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An augmented Lagrange method for ill-posed elliptic state
constrained optimal control problems with sparse controls∗

Veronika Karl† Frank Pörner‡

July 26, 2017

Abstract

We provide a modified augmented Lagrange method for solving ill-posed state-constrained
elliptic optimal control problems with sparse controls. We consider a linear quadratic
optimal control problem without any additional L2 regularization terms. The sparsity is
guaranteed by an additional L1 term. Here, the modification of the classical augmented
Lagrange method guarantees us uniform boundedness of the multiplier that corresponds
to the state constraints as well as strong convergence of the control and its corresponding
state. Moreover convergence results proving the weak convergence of the adjoint state and
weak*-convergence of the multiplier are provided. Finally, we demonstrate our method in
several numerical examples.

Keywords: ill-posed optimal control, state constraints, augmented Lagrange method.

AMS subject classification: 49M20, 65K10, 90C30.

1 Introduction
In this paper we consider a convex optimal control problem of the following form

min J(y, u) :=
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω) (P )

subject to

Ay = u in Ω,

y = 0 on ∂Ω,

y ≤ ψ in Ω,

ua ≤ u ≤ ub in Ω.

We set j(u) := ‖u‖L1(Ω) for abbreviation. Here A is a linear elliptic operator and β ≥ 0. The
main difficulties in this problem are the pointwise state constraints y(x) ≤ ψ(x) and the convex
but non-differentiable term ‖u‖L1(Ω). Note that there is no additional L2 regularization term
present in (P ) which makes the problem ill-posed and numerically challenging. The motivation
for the L1-term in the cost functional is the following. The optimal solution ū of (P ) is sparse,
i.e., the control is zero on large parts of the domain if β is large enough. This can be used in the
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optimal placement of controllers, especially in situations where it is not desirable to control the
system from the whole domain Ω, see [30]. Such sparsity promoting optimal control problems
without state constraints have been studied in, e.g. [32–34] for optimal control of linear partial
differential equations and in [6,8] for the optimal control of semilinear equations. For sufficient
second-order conditions for the state constrained sparsity promoting optimal control problem
with a semilinear partial differential equation we refer to [10].

In order to deal with the state constraints we apply an augmented Lagrange method established
by the first author in [22]. There the optimal control problem

Minimize
1

2
||y − yd||2L2(Ω) +

α

2
‖u‖2L2(Ω)

with α > 0 subject to an elliptic linear partial differential equation, state constraints and
bilateral control constraints had been considered. Under suitable regularity assumptions the
existence of Lagrange multipliers can be proven. However in many cases the multiplier µ̄ has
a very low regularity, e.g. µ̄ ∈ C(Ω)∗ = M(Ω̄), where M(Ω̄) denotes the space of regular
Borel measures on Ω̄. This makes the numerical solution of (P ) very challenging. Augmented
Lagrange methods are well-known in optimization. In [1, 2] the state equation is augmented,
and in [19] they deal with finitely many state constraints.

Our aim is to modify and extend the method presented in [22] to obtain a numerical scheme to
solve (P ). The main idea is the following. We add a Tikhonov regularization term α

2 ‖u‖
2
L2(Ω)

to (P ) and apply the augmented Lagrange method. During the algorithm we decrease the
regularization parameter α→ 0. Since this is a classical Tikhonov regularization approach, we
aim to achieve strong convergence against the solution of (P ).
This approach is similar to the proximal method of multipliers [28] for finite dimensions. There
in each iterations a regularization term ‖uk − u‖2L2(Ω) is added. However this is not a suitable
choice here, since our method reduces to the proximal point method [13, 15, 21, 25, 29] if the
state constraints are not active. Due to the example given by Güler [14] the iterates generated
by the proximal point method are in general only weakly converging.

The paper is structured as follows. First we recall in section 2 some preliminary results, then we
analyze the Tikhonov regularization of (P ) in section 3. The augmented Lagrange method will
be introduced in section 4. Similar to [22] we only update the multiplier if a certain measure of
feasibility and violation of complementarity shows sufficient decrease. In section 5 we establish
convergence of our method, which is the main result of this paper. The implementation our the
algorithm is described in section 6 and numerical results are be presented in 7.

Notation. Throughout the article we will use the following notation. The inner product
in L2(Ω) is denoted by (·, ·). Duality pairings will be denoted by 〈·, ·〉. The dual of C(Ω̄) is
denoted byM(Ω̄), which is the space of regular Borel measures on Ω̄. Furthermore c is a generic
constant which may change from line to line, but is independent from the important variables,
e.g. k.

2 Preliminary results

2.1 Problem setting
Let Ω ⊂ RN , N = {1, 2, 3} be a bounded domain with C0,1-boundary Γ. Let Y denote the
space Y := H1

0 (Ω) ∩ C(Ω̄) and U := L2(Ω). We want to solve the following state constrained
optimal control problem: Minimize

J(y, u) :=
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω)
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over all (y, u) ∈ Y × U subject to the elliptic equation

(Ay)(x) = u(x) in Ω,

y(x) = 0 on Γ,

and subject to the pointwise state and control constraints

y(x) ≤ ψ(x) in Ω,

ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω.

In the sequel, we will work with the following set of standing assumptions.

Assumption 1. 1. The given data satisfy yd ∈ L2(Ω), ua, ub ∈ L∞(Ω) with ua ≤ 0 ≤ ub
and ψ ∈ C(Ω̄).

2. The differential operator A is given by

(Ay)(x) := −
N∑

i,j=1

∂xj
(aij(x)∂xi

y(x))

with ai,j ∈ C0,1(Ω̄). The operator A is assumed to be strongly elliptic, i.e., there is δ > 0
such that

N∑
i,j=1

aij(x)ξiξj ≥ δ|ξ|2 ∀ξ ∈ RN , a.e. on Ω.

The following theorem is taken from [7, Theorem 2.1].

Theorem 2.1. For every u ∈ L2(Ω) there exists a unique weak solution y ∈ H1
0 (Ω) ∩ C(Ω̄) of

the state equation and it holds

‖y‖H1
0 (Ω) + ‖y‖C(Ω̄) ≤ c ‖u‖L2(Ω) .

with a constant c > 0 independent of u.

With this assumption one can prove the following properties of the control-to-state mapping S.

Theorem 2.2. The control-to-state operator S : L2(Ω) → H1
0 (Ω) ∩ C(Ω̄), u 7→ y is a linear,

continuous, and compact operator.

Proof. The linearity follows directly by the definition of S and for the compactness we refer [7,
Theorem 2.1].

In the following, we will use the feasible sets with respect to the state and control constraints
denoted by

Uad = {u ∈ L∞(Ω) | ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω},
Yad = {y ∈ C(Ω̄) | y(x) ≤ ψ(x) ∀x ∈ Ω}.

The feasible set of the optimal control problem is denoted by

Fad = {(y, u) ∈ Y × L2(Ω) | (y, u) ∈ Yad × Uad, y = Su}.

The assumption ua ≤ 0 ≤ ub is not a restriction. Assume that ua > 0 on a subset Ω1 ⊆ Ω.
Then we can decompose the L1-norm for u ∈ Uad as ‖u‖L1(Ω) = ‖u‖L1(Ω\Ω1) +

∫
Ω1
u. Hence, on

Ω1 the L1-norm is a linear functional and its treatment does not impose any further difficulties.

Theorem 2.3. Assume that the feasible set Fad is non-empty. Then, there exists a unique
solution ū with associated state ȳ of (P ).

Proof. The existence of solutions follows by standard arguments. Due to the assumptions the
operator S is linear, continuous, and injective. Hence the problem (P ) is convex leading to a
unique optimal state ȳ. By using the injectivity of S we now obtain uniqueness of the optimal
control.
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2.2 Subdifferential of j
In this section we want to recall some basic properties of the subdifferential of the function
j(u) = ‖u‖L1(Ω). Since j is convex and Lipschitz, the generalized gradient (see [11]) and the
subdifferential in the sense of convex analysis coincide. The subdifferential is defined by

∂j(u) :=

λ ∈ L∞(Ω) :

∫
Ω

λ(v − u) dx ≤ ‖v‖L1(Ω) − ‖u‖L1(Ω), ∀v ∈ L1(Ω)

 .

Since j is a convex function with dom(j) = L1(Ω) the subdifferential is always nonempty. It is
easy to compute that λ ∈ ∂j(u) if and only if

λ


= +1 if u(x) > 0

= −1 if u(x) < 0

∈ [−1,+1] if u(x) = 0

.

For more information we refer to the book of Bonnans and Shapiro [5, Section 2.4.3]. We will
need the subdifferential to establish derivatives of the objective functional 1

2‖y−yd‖
2+β‖u‖L1(Ω)

and to obtain optimality conditions.

2.3 Optimality conditions
The existence of Lagrange multpliers cannot be guaranteed without any further regularity
assumptions. Throughout this paper will assume that the following Slater condition is satisfied.

Assumption 2. We assume that there exists û ∈ Uad and σ > 0 such that for ŷ = Sû it holds

ŷ(x) ≤ ψ(x)− σ ∀x ∈ Ω.

The choice of Assumption 2 as regularity condition is motivated as follows. The given inequality
in the Slater condition coincides with ψ − ŷ lying in the interior of the nonnegative cone of
Y . The nonnegative cone of Y = H1

0 (Ω) ∩ C(Ω̄) equipped with its natural norm ‖ · ‖Y :=
‖ · ‖H1

0 (Ω) + ‖ · ‖C(Ω) has nonempty interior - in contrast to Lp(Ω), p ∈ [1,∞) equipped with
the Lp-norm. This implies a possible existence of a Slater point û that satisfies Assumption
2. Moreover, since S is linear, Assumption 2 is equivalent to the linearized Slater condition,
which on the other hand implies the more general Zowe-Kurcyusz regularity condition (see [31,
p.332]). However, since the set of feasible controls may have no interior points (for an example
see [31]), the Zowe-Kurcyusz regularity condition does not imply the linearized Slater condition.
Furthermore, one already has to know the solution of the optimal control problem (P ) to check
whether the Zowe-Kurcyusz condition is satisfied. This is not the case for the proposed Slater
condition.

Theorem 2.4. Let (ū, ȳ) be a solution of the problem (P ). Furthermore, let Assumption 2
be fulfilled. Then, there exists an adjoint state p̄ ∈ W 1,s

0 (Ω), s ∈ [1, N/(N − 1)), a Lagrange
multiplier µ̄ ∈M(Ω̄) and a subdifferential λ̄ ∈ ∂j(ū) such that the following optimality system{

Aȳ = ū in Ω,

ȳ = 0 on Γ,
(1a)

{
A∗p̄ = ȳ − yd + µ̄ in Ω,

p̄ = 0 on Γ,
(1b)

(p̄+ βλ̄, u− ū) ≥ 0 ∀u ∈ Uad, (1c)

〈µ̄, ȳ − ψ〉M(Ω̄),C(Ω̄) = 0, µ̄ ≥ 0, (1d)

is fulfilled. Here, the inequality µ̄ ≥ 0 means 〈µ̄, ϕ〉M(Ω̄),C(Ω̄) ≥ 0 for all ϕ ∈ C(Ω̄) with ϕ ≥ 0.
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Proof. The proof can be found in [10, Theorem 2.5].

In the definition for the optimal adjoint state p̄ we have to solve an elliptic equation with a
measure on the right hand side. This problem is well-posed in the following sense.

Theorem 2.5. Let µ̄ ∈M(Ω̄) be a regular Borel measure. Then the adjoint state equation

A∗p̄ = ȳ − yd + µ̄ in Ω,

p̄ = 0 on Γ

has a unique very weak solution p̄ ∈W 1,s
0 (Ω), s ∈ [1, N/(N − 1)), and it holds

‖p̄‖W 1,s
0 (Ω) ≤ c

(
‖ȳ‖L2(Ω) + ‖yd‖L2(Ω) + ‖µ̄‖M(Ω̄)

)
. (2)

Proof. This result is due to [9, Theorem 4].

The next theorem shows the relation between the adjoint state and the control. One can see,
that if β is large, the control will be zero on large parts of Ω. Hence ū is sparse.

Lemma 2.6. Let ū, p̄, λ̄, µ̄ satisfy the optimality system. (1a)-(1d). Then the following relations
hold for θ > 0:

ū(x)


= ua(x) if p̄(x) > β

= ub(x) if p̄(x) < −β
= 0 if |p(x)| < β

∈ [ua(x), ub(x)] if |p(x)| = β

,

λ̄(x) = P[−1,+1]

(
− 1

β
p̄(x)

)
,

ū(x) = P[ua(x),ub(x)]

(
ū(x)− θ(p̄(x) + βλ̄(x))

)
.

From the second formula it follows that λ̄ is unique if the multiplier µ̄ and adjoint state p̄ are
unique.

Proof. The proof only uses the optimality (1c) and can be found in [6, Theorem 3.1].

3 The regularized problem
Solving the problem (P ) directly is challenging for mainly two reasons. First, since the multiplier
corresponding to the state constraints appears in form of a measure, it is not clear how to deal
with the state constraints. For the control constraints many powerful methods are available.
Here, we only want to mention the semi-smooth Newton solvers [16, 17] and the Active-Set
methods [3]. However it is not clear how to implement the state constraints into a direct solver.
In [4, 20] Active-Set methods has been used to solve problems where the state constraints
have been treated by Moreau-Yosida regularization. In [20] also relations between semi-smooth
Newton methods and Active-Set methods have been established that can be used to prove
fast local convergence. In this work we want to adapt the approach of a modified augmented
Lagrange method that has been proposed by the first author in [22] to overcome the lack of the
multiplier’s regularity.

The second challenge is the ill-posedness of the original problem (P ). There small perturbations
of the given data yd may lead to large errors in the associated optimal controls. To deal with
this issue we will use the well-known Tikhonov regularization technique with some positive
regularization parameter α > 0. The regularized problem is given by

Minimize Jα(y, u) : =
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω) +

α

2
||u||2L2(Ω)

s.t. Ay = u in Ω,

y = 0 on ∂Ω,

y ≤ ψ,
u ∈ Uad.

(Pα)
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It is clear that (Pα) omits a unique solution uα with associated state yα. One can expect that
uα converges to the solution of (P ) as α → 0. Similar results can be found in the literature,
e.g. [32].

Lemma 3.1. Let uα be the unique solution of (Pα) with α > 0. Furthermore let ū be the
unique solution of (P ). Then we have uα → ū in L2(Ω) as α→ 0.

Proof. We first show that ‖uα‖L2(Ω) ≤ ‖ū‖L2(Ω) for all α > 0. Let J0 denote the cost functional
Jα for α := 0. We start with

J0(uα) +
α

2
‖uα‖2L2(Ω) = Jα(uα) ≤ Jα(ū) = J0(ū) +

α

2
‖ū‖2L2(Ω) ≤ J0(uα) +

α

2
‖ū‖2L2(Ω),

where we exploited the optimality of uα for (Pα) and the optimality of ū for (P ).This yields
‖uα‖L2(Ω) ≤ ‖ū‖L2(Ω). Now we use that the set Uad is weakly compact and extract a subse-
quence uαi ⇀ u∗ ∈ Uad. Since the operator S is compact, see Theorem 2.2, we obtain strong
convergence of the state on the subsequence yαi → y∗ = Su∗ in H1

0 (Ω)∩C(Ω̄). Now let u ∈ Uad

be arbitrary, then

J0(u∗) = lim
i→∞

J0(uαi) = lim
i→∞

Jαi
(uαi) ≤ lim

i→∞
Jαi

(u) = J0(u).

Hence u∗ is a minimizer of J0. The solution ū of (P ) is unique and since the problems (P ) and
(Pα) coincide for α = 0 we obtain ū = u∗. As the norm is weakly lower semicontinuous we get

lim sup
i→∞

‖uαi‖ ≤ ‖u∗‖L2(Ω) ≤ lim inf
i→∞

‖uαi‖L2(Ω) ≤ lim sup
i→∞

‖uαi‖L2(Ω)

which shows ‖uαi‖L2(Ω) → ‖u∗‖L2(Ω). As a well known fact, weak and norm convergence yield
strong convergence and hence we have uαi → u∗. As the sequence uαi was arbitrarily chosen
we obtain convergence of the whole sequence uα → ū, which finishes the proof.

3.1 Optimality conditions
Let us assume that the Slater condition given in Assumption 2 is satisfied. Then first order
necessary optimality conditions can be established for the regularized problem.

Theorem 3.2. Let (uα, yα) be the solution of the problem (Pα). Furthermore, let Assumption
2 be fulfilled. Then, there exists an adjoint state pα ∈W 1,s(Ω), s ∈ [1, N/(N − 1)), a Lagrange
multiplier µα ∈ M(Ω̄) and a subdifferential λα ∈ ∂j(uα) such that the following optimality
system holds: {

Ayα = uα in Ω,

yα = 0 on Γ,
(3a)

{
A∗pα = yα − yd + µα in Ω,

pα = 0 on Γ,
(3b)

(pα + αuα + βλα, u− uα) ≥ 0 ∀u ∈ Uad, (3c)

〈µα, yα − ψ〉M(Ω̄),C(Ω̄) = 0, µα ≥ 0. (3d)

Proof. The proof can be found in [10, Theorem 2.5].

In the following we collect some results similar to Lemma 2.6.

Lemma 3.3. Let uα, yα, pα, λα, µα satisfy the optimality system (3a)-(3d). Then the following
relations hold:
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uα(x) =



ua(x) if β − αua(x) < pα(x)
1
α (β − pα(x)) if β ≤ pα(x) ≤ β − αua(x)

0 if |pα(x)| < β
1
α (−β − pα(x)) if − αub(x)− β ≤ pα(x) ≤ −β
ub(x) if pα(x) < −αub(x)− β

λα(x) = P[−1,1]

(
− 1

β
(pα(x) + αuα(x))

)
uα(x) = P[ua(x),ub(x)]

(
− 1

α
(pα(x) + βλα(x))

)
Proof. These results can be proven by using a pointwise interpretation of the optimality con-
dition (3c).

In the subsequent analysis we will need that the multipliers for the problem (Pα) are uniformly
bounded for all α ≥ 0. Note that for α = 0 the problem (Pα) reduces to problem (P ). The
boundedness of the multiplier can be expected from abstract theory [5], and we make use of
the Slater condition to prove it.

Lemma 3.4. Let α ≥ 0 and define the set

Mα := {µα ∈M(Ω̄) : (uα, yα, pα, λα, µα) satisfy (3a)− (3d)}.

of all multipliers associated with problem (Pα). Then the multipliers are uniformly bounded,
i.e. there exists a constant C > 0 independent from α such that

‖µα‖M(Ω̄) ≤ C, ∀µα ∈Mα ∀α ≥ 0.

Proof. We follow the book of Tröltzsch [31] and consider our solution mapping S : L2(Ω) →
H1

0 (Ω)∩C(Ω̄). Then the dual operator is a mapping S∗ :M(Ω̄)→ L2(Ω). Let α ≥ 0 be given,
and uα, yα be the solution of (Pα) with an associated multiplier µα. We now use the Slater
condition from Assumption 2 and compute for any f ∈ C(Ω̄) with ‖f‖∞ = 1:

σ

∣∣∣∣∣∣
∫
Ω

fdµα

∣∣∣∣∣∣ ≤ σ
∫
Ω

|f |dµα ≤
∫
Ω

σdµα ≤
∫
Ω

(ψ − ŷ)dµα

= 〈µα, ψ − yα〉M(Ω̄),C(Ω̄)︸ ︷︷ ︸
=0 by (3d)

+〈µα, yα − ŷ〉M(Ω̄),C(Ω̄)

= 〈µα, S(uα − û)〉M(Ω̄),C(Ω̄)

=

∫
Ω

(S∗µα)(uα − û) dx.

Now recall that the adjoint equation (3b) can be rewritten as

S∗µα = S∗(yd − Suα)− pα.

Furthermore by assumption uα ∈ Uad and by Theorem 2.3 and 2.5 we obtain that uα, yα and
pα are uniformly bounded in L2(Ω). This now yields
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σ‖µα‖M(Ω̄) = σ sup
f∈C(Ω̄), ‖f‖∞=1

∣∣∣∣∣∣
∫
Ω

fdµα

∣∣∣∣∣∣
≤
∫
Ω

(S∗µα)(uα − û) dx

=

∫
Ω

(S∗(yd − Suα)− pα)(uα − û) dx

≤ c‖uα − û‖L2(Ω)(‖yd − yα‖L2(Ω) + ‖pα‖L2(Ω))

≤ c.

Dividing the above inequality by σ > 0 finishes the proof.

4 The Augmented Lagrange Method
In the following we want to solve the regularized Problem (Pα) for α→ 0. For fixed α we follow
the idea presented in [22] and replace the inequality constraint y ≤ ψ by an augmented penal-
ization term. In that way we get rid of the measure and work instead with an approximation.

4.1 The augmented Lagrange optimal control problem
First let us introduce the penalty function P which we use to augment the state constraints.
Let ρ > 0 be a given penalty parameter, and let µ ∈ L2(Ω) with µ ≥ 0 be a given approximation
of the Lagrange multiplier. Now we define

P (y, ρ, µ) :=
1

2ρ

∫
Ω

(
(µ+ ρ(y − ψ))+

)2 − µ2 dx. (4)

Let now ρ > 0 and µ ∈ L2(Ω) be given. Then in each step of the augmented Lagrange method
the following sub-problem has to be solved: Minimize

Jαρ (y, u, µ) :=
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω) +

α

2
||u||2L2(Ω) + P (y, ρ, µ) (Pα,ρ,µ)

with α > 0, subject to the state equation and the control constraints

y = Su, u ∈ Uad.

A solution of (Pα,ρ,µ) will be denoted by uαρ with associated state yαρ and adjoint state pαρ . The
next theorem shows that the sub-problem is unique solve-able.

Theorem 4.1 (Existence of solutions of the augmented Lagrange sub-problem). For every
ρ > 0, µ ∈ L2(Ω) with µ ≥ 0 the augmented Lagrange control problem (Pα,ρ,µ) admits a unique
solution uαρ ∈ Uad with associated optimal state yαρ ∈ Y and adjoint state pαρ .

Proof. Since Uad is closed, bounded and convex and Jαρ is coercive, weakly lower semi-continuous
and strictly convex, problem (Pα,ρ,µ) has a unique solution uαρ ∈ Uad. For more details see [31]
and [12].

Theorem 4.2 (First-order necessary optimality conditions). Let (uαρ , y
α
ρ ) be the solution of

(Pα,ρ,µ). Then, there exists a unique adjoint state pαρ ∈ H1
0 (Ω) associated with the optimal

control uαρ and a subdifferential λαρ ∈ ∂j(uαρ ), satisfying the following system.{
Ayαρ = uαρ in Ω,

yαρ = 0 on Γ,
(5a)
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{
A∗pαρ = yαρ − yd + µαρ in Ω,

pαρ = 0 on Γ,
(5b)

(pαρ + αuαρ + βλαρ , u− uαρ ) ≥ 0 ∀u ∈ Uad, (5c)

µαρ :=
(
µ+ ρ(yαρ − ψ)

)
+
. (5d)

Proof. Can be proven by extending the results in [18, Corollary 1.3, p. 73].

Further we make an analogue observation like in [22]. Boundedness of µαρ in the L1-norm is
enough to get boundedness of the solution (uαρ , y

α
ρ , p

α
ρ ) of (5).

Theorem 4.3. Let ρ > 0 and µ ∈ L2(Ω) be given. Let s ∈ [1, N/(N − 1)) and α be
bounded. Then there is a constant c > 0 independent of α,ρ, and µ such that for all solu-
tions (uαρ , y

α
ρ , p

α
ρ , µ

α
ρ ) of (5) it holds

‖yαρ ‖H1(Ω) + ‖yαρ ‖C(Ω̄) + ‖uαρ ‖L2(Ω) + ‖pαρ ‖W 1,s(Ω) ≤ c(‖µαρ ‖L1(Ω) + 1).

Proof. The proof just differs from the one of [22, Theorem 3.3] concerning the additional sub-
differential in (5b). Hence, we give just the most important steps here. Let us test the state
equation (5a) with pαρ and the adjoint equation (5b) with yαρ . This yields

(pαρ , u
α
ρ ) = (yαρ − yd, yαρ ) + (µαρ , y

α
ρ ).

Now fix a u ∈ Uad and use it in (5c), yielding

(yαρ − yd, yαρ ) + (µαρ , y
α
ρ ) ≤ (αuαρ , u− uαρ ) + (pαρ , u) + (βλαρ , u− uαρ ).

By Young’s inequality and exploiting (λαρ , u− uαρ ) ≤ ‖u‖L1(Ω) − ‖uαρ ‖L1(Ω), we have

1

2

∥∥yαρ ∥∥2
+
α

2

∥∥uαρ∥∥2 ≤ 1

2
‖yd‖2L2(Ω) + ‖µαρ ‖L1(Ω)‖yαρ ‖C(Ω̄) +

α

2
‖u‖2L2(Ω) + ‖pαρ ‖L2(Ω)‖u‖L2(Ω)

+ β
(
‖u‖L1(Ω) − ‖uαρ ‖L1(Ω)

)
.

Let us fix s̄ ∈ (1, N/(N − 1)) such that W 1,s̄(Ω) is continuously embedded in L2(Ω). From
Theorem 2.1 we now get ‖yαρ ‖H1(Ω) + ‖yαρ ‖C(Ω̄) ≤ c‖uαρ ‖L2(Ω) and from Theorem 2.5 we get
‖pαρ ‖L2(Ω) ≤ c

(
‖yαρ ‖L2(Ω) + ‖yd‖L2(Ω) + ‖µαρ ‖L1(Ω)

)
. Now using the fact that uαρ is bounded in

L2(Ω) and u is fixed to obtain the result.

4.2 The general augmented Lagrange algorithm
In the following, let (P kα,ρ,µ) denote the augmented Lagrange sub-problem (Pα,ρ,µ) for given
penalty parameter ρ := ρk, multiplier µ := µk and regularization parameter α := αk. We will
denote its solution by (ūk, ȳk) with adjoint state p̄k and updated multiplier µ̄k, which is given
by (5d).

Algorithm 1. Let α1 > 0, ρ1 > 0 and µ1 ∈ L2(Ω) be given with µ1 ≥ 0. Choose θ > 1.

1. Solve (P kα,ρ,µ) and obtain (ūk, ȳk, p̄k).

2. Set µ̄k := (µk + ρk(ȳk − ψ))+.

3. If the step is successful set µk+1 := µk, ρk+1 := ρk and choose 0 < αk+1 such that
αk+1 < αk.

4. Otherwise set µk+1 := µ̄k and αk+1 := αk, increase penalty parameter ρk+1 := θρk.

5. If the stopping criterion is not satisfied set k := k + 1 and go to step 1.

9



Please note that we only decrease the regularization parameter αk if the algorithm produces a
successful step. Let us restate the system (P kα,ρ,µ) that is solved by (ūk, ȳk, p̄k, µ̄k):{

Aȳk = ūk in Ω,

ȳk = 0 on Γ,
(6a)

{
A∗p̄k = ȳk − yd + µ̄k in Ω,

p̄k = 0 on Γ,
(6b)

ūk ∈ Uad, (6c)

(p̄k + αkūk + βλ̄k, u− ūk) ≥ 0 ∀u ∈ Uad, (6d)

µ̄k := (µk + ρk(ȳk − ψ))+ . (6e)

4.3 The multiplier update rule
Let us start this section with a basic estimate, which will be useful in the sequel.

Lemma 4.4. Let αk > 0 be given and let (uαk , yαk , pαk , µαk) be the solution of (3) and let
(ūk, ȳk, p̄k, µ̄k) solve (6). Then it holds

‖yαk − ȳk‖2L2(Ω) + αk ‖uαk − ūk‖2L2(Ω) ≤ (µ̄k, ψ − ȳk) + 〈µαk , ȳk − ψ〉. (7)

Proof. Using (3c) and (6d), we obtain

0 ≤ (pαk − p̄k + αk(uαk − ūk) + β(λαk − λ̄k), ūk − uαk)

= (S∗(Suαk − Sūk), ūk − uαk)− αk(ūk − uαk , ūk − uαk)

+ (S∗(µαk − µ̄k), ūk − uαk) + β(λαk − λ̄k, ūk − uαk)

(8)

Now we use that the subdifferential is a monotone operator, which yields (λαk−λ̄k, ūk−uαk) ≤ 0.
Note that λαk ∈ ∂j(uαk) and λ̄k ∈ ∂j(ūk). This yields

‖yαk − ȳk‖2 + αk‖ūk − uαk‖2 ≤ (µ̄k − µαk , yαk − ȳk)

The term on the right-hand side of equation (8) can be split into two parts:

(µ̄k, y
αk − ȳk) = (µ̄k, y

αk − ψ) + (µ̄k, ψ − ȳk) ≤ (µ̄k, ψ − ȳk) (9)

and

−〈µαk

k , yαk − ȳk〉 = −〈µαk , yαk − ψ〉 − 〈µαk , ψ − ȳk〉 = 〈µαk , ȳk − ψ〉. (10)

Here, we used the complementarity relation (3d) as well as yαk ≤ ψ and µ̄k ≥ 0. Putting the
inequalities (8), (9), and (10) together, we get

‖yαk − ȳk‖2L2(Ω) + αk ‖uαk − ūk‖2L2(Ω) ≤ (µ̄k, ψ − ȳk) + 〈µαk , yk − ψ〉.

which is the claim.

The following result motivates the update rule.

Lemma 4.5. Let (uαk , yαk , pαk , µαk) and (ūk, ȳk, p̄k, µ̄k) be given as in Lemma 4.4. Then it
holds

1

αk
‖yαk − ȳk‖2L2(Ω) + ‖uαk − ūk‖2L2(Ω) ≤

c

αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)|

)
. (11)

Proof. From Lemma 4.4 we conclude using the estimate

〈 ¯µαk , ȳk − ψ〉 ≤ ‖µαk‖M(Ω) ‖(ȳk − ψ)+‖C(Ω̄) .

The result now follows using the uniform boundedness of µαk , see Lemma 3.4.
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This result shows that the iterates (ūk, ȳk) will converge to the solution of the regularized
problem for fixed αk if the quantity

1

αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)|

)
tends to zero for k →∞. To construct our update rule we follow the idea presented in [22] and
define a step of Algorithm 1 to be successful if the condition

1

αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)|

)
≤ τ

αn

(
‖(ȳn − ψ)+‖C(Ω̄) + |(µ̄n, ψ − ȳn)|

)
is satisfied with τ ∈ (0, 1). Here, we denoted by step n, n < k, the previous successful step.
In [22] this quantity was also used as a stopping criterion. However this is not possible here,
as we proceed to let α go to 0. Instead we will check the first order optimality conditions for
problem (P ) as a stopping criterion. This will be described in detail in section 6.

4.4 The augmented Lagrange algorithm in detail
Let us now formulate the algorithm based on the update rule established in the previous section.

Algorithm 2. Let α1 > 0, ρ1 > 0 and µ1 ∈ L2(Ω) be given with µ1 ≥ 0. Choose θ > 1, 0 <
ω < 1, τ ∈ (0, 1) and R+

0 >> 1. Set k := 1 and n := 1.

1. Solve (P kα,ρ,µ) and obtain (ūk, ȳk, p̄k).

2. Set µ̄k := (µk + ρk(ȳk − ψ))+.

3. Compute Rk := 1
αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)|

)
.

4. If Rk ≤ τR+
n−1 then the step k is successful, set

αk+1 := ωαk

µk+1 := µ̄k

ρk+1 := ρk

and define (u+
n , y

+
n , p

+
n ) := (ūk, ȳk, p̄k), as well as µ+

n := µk+1 and R+
n := Rk. Set

n := n+ 1.

5. Otherwise if the step k is not successful, set µk+1 := µk and αk+1 := αk, and increase the
penalty parameter ρk+1 := θρk.

6. If a stopping criterion is satisfied stop, otherwise set k := k + 1 and go to step 1.

Again, please note that the regularization parameter αk is only decreased when the algorithm
produces a successful step. We will take advantage of this in the subsequent analysis.

4.5 Infinitely many successful steps
The main aim of this section is to prove that the proposed algorithm produces infinitely many
successful steps. In order to prove this we consider the augmented Lagrange KKT system of
the minimization problem

Minimize Jαρ (y, u, µ) =
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω) +

α

2
||u||2L2(Ω) + P (y, ρ, µ)

subject to y = Su and u ∈ Uad. We fix the multiplier approximation µ, the regularization
parameter α and let the penalization parameter ρ tend to infinity. As mentioned in [22] the
problem reduces to a penalty method with additional shift parameter µ. The only difference to
the approach in [22] is, that we have an additional L1-term in the objective functional. However,
taking a closer look at [22, Lemma 3.6] reveals that it also holds for an additional L1-term.
This yields the following Lemma.
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Lemma 4.6. Let µ ∈ L2(Ω) with µ ≥ 0 and α > 0 be given. Let (uρα, y
ρ
α, p

ρ
α) be solutions of

(Pα,ρ,µ) with ρ > 0 and (uα, yα) be the solution of (Pα). Then it holds uαρ → uα in L2(Ω) and
yαρ → yα in H1

0 (Ω) ∩ C(Ω̄) for ρ→∞.

With a similar argument we can establish the next lemma. Again the proof can be found
in [22, Lemma 3.7].

Lemma 4.7. Under the same assumptions as in Lemma 4.6, it holds

lim
ρ→∞

(µαρ , ψ − yαρ ) = 0.

If we now combine these two results we can show that our algorithm produces infinitely many
successful steps. This will be crucial in the convergence analysis in the next section.

Lemma 4.8. The augmented Lagrange algorithm makes infinitely many successful steps.

Proof. We assume that the algorithm produces only finitely many successful steps. Then there
is an indexm such that all steps k > m are not successful. Due to the definition of the algorithm
we obtain µ̄k = µ̄m for all k > m and Rk > τRm > 0 as well as ρk → ∞. This now yields a
contradiction as with Lemma 4.6 and 4.7 we obtain

0 < lim
k→∞

Rk = lim
k→∞

1

αk

(
‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)|

)
= 0

Please note that αk is constant for k > m since its value is only decreased in a successful
step.

5 Convergence results
In this section we want to show convergence of Algorithm 2. Let us recall that the sequence
(u+
n , y

+
n , p

+
n ) denotes the solution of the n-th successful iteration of Algorithm 2 with µ+

n be-
ing the corresponding approximation of the Lagrange multiplier. We start with proving L1-
boundedness of the Lagrange multipliers µ+

n , which is accomplished in Lemma 5.2 below. To
prove this result we need an auxiliary estimation first.

Lemma 5.1. Let y+
n , µ

+
n be given as defined in Algorithm 2. Then it holds

1

αn
|(µ+

n , ψ − y+
n )| ≤ τn−1

α1

(∥∥(y+
1 − ψ)+

∥∥
C(Ω̄)

+
∥∥µ+

1

∥∥
L2(Ω)

∥∥(ψ − y+
1 )+

∥∥
L2(Ω)

)
. (12)

Proof. Using the definition for a successful step we obtain:

1

αn
|(µ+

n , ψ − y+
n )| ≤ τ

αn−1

(∥∥(y+
n−1 − ψ)+

∥∥
C(Ω̄)

+ |(µ+
n−1, ψ − y

+
n−1)|

)
− 1

αn

∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

≤ τ

αn−1

∥∥(y+
n−1 − ψ)+

∥∥
C(Ω̄)

+ τ

(
1

αn−1
|(µ+

n−1, ψ − y
+
n−1)|

)
≤ τ

αn−1

∥∥(y+
n−1 − ψ)+

∥∥
C(Ω̄)

+ τ

(
τ

αn−2

(∥∥(y+
n−2 − ψ)+

∥∥
C(Ω̄)

+ |(µ+
n−2, ψ − y

+
n−2)|

)
− 1

αn−1

∥∥(y+
n−1 − ψ)+

∥∥
C(Ω̄)

)
≤ τ2

αn−2

(∥∥(y+
n−2 − ψ)+

∥∥
C(Ω̄)

+ |(µ+
n−2, ψ − y

+
n−2)|

)
The rest now follows by induction and a standard estimate.
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We want to point out that the right hand side of (12) goes to 0 as n→∞. This will be crucial
in the following convergence analysis and is a result of our update rule. Let us now show the
L1-boundedness of the Lagrange multipliers (µ+

n ).

Lemma 5.2 (Boundedness of the Lagrange multiplier). Let Assumption 2 be fulfilled.
Then Algorithm 2 generates an infinite sequence of bounded iterates, i.e., there is a constant
C > 0 such that for all n it holds∥∥y+

n

∥∥
H1(Ω)

+
∥∥y+
n

∥∥
C(Ω̄)

+
∥∥u+

n

∥∥
L2(Ω)

+
∥∥p+

n

∥∥
W 1,s(Ω)

+
∥∥µ+

n

∥∥
L1(Ω)

≤ C.

Proof. Let (û, ŷ) be the Slater point given by Assumption 2, i.e., there exists σ > 0, such that
ŷ + σ ≤ ψ. Then we can estimate

σ||µ+
n ||L1(Ω) =

∫
Ω

σµ+
n dx ≤

∫
Ω

µ+
n (ψ − ŷ) dx =

∫
Ω

µ+
n (ψ − y+

n + y+
n − ŷ) dx

=

∫
Ω

µ+
n (ψ − y+

n )︸ ︷︷ ︸
(I)

dx+

∫
Ω

µ+
n (y+

n − ŷ) dx︸ ︷︷ ︸
(II)

.

The first part (I) can be estimated with Lemma 5.1 yielding

(I) ≤ |(µ+
n , ψ − y+

n )| ≤ αn
αn−1

τn−1
(∥∥(y+

1 − ψ)+

∥∥
C(Ω̄)

+
∥∥µ+

1

∥∥
L2(Ω)

∥∥(ψ − y+
1 )+

∥∥
L2(Ω)

)
≤ cτn−1.

(13)

Please note that we used the monotonicity of (αn)n. Before we estimate part (II) recall that
we have the inequality

(λ+
n , u− u+

n ) ≤ ‖u‖L1(Ω) − ‖u+
n ‖L1(Ω)

for every u ∈ L1(Ω). By definition we obtain that u ∈ Uad implies u ∈ L∞(Ω). Now the second
part (II) can be estimated using Young’s Inequality as follows∫

Ω

µ+
n (y+

n − ŷ) dx = 〈A∗p+
n − (y+

n − yd), y+
n − ŷ〉

= 〈p+
n , A(y+

n − ŷ)〉 − (y+
n − yd, y+

n − ŷ)

= (p+
n , u

+
n − û)− (y+

n − yd, y+
n − ŷ)

≤ −(αu+
n , u

+
n − û)− (y+

n − yd, y+
n − ŷ)− β(λ+

n , u
+
n − û)

≤ (αu+
n , û− u+

n ) + (y+
n − yd, ŷ − y+

n ) + β(‖û‖L1(Ω) − ‖u+
n ‖L1(Ω))

= α(u+
n − û, û− u+

n ) + α(û, û− u+
n ) + (y+

n − ŷ, ŷ − y+
n ) + (ŷ − yd, ŷ − y+

n )

+ β(‖û‖L1(Ω) − ‖u+
n ‖L1(Ω))

≤ −α
2

∥∥û− u+
n

∥∥2

L2(Ω)
− 1

2

∥∥ŷ − y+
n

∥∥2

L2(Ω)
+
α

2
‖û‖2L2(Ω) +

1

2
‖ŷ − yd‖2L2(Ω)

+ β(‖û‖L1(Ω) − ‖u+
n ‖L1(Ω)).

(14)

Putting (13) and (14) together yields∥∥µ+
n

∥∥
L1(Ω)

+
α

2

∥∥û− u+
n

∥∥2

L2(Ω)
+

1

2

∥∥ŷ − y+
n

∥∥2

L2(Ω)

≤ τn−1

σ
C +

α

2
‖û‖2L2(Ω) + β‖û‖L1(Ω) +

1

2
‖ŷ − yd‖2L2(Ω) .

Since τ ∈ (0, 1) by assumption, the right-hand side is bounded. Consequently we get bound-
edness of (u+

n ) in L2(Ω) and boundedness of (µ+
n ) in L1(Ω). By the regularity result Theorem

2.1, the sequence (y+
n ) is uniformly bounded in H1

0 (Ω) ∩ C(Ω̄). Boundedness of (p+
n ) follows

directly from Theorem 4.3.
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Theorem 5.3 (Convergence of solutions of the augmented Lagrange algorithm). As
n→∞ we have for the sequence (u+

n , y
+
n ) generated by Algorithm 2

(u+
n , y

+
n )→ (ū, ȳ), in L2(Ω)× (H1

0 (Ω) ∩ C(Ω̄)).

where ū denotes the unique minimum norm solution of problem (P ).

Proof. Since the algorithm yields an infinite number of successful steps (Lemma 4.8) we get

lim
n→∞

R+
n = lim

n→∞

1

αn

(∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

+ |(µ+
n , ψ − y+

n )|
)

= 0. (15)

with αn → 0. Let (uαn , yαn , pαn , µαn) be a solution of (3) for α := αn then we obtain from
Lemma 4.4 the following inequality

1

αn

∥∥yαn − y+
n

∥∥2

L2(Ω)
+
∥∥uαn − u+

n

∥∥2

L2(Ω)
≤ 1

αn

(
〈µαn , y+

n − ψ〉+ |(µ+
n , ψ − y+

n )|
)

≤ 1

αn

(
‖µαn‖M(Ω̄)

∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

+ |(µ+
n , ψ − y+

n )|
)

≤ c

αn

(∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

+ |(µ+
n , ψ − y+

n )|
)
.

Note that in the last step we used Lemma 3.4. With (15) from above, we conclude

lim
n→∞

1

αn

∥∥yαn − y+
n

∥∥2

L2(Ω)
+
∥∥uαn − u+

n

∥∥2

L2(Ω)
= 0.

As αn → 0 with n → ∞ we obtain by Lemma 3.1 that uαn → ū. Triangular inequality now
reveals

‖u+
n − ū‖L2(Ω) ≤ ‖u+

n − uαn‖L2(Ω) + ‖uαn − ū‖L2(Ω) → 0.

Convergence of y∗n → ȳ follows from Theorem 2.1 which finishes the proof.

Remark 1. For the sequence (y+
n ) generated by Algorithm 2 we obtain

1

αn
‖y+
n − ȳ‖2L2(Ω) → 0

which is similar to the results obtained for a Tikhonov regularization without state constraints,
see [32].

Let us assume that the adjoint state p̄ and the multiplier corresponding to the state constraint
µ̄ are unique then following [22, Theorem 3.12, Corollary 3.12] we get the following convergence
result.

Theorem 5.4. Let (ū, ȳ, p̄, ū) satisfy the KKT-system (1). Let us assume that (p̄, µ̄) are
uniquely given. Then it holds

p+
n ⇀ p̄ in L2(Ω),

µ+
n
∗
⇀ µ̄ inM(Ω̄).

6 Numerical method in detail
All optimal control problems have been solved using the above stated augmented Lagrange
algorithm implemented with FEniCS [23] using the DOLFIN [24] Python interface. The arising
sub-problems (Pα,ρ,µ) have been solved combining two methods. The first method is the active
set method presented by Stadler [30], where optimal control problems of type (Pα,ρ,µ) have
been solved, but without augmented state constraints. The second is the method established
by Ito et al. [20] that presented an active set method for optimal control problems with state
constraints but without a L1-cost term.
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Like in [30] we set for (6)
ξ̄k = λαk − λak + λbk,

where λαk denotes the subdifferential of β ‖ūk‖L1(Ω), λ
a
k the multiplier to the lower control

constraints ua − ūk ≤ 0 and λbk the multiplier corresponding to the upper control constraint
ūk − ub ≤ 0. Then (5b) can be written as

p̄k + αūk + ξ̄k = 0.

Defining the following active sets, see also Lemma 3.3:

Yk− = {x ∈ Ω : (µ+ ρ(yk+1 − ψ)) > 0},
Yk+ = Ω \ Yk−,
Aka = {x ∈ Ω : pk > β − αua},
Ak0 = {x ∈ Ω : |pk| < β},
Akb = {x ∈ Ω : pk < −αub − β},
Ik− = {x ∈ Ω : β ≤ pk ≤ β − αua},
Ik+ = {x ∈ Ω : −αub − β ≤ pk ≤ −β},

The resulting sub-problem of the augmented Lagrange method can now be solved by the fol-
lowing algorithm.

Active set method (inner iteration)

1. Choose initial data u0, p0 and parameters α, ρ, compute the active sets Y0
−, Y0

+, A0
a, A0

0,
A0
b , I0

−, I0
+ and set k := 0.

2. Solve for (uk+1, yk+1, pk+1, ξk+1) satisfying

Ayk+1 − uk+1 − f = 0,

−A∗pk+1 + yk+1 − yd + µk+1 = 0,

pk+1 + αuk+1 + ξk+1 = 0,

(16)

uk+1 =


ua on Aka,
0 on Ak0 ,
ub on Akb ,

ξk+1 =

{
−β on Ik−,
β on Ik+,

µk+1 =

{
0 on Yk−,
µ+ ρ(yk+1 − ψ) on Yk+.

(17)

3. Compute the active sets Yk+1
− ,Yk+1

+ ,Ak+1
a ,Ak+1

0 ,Ak+1
b , Ik+1

− , Ik+1
+

4. If the following equalities hold: Ak+1
a = Aka, Ak+1

0 = Ak0 , Ak+1
b = Akb , I

k+1
− = Ik−,

Ik+1
+ = Ik+, Yk+1

− = Yk− and Yk+1
+ = Yk+ then go step 5. Otherwise set k = k + 1 and go

to step 2.

5. Compute the subdifferential λk+1 := P[−1,1]

(
− 1
β ξk+1

)
.

The computation of the L1-subdifferential follows from a projection formular similar to the one
from Lemma 3.3. Since the active sets are disjoint subsets of Ω the calculation of ξk+1 in Step
4 does not evoke any conflicts to its usage on the subsets Ik−, Ik+ in Step 3 of the algorithm.
Further, the termination criterion yields a solution of the augmented Lagrange subproblem
(Pα).
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Lemma 6.1. If Ak+1
a = Aka,Ak+1

0 = Ak0 ,Ak+1
b = Akb , I

k+1
− = Ik−, Ik+1

+ = Ik+,Yk+1
− =

Yk−,Yk+1
+ = Yk+, then (uk, yk, pk, µk, λk) is the solution (ūk, ȳk, p̄k, µ̄k, λ̄k) to (6) with α, µ, β

fixed.

Proof. Since for given active sets the solution to (16) is unique we have (uk+1, yk+1, pk+1) =
(uk, yk, pk). By definition of the active sets Yk−,Yk+ we get µk+1 = (µ + ρ(yk+1 − ψ))+. The
optimality condition (6d) can be equivalently expressed by

ūk −max(0, ūk + c(ξ̄k − β))−min(0, ūk + c(ξ̄k + β))

+ max(0, (ūk − ub) + c(ξ̄k − β)) + min(0, (ūk − ua) + c(ξ̄k + β)) = 0.

where c > 0 arbitrary. Choosing c = α−1 and exploiting ξρα = −(pαρ + αūk) we get

ūk − α−1 max(0,−p̄k − β)− α−1 min(0,−p̄k + β)

+ α−1 max(0,−p̄k − β − αub) + α−1 min(0,−p̄k + β − αua) = 0,

which is satisfied for ūk = uk+1, p̄k = pk+1 defined by (17). Moreover, λk+1 satisfies (6b) by
definition. Consequently (uk, yk, pk, µk, λk) satisfies (6).

However, high values of the penalty parameter ρ paired with small values of the Tikhonov
parameter α may evoke bad stability during solution of the subproblem. To counteract this
aspect we introduce a so called intermediate step. Here, Step 3 and Step 4 of Algorithm 2 are
extended for a third alternative. If the current iterates of the k-th iteration do not satisfy the
update rule but sufficiently satisfy the feasibility and complementarity condition, i.e.

Rk ≥ τR+
n−1 and ‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)| < εI ,

with εI > 0, we set

αk+1 = ωαk,

µk+1 = µ̄k,

(u+
n , y

+
n , p

+
n ) : = (ūk, ȳk, p̄k).

As a termination criterion we check the optimality conditions of the current iterate (u+
n , y

+
n , p

+
n , µ

+
n , λ

+
n )

i.e. we stop the algorithm if the inequality∥∥u+
n (x)− P[ua(x),ub(x)]

(
u+
n (x)− (p+

n + βλ+
n (x))

)∥∥
L2(Ω)

+
∥∥(y+

n (x)− ψ)+

∥∥
C(Ω̄)

+ |(µ+
n (x), y+

n (x)− ψ)| ≤ ε
(18)

is satisfied. In order to be consistent we set εI < ε.

As the Active-Set methods are related to the class of semi-smooth Newton methods we cannot
expect a global convergence behavior of the method described above. Furthermore, the problem
becomes bad conditioned if α → 0 or ρ → ∞. Due to the intermediate step we expect ρ to
be bounded. However as α goes to zero we have to globalize our method. We use a projected
gradient method to construct suitable starting values for the Active-Set method.

7 Numerical results
Let us present some numerical results to support our method. We apply our method for
problems of the following form:

min J(y, u) :=
1

2
||y − yd||2L2(Ω) + β‖u‖L1(Ω) (19)
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subject to

Ay = u+ f in Ω,

y = 0 on ∂Ω,

y ≤ ψ in Ω,

ua ≤ u ≤ ub in Ω.

The additional variable f ∈ L2(Ω) allows us to construct test problems with known solutions.

7.1 Example 1: Bang-Bang-Off Example in One Space Dimension
We first consider the one-dimensional case and define Ω = (−1, 1), ua = −1, ub = 1 and β = 1.
Furthermore set

ȳ(x) :=


28 + 108 · x+ 144 · x2 + 64 · x3 if x ∈ [−1,− 3

4 ]

1 if x ∈ [− 3
4 ,

3
4 ]

28− 108 · x+ 144 · x2 − 64 · x3 if x ∈ [ 3
4 , 1]

p̄(x) := −2 cos

(
3π

2
x

)

ū(x) :=


0 if x ∈ [−1,− 8

9 ] ∪ [− 4
9 ,−

2
9 ] ∪ [ 2

9 ,
4
9 ] ∪ [ 8

9 , 1]

1 if x ∈ (− 2
9 ,

2
9 )

−1 if x ∈ (− 8
9 ,−

4
9 ) ∪ ( 4

9 ,
8
9 )

µ̄(x) :=

Exp
(
− 1

1−( 4
3x)

2

)
if x ∈ [− 3

4 ,
3
4 ]

0 else

ψ(x) := 1.

Some calculations show that ȳ, p̄ ∈ C2(Ω) and ȳ = p̄ = 0 on ∂Ω. By construction we obtain
ū(x) ∈ {−1, 0, 1} for a.e. x ∈ Ω. In order to satisfy the optimality conditions we now set

f(x) := −∆ȳ(x)− ū(x),

yd(x) := ∆p̄(x) + ȳ(x) + µ̄(x).

One now can check that the functions (ū, ȳ, p̄, µ̄) satisfy the KKT conditions defined in Theorem
2.4 with a suitable modification for the forward equation. We apply our algorithm with the
following set of parameters

θ = 5, ω = 0.75, τ = 0.8, ε = 10−6, εI = 5 · 10−7.

The interval Ω is divided into 106 equidistant elements. The algorithm stops after a total of 40
iterations, which splits in 13 successful, 19 intermediate and 8 not successful iterations with an
average of 5.25 inner iterations. The parameters were initialized with α := 1 and ρ := 100 and
the final parameters are α = 0.7532 ≈ 10−4 and ρ = 100 · 58 ≈ 3.9 · 107.
As we have an exact solution we can compute convergence rates. We plot the L2-error ‖u+

k −
ū‖L2(Ω) over the regularization parameter αk. Note the we only plot successful and intermediate
steps. As expected we see that the algorithm produces only intermediate steps after some given
time. The error can be found in Figure 1 and plots of the computed solution can be seen in
Figure 2 and 3.

Remark 2. Analysing the error ‖u+
k − ū‖L2(Ω) we see that the error behaves like

‖u+
k − ū‖L2(Ω) = O (αγ) (20)

with constant α, γ > 0. We want to mention that the exact control ū satisfies the following
regularity assumption

meas{x ∈ Ω :
∣∣|p̄(x)| − β

∣∣ < ε} ≤ cεκ,
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10−4 10−3 10−2 10−1 100

10−2

10−1

regularization parameter αk

er
ro
r
‖u

+ k
−
ū
‖ L

2
(Ω

)

Error Plot Bang-Bang-Off Example

successful step
intermediate step

Figure 1: Error ‖u+
k − ū‖L2(Ω) over αk for example 1.

Figure 2: Computed control u and state y for example 1.

Figure 3: Computed multiplier µ and adjoint state p for example 1.
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holds for all ε > 0 with some κ > 0, which can be used to prove error estimates of the form
(20) for some algorithms, see e.g. [27,34]. However it is an open problem to prove convergence
rates for the augmented Lagrange method presented in this paper.

7.2 Example 2: Bang-Bang-Off Example in Two Space Dimension
We set ua = −1, ub = 1. Let Ω be the circle around 0 with radius 2. We now define the
following functions. For clarity and to shorten our notation we set r := r(x, y) :=

√
x2 + y2.

ȳ(x, y) :=

{
1 if r < 1

32− 120 · r + 180 · r2 − 130 · r3 + 45 · r4 − 6 · r5 if r ≥ 1

p̄(x, y) := sin(x) · sin(y) ·
(

1− 5

4
r3 +

15

16
r4 − 3

16
r5

)
ū(x, y) := −Sign(p(x, y))

µ̄(x, y) :=

{
Exp

(
− 1

1−r2

)
if r < 1

0 if r ≥ 1

ψ(x, y) := 1

Some calculation show that µ̄, p̄ ∈ C2(Ω̄) and µ̄ ∈ C(Ω̄). Furthermore ȳ = p̄ = 0 on ∂Ω. We
now set

f(x, y) := −∆ȳ(x, y)− ū(x, y),

yd(x, y) := ∆p̄(x, y) + ȳ(x, y) + µ̄(x, y).

One now can check that for β = 0 the functions (ū, ȳ, p̄, µ̄) satisfy the KKT conditions defined
in Theorem 2.4 leading to a bang-bang solution. For β 6= 0 we expect the optimal solution to
omit a bang-bang-off structure. Here no exact solution is known. We computed this problem
for different values of β on a regular triangular grid with approximately 1.8 · 105 degrees of
freedom. The parameter used for this computation are τ = 0.8, ω = 0.75, θ = 5, ε = 10−6 and
εI = 5 ·10−7. We started with α = 0.1 and ρ = 100. Additional information for the calculations
can be found in Table 1 while the computed controls can be seen in Figure 4.

β final α final ρ successful
steps

intermediate
steps

not success-
ful steps

average inner
iterations

0.05 2.38 · 10−5 109 15 14 7 2.9

0.1 2.38 · 10−5 109 16 13 7 3.1

0.2 3.17 · 10−5 109 18 10 7 3.0

1 5.6 · 10−5 1010 20 6 8 3.5

Table 1: Additional information for the computation of example 2 for different β.
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Figure 4: Computed discrete control for example 2 for different values of β. From left to right
and from top to bottom: β = 0.05, β = 0.1, β = 0.2, β = 1.

7.3 Example 3
For the next example we set Ω = (0, 1)2, ua = −1, ub = 1 and β = 10−3. Furthermore τ = 0.8,
ω = 0.75 and θ = 10. Now define

ψ(x, y) := 0.01

yd(x, y) :=
1

2π
sin(πx) sin(πy)

Note that here no exact solution is available. If the state constraints are neglected the exact
solution is given by

ȳ(x, y) := yd(x, y)

ū(x, y) := ∆yd(x, y).

This example is taken from [26] and is an example of an optimal control problem where the
desired state is reachable and the source condition ū = S∗w with an element w ∈ L2(Ω)
is satisfied if the state constraints are not present. We computed the solution on a regular
triangular grid with 1.6 · 105 degrees of freedom, ε = 10−6 and εI = 5 · 10−7. As starting values
we set α = 0.1 and ρ = 100. The algorithm stopped after 8 successful, 25 intermediate and 9
not successful steps with the final values α = 0.1 ·0.7533 ≈ 7.5 ·10−6 and ρ = 100 ·59 ≈ 2.0 ·108.
The computed results can be seen in Figure 5 and Figure 6 .
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Figure 5: Computed results for example 3. From left to right: Control u, state y.

Figure 6: Computed results for example 3. From left to right: Adjoint state p and multiplier
µ. The range of µ is given by µ(x) ∈ [0, 40]
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