraints on the state. However this example is
still of interest, since it has a known analytic solution, allowing us to do error estimates
on our computed solution. Let N = 2 be the number of players. Every player wants
to minimize the tracking-type functional (26) over all (y, uν) ∈ (H1(Ω) ∩ C(Ω̄))× L2(Ω)
subject to the PDE and control constraints
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−∆y =
N∑
ν=1

χΩνu
ν + f and uν ∈ Uν

ad,

where Uν
ad = {uν ∈ L2(Ω) : uνa ≤ uν ≤ uνb a.e. in Ω} as before. Choosing C = L2(Ω) and

setting g(u) = (g1(u), g2(u), . . . , gN(u)) with

gi(u) =

(
uν − uνa
uνb − uν

)
, ν = 1, . . . , N,

our set of constraints from (8) is given by F = {u ∈ L2(Ω) : g(u) ≥ 0}. Here, one player’s
feasible set does not depend on the rival players’ strategies, so we have Fν(u−ν) = Uν

ad for
all ν, and the problem is a standard NEP. Let λνa, λ

ν
b denote the multipliers corresponding

to the lower and upper control constraints. Then the complete multiplier vector λ is
given by λ = (λ1, . . . , λN) with λi = (λνa, λ

ν
b ) for all ν.

In this example we apply our algorithm by augmenting the given control constraints.
Special care needs to be taken because the set C is not bounded and therefore not weakly
compact as assumed in Lemma 4.2. However, because of the special structure of the cost
functional, the augmented NEP can be reduced to a single control problem, yielding the
existence of a unique normalized Nash equilibrium, cf. [14, Prop. 3.10].

The test problem we chose was first presented in [5]. Here, we state a reformulated
version from [8]. The Tikhonov-parameters are given by α1 = α2 = 1. Moreover, we
define the subsets Bν ⊆ Ω by

B1 := (0, 1)× (0, 0.5), B2 := (0, 1)× (0.5, 1)

and the control constraints uνa := aνχBν , u
ν
b := bνχBν , where aν := −0.5 and bν := 0.5 for

all ν. Finally, we set

y1
d(x) := y(x) + 8π2y(2x), y2

d(x) := y(x) + 18π2y(3x)

and f := −∆y − u1 − u2. The exact solution of the resulting problem is given by

y(x) := sin(πx1) sin(πx2), u1(x) := χB1P[a1,b1] y(2x), u2(x) := χB2P[a2,b2] y(3x).

The algorithm was stopped as soon as

2∑
ν=1

[
‖(uνa − uν)+‖C(Ω̄) + |(λνa, uν − uνa)|+ ‖(uν − uνb )+‖C(Ω̄) + |(λνb , uνb − uν)|

]
≤ 10−7

was satisfied. Once again, the subproblems occurring within the algorithm were solved
by applying an active set method.
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Numerical Results

Figure 4 depicts the obtained results for the optimal control u1
h, u

2
h of the two players

using n = 128 gridpoints.

Figure 4: (Example 2) Computed discrete optimal control u1
h (left) and u2

h (right).

The iteration numbers of outer and inner iterations as well as the final value of the
penalty parameter ρmax are shown in the table below.

n 16 32 64 128 256 512
outer it. 7 7 7 7 7 7
inner it. 19 12 21 12 13 31

ρmax 10 10 10 10 10 10

Note that the outer iteration numbers and the final penalty parameter remain constant
with increasing n. Finally, let us report about the behavior of the discretized errors with
increasing dimension. The following table illustrates the corresponding L2-norms for
different numbers of gridpoints.

n 16 32 64 128 256
‖ū1 − u1

h‖L2(Ω) 1.72e-3 4.29e-4 1.16e-4 2.89e-5 7.24e-6

‖ū2 − u2
h‖L2(Ω) 3.84e-3 1.04e-3 2.59e-4 6.50e-5 1.63e-5

‖ȳ − yh‖L2(Ω) 1.60e-3 4.01e-4 1.00e-4 2.50e-5 6.27e-6

Considering the consistent number of outer and also inner iterations and the quite good
approximation of the Nash equilibrium, we can conclude that our algorithm works fine
for this kind of problems.

7 Final Remarks

In this paper, we have introduced an augmented Lagrangian method for jointly convex
GNEPs in Banach spaces. Under relatively weak assumptions, we obtain feasibility and
optimality of every weak limit point of the generated sequence, and under additional
regularity assumptions, we show strong convergence of the primal sequence and weak-*
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convergence of the multiplier sequence. The fact that we stated the problem in a quite
general setting allows us to consider a broad range of applications to our setting, including
the important field of multiobjective optimal control problems. Our numerical tests point
out that our method works quite well for this kind of problems since it possesses good
convergence properties and yields relatively high accuracy.
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