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On the sequential normal compactness
condition and its restrictiveness in

selected function spaces

Patrick Mehlitz∗

June 27, 2017

Sequential normal compactness is one of the most important properties in
terms of modern variational analysis. It is necessary for the derivation of
calculus rules for the computation of generalized normals to set intersections
or preimages of sets under transformations. While sequential normal com-
pactness is inherent in finite-dimensional Banach spaces, its presence has to
be checked in the infinite-dimensional situation. In this paper, we show that
broad classes of sets in Lebesgue and Sobolev spaces which are reasonable
in the context of optimal control suffer from an intrinsic lack of sequential
normal compactness.
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MSC: 28B05, 49J53

1 Introduction

In order to ensure that reasonable calculus rules hold for the tools of modern variational
analysis, the presence of a certain compactness condition called sequential normal com-
pactness is necessary. It is indispensable to show that a certain extremal principle w.r.t.
limiting normals in Mordukhovich’s sense is suitable in order to characterize extremal set
systems in Asplund spaces, see Mordukhovich and Shao [1996b]. Based on that, calculus
rules for the determination of limiting normals to set intersections and preimages of sets
under transformations can be derived, see Mordukhovich [2006].
Recently, the variational calculus of Mordukhovich received some attention in the context
of optimal control (e.g. optimal control of variational inequalities or optimal control with
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complementarity constraints on the control function), see Guo and Ye [2016], Harder and
Wachsmuth [2017], Hintermüller et al. [2014], Jarušek and Outrata [2007], Mehlitz and
Wachsmuth [2016], Outrata et al. [2011], Wachsmuth [2016] and the references therein.
To the best of our knowledge, a detailed discussion on whether or not the appearing
sets of interest are sequentially normally compact is given in Mehlitz and Wachsmuth
[2016] only. However, in order to get a better sensation on the applicability of modern
variational analysis in function spaces, it seems to be necessary to study the presence
of sequential normal compactness for reasonable classes of sets in Lebesgue and Sobolev
spaces.
In this paper, we want to investigate sequential normal compactness in the context of
two classes of sets in function spaces. First, we discuss decomposable sets in Lebesgue
spaces which are appropriate to characterize the feasible set of optimal control problems
with control constraints. The variational geometry of decomposable sets has been stud-
ied recently in Mehlitz and Wachsmuth [2016, 2017]. As we will see, such sets suffer from
an inherent lack of sequential normal compactness. Afterwards, we focus our attention
on standard box constraint sets given by lower and/or upper bounds in Sobolev spaces.
Such sets are reasonable in the context of state-constrained optimal control. Our results
show that sequential normal compactness is only available if the given Sobolev space
is embedded into the Lebesgue space of essentially bounded functions which is a very
restrictive condition.
The remaining part of the paper is organized as follows: In Section 2, we comment

on the notation used in this manuscript and present some preliminary results. Section
3 is dedicated to the theoretical background of sequential normal compactness. First,
we review the most important normal compactness conditions from variational analysis
and interrelate them. Particularly, we state a nice characterization of sequential normal
compactness for closed, convex sets in reflexive Banach spaces. Afterwards, we present
some calculus rules for sequentially normally compact sets. In Section 4, we introduce
the notion of decomposable sets and show that broad classes of such sets are nowhere
sequentially normally compact. Finally, we deal with the presence of sequential normal
compactness for box constraint sets in Sobolev spaces in Section 5.

2 Notation and preliminary results

In this section, we briefly present the notation used in this paper and give some prelimi-
nary results we need to exploit later.

2.1 Basic notation

Let N, Q, and R denote the natural numbers (without zero), the rational numbers,
and the real numbers, respectively. Furthermore, R+

0 and R+ represent the sets of all
nonnegative reals and all positive reals, respectively. The sign-function sgn: R → R is
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defined by

∀α ∈ R : sgnα :=


1 if α > 0,

0 if α = 0,

−1 if α < 0.

Note that |α| = (sgnα)α is valid for any α ∈ R.
For a Banach space X , ‖·‖X is used to express its norm. We denote the open and closed
ε-ball around x ∈ X w.r.t. the norm ‖·‖X in X by UεX (x) and BεX (x), respectively. Let
us define the distance function dist : X × 2X → R+

0 ∪ {+∞} of X as stated below:

∀x ∈ X ∀A ⊂ X : dist(x,A) := inf
a∈A
‖x− a‖X .

Therein, 2X is the power set of X and inf ∅ := +∞ shall hold. The codimension of a
subspace L of X is defined as the dimension of X/L := {{x} + L ⊂ X |x ∈ X} which
is the so-called factor space of X w.r.t. L. For a nonempty set A ⊂ X , intA, riA, clA,
bdA, coneA, convA, and linA denote the interior of A, the relative interior of A, the
closure of A, the boundary of A, the conic hull of A (i.e. the smallest cone w.r.t. set
inclusion which includes A), the convex hull of A, and the linear hull of A, respectively.
In the lemma below, we show a nearby relationship between the operators lin and conv.

Lemma 2.1. Let S ⊂ X be a nonempty subset of a Banach space X . Then the relation
linS = conv

⋃
α∈R αS holds true.

Proof. Let us prove the inclusion [⊂] first. Since we have S ⊂ conv
⋃
α∈R αS, it is suffi-

cient to show that L := conv
⋃
α∈R αS is a linear space. Therefore, we choose x, y ∈ L and

γx, γy ∈ R arbitrarily. Then we find integers n,m ∈ N, vectors sx1 , . . . , sxn, s
y
1, . . . , s

y
m ∈ S,

scalars αx1 , . . . , αxn, α
y
1, . . . , α

y
m ∈ R, and nonnegative scalars µ1, . . . , µn, ν1, . . . , νm ∈ R+

0

such that

x =

n∑
i=1

µiα
x
i s
x
i , y =

m∑
j=1

νjα
y
j s
y
j ,

n∑
i=1

µi = 1,

m∑
j=1

νj = 1.

Thus, we obtain

γxx+ γyy =
n∑
i=1

µiγ
xαxi s

x
i +

m∑
j=1

νjγ
yαyj s

y
j =

n∑
i=1

µi
2

2γxαxi s
x
i +

m∑
j=1

νj
2

2γyαyj s
y
j ∈ L

since µ1
2 , . . . ,

µn
2 ,

ν1
2 , . . . ,

νm
2 ∈ R+

0 are nonnegative scalars which satisfy

n∑
i=1

µi
2

+
m∑
j=1

νj
2

= 1.

Consequently, L is a linear space which contains S, i.e. linS ⊂ L.
The converse inclusion [⊃] follows from the nearby observation that αS ⊂ linS holds

for all α ∈ R. This shows L ⊂ conv linS = linS and completes the proof.
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We use X ? to denote the topological dual of the Banach space X . The mapping
〈·, ·〉X : X ? × X → R+

0 represents the dual pairing of X . Recall that the canonical
embedding X 3 x 7→ 〈·, x〉X ∈ X ?? of X is an injective isometry. If it is surjective, X
is called reflexive. Thus, any reflexive Banach space is isometrically isomorphic to its
bidual space.
Let {xk}k∈N ⊂ X be an arbitrary sequence in X . This sequence is said to converge to
x̄ ∈ X , xk → x̄ for short, if the real sequence {‖xk − x̄‖X }k∈N converges to zero. On the
other hand, {xk}k∈N converges weakly to x̄, xk ⇀ x̄ for short, if {〈x?, xk〉X }k∈N converges
to 〈x?, x̄〉X for any x? ∈ X ?. We say that a sequence {x?k}k∈N ⊂ X ? converges weakly? to
x̄? ∈ X ?, x?k

?
⇀ x̄? for short, if the real sequence {〈x?k, x〉X }k∈N converges to 〈x̄?, x〉X for

any x ∈ X . Note that whenever the Banach space X is reflexive, the notions of weak?

and weak convergence in the dual space X ? are equivalent.
Let Y be a Banach space as well. Then the product space X × Y becomes a Banach
space when equipped, e.g., with the sum norm induced by X and Y. Particularly, X n
denotes the n-fold product of X and is equipped with the norm

∀(x1, . . . , xn) ∈ X n : ‖(x1, . . . , xn)‖Xn :=
n∑
i=1

‖xi‖X .

The spaces (X × Y)? and X ? × Y? are isomorphic and equipped with equivalent norms
which is why we are going to identify them in this paper.
The Banach space X is continuously embedded into the Banach space Y, X ↪→ Y for
short, if X ⊂ Y holds while there is a constant γ > 0 which satisfies

∀x ∈ X : ‖x‖Y ≤ γ ‖x‖X ,

i.e. if the identical operator X 3 x 7→ x ∈ Y is well-defined and continuous.
In this paper, we interpret Rn as a Hilbert space equipped with the Euclidean inner
product denoted by a · b for any two vectors a, b ∈ Rn. The term a ⊥ b expresses
that a and b are perpendicular to each other, i.e. that a · b = 0 holds. Note that the
Euclidean inner product induces the Euclidean norm in Rn which will be denoted by
|·|2. If necessary, the order relations a < b, a ≤ b, and a ≥ b have to be interpreted
in componentwise fashion. By e ∈ Rn, we denote the all-ones vector of appropriate
dimension.

2.2 Variational analysis

Let X be an arbitrary Banach space, fix a set A ⊂ X , and choose x̄ ∈ A. The tangent
and the inner (or adjacent) tangent cone to A at x̄ are defined by

TA(x̄) :=

{
d ∈ X

∣∣∣∣∣ ∃{dk}k∈N ⊂ X ∃{tk}k∈N ⊂ R+ :

dk → d, tk → 0, x̄+ tkdk ∈ A∀k ∈ N

}
,

T [A(x̄) :=

{
d ∈ X

∣∣∣∣∣ ∀{tk}k∈N ⊂ R+ : tk → 0

∃{dk}k∈N ⊂ X : dk → d, x̄+ tkdk ∈ A∀k ∈ N

}
,

4



see e.g. [Aubin and Frankowska, 2009, Section 4.1]. Note that these cones are always
closed and satisfy T [A(x̄) ⊂ TA(x̄). If equality holds, A is said to be derivable at x̄. We
call A derivable if it is derivable at all of its points. Note that we have

T [A(x̄) = TA(x̄) = cl cone(A− {x̄})

for any convex set A, i.e. any convex set is derivable.
For any ε ≥ 0, we define the set of all Fréchet ε-normals to A at x̄ as stated below:

N̂ ε
A(x̄) :=

{
x? ∈ X ?

∣∣∣∣∣ lim sup
x→x̄, x∈A

〈x?, x− x̄〉X
‖x− x̄‖X

≤ ε

}
.

Note that for ε = 0, N̂A(x̄) := N̂ 0
A(x̄) is a closed, convex cone, the so-called Fréchet (or

regular) normal cone to A at x̄. Finally, the limiting (or Mordukhovich, basic) normal
cone to A at x̄ is given as follows:

NA(x̄) :=

{
x? ∈ X ?

∣∣∣∣∣ ∃{xk}k∈N ⊂ A, ∃{x
?
k}k∈N ⊂ X ? ∃{εk}k∈N ⊂ R+

0 :

xk → x̄, x?k
?
⇀ x?, εk → 0, x?k ∈ N̂

εk
A (xk)∀k ∈ N

}
.

Obviously, N̂A(x̄) ⊂ NA(x̄) is valid. If X is an Asplund space, i.e. if every separable,
closed subspace of X possesses a separable dual space, then the sequence {εk}k∈N can
be chosen to be identically zero in the above definition of the limiting normal cone, see
[Mordukhovich, 2006, Theorem 2.35]. In general, the limiting normal cone is a nonconvex
cone which does not need to be closed in the infinite-dimensional situation. On the other
hand, for convex sets A, we have

N̂A(x̄) = NA(x̄) = {x? ∈ X ? | ∀x ∈ A : 〈x?, x− x̄〉X ≤ 0} ,

i.e. the above normal cones both coincide with the normal cone in the sense of convex
analysis.

2.3 Function spaces

Let (Ω,Σ,m) be a complete and σ-finite measure space. In order to exclude trivial
situations, we assume m(Ω) > 0. For any p ∈ [1,∞] and any q ∈ N, Lp(m;Rq) denotes
the usual Lebesgue space of (equivalence classes of) measurable, p-integrable functions
from Ω to Rq equipped with the norm as given below:

∀p ∈ [1,∞) ∀u ∈ Lp(m;Rq) : ‖u‖Lp(m;Rq) :=

(∫
Ω
|u(ω)|p2 dm

)1/p

∀u ∈ L∞(m;Rq) : ‖u‖L∞(m;Rq) := esssup
ω∈Ω

|u(ω)|2 .

For brevity, we set Lp(m) := Lp(m;R) for any p ∈ [1,∞]. Note that we have the
equivalence Lp(m;Rq) = Lp(m)q while the norms ‖·‖Lp(m;Rq) and ‖·‖Lp(m)q are equivalent
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in the sense of norms. If Ω ⊂ Rd is an arbitrary domain, i.e. a nonempty, open set,
equipped with the (restricted) d-dimensional Lebesgue measure λ and the corresponding
(restricted) Borelean σ-algebra B, we use Lp(Ω;Rq) to denote the Lebesgue space which
results from the formal completion of the measure space (Ω,B, λ), see [Bogachev, 2007,
Section 1.5]. For any p ∈ [1,∞), the dual of Lp(m;Rq) is isometric to Lp′(m;Rq) where
p′ ∈ (1,∞] such that 1/p+ 1/p′ = 1 holds is the so-called conjugate coefficient of p. The
corresponding dual pairing is given as stated below:

∀u ∈ Lp(m;Rq)∀η ∈ Lp′(m;Rq) : 〈η, u〉Lp(m;Rq) :=

∫
Ω
u(ω) · η(ω)dm.

For any set A ∈ Σ, χA : Ω→ R denotes the characteristic function of A which has value
1 for all ω ∈ A and vanishes everywhere on Ω \A. Clearly, we always have χA ∈ L∞(m).
For later use, we need the following consequence of Lebesgue’s dominated convergence
theorem.

Lemma 2.2. Fix a complete and σ-finite measure space (Ω,Σ,m) as well as a parameter
p ∈ [1,∞). Let u ∈ Lp(m;Rq) be arbitrarily chosen and let {Ωk}k∈N ⊂ Σ be a sequence of
sets which satisfies m(Ωk)→ 0 as k →∞. Then we have χΩku→ 0 and (1−χΩk)u→ u
in Lp(m;Rq) as k →∞.

Proof. By construction, the sequences {χΩku}k∈N and {(1− χΩk)u}k∈N converge point-
wise almost everywhere on Ω to 0 and u, respectively. Moreover, {|χΩku|2}k∈N and
{|(1− χΩk)u|2}k∈N are both majorized by |u|2 ∈ Lp(m), i.e.

∀k ∈ N ∀ω ∈ Ω: |χΩk(ω)u(ω)|2 ≤ |u(ω)|2 |(1− χΩk(ω))u(ω)|2 ≤ |u(ω)|2
is valid. Thus, the lemma’s assertion follows from the dominated convergence theorem,
see [Simonnet, 1996, Theorem 5.2.2].

Let Ω ⊂ Rd be an arbitrary domain, fix p ∈ (1,∞), and choose a function y ∈ Lp(Ω).
In case of existence, we represent its weak derivative of order 1 w.r.t. ωj , j ∈ {1, . . . , d},
by ∂

∂ωj
y. By W 1,p(Ω), we denote the common Sobolev space of functions from Lp(Ω)

that possess all weak first order derivatives ∂
∂ω1

, . . . , ∂
∂ωd

which belong to Lp(Ω) as well.
We equip W 1,p(Ω) with

∀y ∈W 1,p(Ω): ‖y‖W 1,p(Ω) :=

‖y‖pLp(Ω) +
d∑
j=1

∥∥∥∥ ∂

∂ωj
y

∥∥∥∥p
Lp(Ω)

1/p

which is the common Sobolev norm. The following lemma is a straightforward conse-
quence of [Attouch et al., 2006, Corollary 5.8.2] for vector-valued Sobolev spaces.

Lemma 2.3. Fix p ∈ (1,∞). For functions y, z ∈ W 1,p(Ω)q, the componentwise mini-
mum function min{y; z} belongs to W 1,p(Ω)q as well. For any i ∈ {1, . . . , q} as well as
j ∈ {1, . . . , d}, we obtain

∂

∂ωj
min{y; z}i = χ{ω∈Ω | yi(ω)<zi(ω)}

∂

∂ωj
yi + χ{ω∈Ω | yi(ω)≥zi(ω)}

∂

∂ωj
zi.
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3 Prelimiaries on sequential normal compactness

3.1 A brief history of normal compactness conditions

In order to perform limiting procedures in Banach spaces, which is essential in the context
of variational analysis, the validity of certain compactness conditions is indispensable in
order to obtain nontrivial results. Such conditions are often inherently satisfied in the
finite-dimensional setting and lead to a reasonable calculus w.r.t. the tools of variational
geometry and generalized differentiability which apply to problems in many different
mathematical areas, see Aubin and Frankowska [2009], Mordukhovich and Shao [1996a,
1997], Mordukhovich [2006], Rockafellar and Wets [1998] and the references therein.
The first of the aforementioned generalized compactness conditions we want to mention

in this paper is the property of a set to be compactly epi-Lipschitzian. It dates back to
[Borwein and Strojwas, 1985, Definition 2.1].

Definition 3.1. A set A ⊂ X in a Banach space X is called compactly epi-Lipschitzian
(CEL for short) at x̄ ∈ A if there exist ε > 0, δ > 0, κ > 0, and a convex, compact set
C ⊂ X , which satisfy

∀t ∈ (0, κ) : A ∩ UεX (x̄) + tUδX (0) ⊂ A+ tC.

We call A CEL if it is CEL at all of its points.

It is mentioned in [Borwein and Strojwas, 1985, Proposition 2.4] that every subset of a
finite-dimensional Banach space is CEL. In [Borwein et al., 2000, Theorem 2.5], one can
find an explicit characterization of the CEL-property for closed, convex sets in Banach
spaces which we are going to reproduce here.

Lemma 3.2. Let A ⊂ X be a closed, convex subset of the Banach space X . Then the
following statements are equivalent:

1. A is CEL,

2. there exists a convex, compact set C ⊂ X such that 0 ∈ int(A+ C) holds,

3. linA is a closed, finite-codimensional space and riA is nonempty.

As a corollary, we obtain the following result.

Corollary 3.3. Let A ⊂ X be a closed, convex subset of a Banach space X . Then the
following statements are equivalent:

1. A is CEL,

2. there exists a point x̄ ∈ A where A is CEL.

Proof. Clearly, the first statement implies the second one so we only need to prove the
converse implication.
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Thus, assume that A is CEL at x̄ ∈ A. Then we find constants ε > 0, δ > 0, as well
as κ > 0 and a convex, compact set C ⊂ X which satisfy

A ∩ UεX (x̄) + κ
2U

δ
X (0) ⊂ A+ κ

2C.

Particularly, we have
κ
2U

δ
X (0) ⊂ A+ κ

2C − {x̄}.

Thus, for C ′ := κ
2C − {x̄}, 0 ∈ int(A + C ′) is valid. Noting that C ′ is convex and

compact since C is convex and compact, A is CEL due to Lemma 3.2. This completes
the proof.

One of the most important geometrical concepts in variational analysis is the so-called
extremal principle. Roughtly speaking, it says that two closed sets that share a common
point can be locally pushed apart from each other. More precisely, for two closed sets
A1, A2 ⊂ X of a Banach space X and a point x̄ ∈ A1 ∩A2, we say that x̄ is an extremal
point of the system {A1, A2} if there exist ε > 0 and sequences {a1

k}k∈N as well as {a2
k}k∈N

converging to 0, such that

∀k ∈ N :
(
A1 − {a1

k}
)
∩
(
A2 − {a2

k}
)
∩ UεX (0) = ∅

is valid, see Mordukhovich and Shao [1996b]. In this case, we call {A1, A2, x̄} an extremal
system. A desireable condition which characterizes extremal systems is

∃x? ∈ X ? \ {0} : x? ∈ NA1(x̄) ∩ (−NA2(x̄)) . (1)

In the case where A1 and A2 are convex, this condition reduces to

∃x? ∈ X ? \ {0} ∀a1 ∈ A1 ∀a2 ∈ A2 :
〈
x?, a2

〉
X ≤

〈
x?, a1

〉
X

which is a classical separability condition. In the finite-dimensional setting, any extremal
system {A1, A2, x̄} where A1 and A2 are closed satisfies (1), see [Mordukhovich, 1994,
Theorem 3.2]. In the infinite-dimensional setting, an additional assumption is needed in
order to guarantee the nontriviality of the dual vector x? in (1). In [Mordukhovich and
Shao, 1996b, Theorem 3.6], the authors used the so-called normal compactness of sets
defined below for that purpose.

Definition 3.4. A set A ⊂ X in a Banach space X is called normally compact (NC for
short) at x̄ ∈ A if there exist constants γ > 0 as well as ε > 0 and a compact set C ⊂ X
which satisfy

∀x ∈ UεX (x̄) ∩A : N̂A(x) ⊂
{
x? ∈ X ?

∣∣∣∣ γ ‖x?‖X ? ≤ max
c∈C
|〈x?, c〉X |

}
.

We call A NC if it is NC at all of its points.
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It is shown in [Loewen, 1992, Proposition 2.7] that whenever A ⊂ X is CEL at x̄ ∈ A,
then it is NC at this point. Moreover, it was proven that for closed sets A, the converse
implication is also true, see e.g. [Ioffe, 1990, Theorem 3]. Especially, any subset of a
finite-dimensional Banach space X is NC.
Now, we turn our attention back to the characterization of extremal systems. Let us cite
[Mordukhovich and Shao, 1996b, Theorem 3.6] for that purpose.

Lemma 3.5. Let {A1, A2, x̄} be an extremal system where A1, A2 ⊂ X are closed subsets
of an Asplund space x̄. If at least one of these sets is NC at x̄, then (1) is valid.

As it was remarked in [Mordukhovich and Shao, 1997, Remark 3.5(iii)], the NC-
condition in the above result can be replaced by a so-called sequential normal compactness
condition defined below.

Definition 3.6. 1. A set A ⊂ X in a Banach space X is said to be sequentially
normally compact (SNC for short) at x̄ ∈ A if for any sequences {xk}k∈N ⊂ A,
{x?k}k∈N ⊂ X ?, and {εk}k∈N ⊂ R+

0 which satisfy xk → x̄, x?k
?
⇀ 0, εk → 0, and

x?k ∈ N̂
εk
A (xk) for all k ∈ N, we have x?k → 0. We call A SNC if it is SNC at all of

its points.

2. A set A ⊂ X in a Banach space X is said to be topologically normally compact (TNC
for short) at x̄ ∈ A if for any nets {(xτ , x?τ )}τ∈T ⊂ A × X ? and {ετ}τ∈T ⊂ R+

0

such that {x?τ}τ∈T is bounded and which satisfy xτ → x̄, x?τ
?
⇀ 0, ετ → 0, as well

as x?τ ∈ N̂
ετ
A (xτ ) for all τ ∈ T , we have x?τ → 0. We call A TNC if it is TNC at

all of its points.

The definition of a net and the notion of (Moore-Smith-) net convergence can be
found in [Megginson, 1998, Section 2.1]. Noting that any sequence is a net where the
underlying directed set T equals the natural numbers equipped with the common less-
or-equal relation, a set which is TNC at a fixed point is also SNC there. The converse
implication is true whenever X is reflexive or separable, see [Fabian and Mordukhovich,
2003, Theorem 3.1]. On the other hand, if A ⊂ X is a closed subset of an Asplund
space X , then A is TNC at x̄ ∈ A if and only if it is CEL at this point, see [Ioffe, 1990,
Theorem 3]. Obviously, any subset of a finite-dimensional Banach space is TNC and,
thus, SNC.
It is worth to mention that the sequence {εk}k∈N and the net {ετ}τ∈T can be chosen to
be identically zero in the above definition of the SNC- and TNC-property, respectively,
as long as X is an Asplund space and A ⊂ X is closed (apply [Mordukhovich, 2006,
Definition 1.116, Corollary 2.39] to the indicator function δA of A).
In the proposition below, we summarize the presented relations between the compact-

ness conditions presented above.

Proposition 3.7. Let A ⊂ X be a closed subset of an Asplund space X . For any x̄ ∈ X ,
we consider the statements

(i) A is CEL at x̄,
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(ii) A is NC at x̄,

(iii) A is TNC at x̄,

(iv) A is SNC at x̄.

Then, (i) to (iii) are equivalent and imply (iv). If, additionally, X is reflexive, then (i)
to (iv) are equivalent.

We mentioned earlier that the result of Lemma 3.5 stays valid if the NC-condition is
replaced by the weaker SNC-condition.

Lemma 3.8. Let {A1, A2, x̄} be an extremal system where A1, A2 ⊂ X are closed subsets
of an Asplund space x̄. If at least one of these sets is SNC at x̄, then (1) is valid.

In the proposition below, we list the most important consequences of the above lemma,
see Mordukhovich and Shao [1996b] and Mordukhovich [2006] for these results and the
corresponding proofs. Especially, it visualizes the importance of the SNC-property in
modern variational analysis.

Proposition 3.9. 1. Let A ⊂ X be a closed subset of an Asplund space X , and fix
x̄ ∈ A where A is SNC. Then x̄ belongs to bdA if and only if NA(x̄) 6= {0} holds
true.

2. Let A1, A2 ⊂ X be closed subsets of an Asplund space X . Assume that at least one
of these sets is SNC at x̄ ∈ A1 ∩ A2 and that NA1(x̄) ∩ (−NA2(x̄)) = {0} is valid.
Then we have

NA1∩A2(x̄) ⊂ NA1(x̄) +NA2(x̄).

3. Let S ⊂ Y be a closed subset of an Asplund space Y and let F : X → Y be a
continuously Fréchet differentiable mapping where X is an Asplund space as well.
Let x̄ ∈ F−1(S) be fixed and assume that S is SNC at F (x̄). If the constraint
qualification

0 = F ′(x̄)?[y?], y? ∈ NS(F (x̄)) =⇒ y? = 0 (2)

is valid, then we have

NF−1(S)(x̄) ⊂ F ′(x̄)? [NS(F (x̄))] .

Here, F ′(x̄)? : Y? → X ? represents the adjoint operator of the Fréchet derivative
F ′(x̄) of F at x̄.

3.2 Calculus rules for sequentially normally compact sets

Combining Lemma 3.2, Corollary 3.3, and Proposition 3.7, it is possible to character-
ize the presence of sequential normal compactness for closed, convex sets in reflexive
Banach spaces explicitly. Note that this result is sharper than [Mordukhovich, 2006,
Theorem 1.21] which addresses convex sets in arbitrary Banach spaces.
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Lemma 3.10. Let X be a reflexive Banach space. For a nonempty, closed, convex set
A ⊂ X , the following statements are equivalent:

1. A is SNC,

2. A is SNC at some point x̄ ∈ A,

3. linA is a closed, finite-codimensional space and riA is nonempty.

Due to the above lemma, any closed, convex subset of a reflexive Banach space that
possesses a nonempty interior is SNC everywhere. However, this result is already clear
from [Mordukhovich, 2006, Theorem 1.21] even in the absence of reflexivity.
In the lemma below, we show some nearby consequences resulting from the definition

of sequential normal compactness.

Lemma 3.11. Let A ⊂ X be a nonempty subset of a Banach space X and fix some point
x̄ ∈ A. Then the following statements hold.

(i) If x̄ ∈ intA is valid, then A is SNC at x̄.

(ii) Fix a ∈ X . Then A is SNC at x̄ if and only if A− {a} is SNC at x̄− a.

(iii) Fix α ∈ R \ {0}. Then A is SNC at x̄ if and only if αA is SNC at αx̄.

Proof. Let us start with the proof of the lemma’s first assertion. Therefore, we assume
that x̄ ∈ intA is valid. Then we find δ > 0 such that UδX (x̄) ⊂ intA holds true. A
simple calculation shows N̂ ε

A(x) = BεX ?(0) for all x ∈ UδX (x̄) and all ε ≥ 0. Obviously,
this implies that A is SNC at x̄ by definition of the SNC-property.
For the proof of the second statement of the lemma, we choose a ∈ X arbitrarily. For

any ε ≥ 0, it is easy to see that N̂ ε
A−{a}(x̄ − a) = N̂ ε

A(x̄) holds true. The definition of
the SNC-property shows the claim.
Finally, let us prove the lemma’s third assertion. Therefore, we fix α ∈ R \ {0}. Then

lim sup

x̃
αA−−→αx̄

〈x?, x̃− αx̄〉X
‖x̃− αx̄‖X

≤ ε ⇐⇒ lim sup

x
A−→x̄

〈x?, αx− αx̄〉X
‖αx− αx̄‖X

≤ ε

⇐⇒ lim sup

x
A−→x̄

α

|α|
〈x?, x− x̄〉X
‖x− x̄‖X

≤ ε

⇐⇒ lim sup

x
A−→x̄

〈(sgnα)x?, x− x̄〉X
‖x− x̄‖X

≤ ε

is obtained for any x? ∈ X ? and any ε ≥ 0. Consequently, N̂ ε
αA(αx̄) = (sgnα)N̂ ε

A(x̄)
holds true.
Assume that A is SNC at x̄ and choose sequences {x̃k}k∈N ⊂ αA, {x̃?k}k∈N ⊂ X ?, and
{εk} ⊂ R+

0 which satisfy x̃k → αx̄, x̃?k
?
⇀ 0, εk → 0, and x̃?k ∈ N̂

εk
αA(x̃k) for all k ∈ N.

Then we find a sequence {xk}k∈N ⊂ A satisfying xk = 1
α x̃k for all k ∈ N. Clearly,
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xk → x̄ is valid while (sgnα)x̃?k ∈ N̂
εk
A (xk) holds for all k ∈ N. From x̃?k

?
⇀ 0, we have

(sgnα)x̃?k
?
⇀ 0. Since A is SNC at x̄, (sgnα)x̃?k → 0 is obtained which yields x̃?k → 0. As

a result, αA is SNC at αx̄.
If αA is SNC at αx̄, then due to the above arguments, A = 1

ααA is SNC at x̄ = 1
ααx̄.

This completes the proof.

In the following lemma, we discuss the SNC-property in the context of certain set
operations. Similar results hold for the CEL-property, see [Borwein and Strojwas, 1985,
Proposition 2.4].

Lemma 3.12. 1. Let A1, A2 ⊂ X be nonempty, closed subsets of a Banach space X
and fix x̄ ∈ A1 ∪A2. Then the following assertions hold:

a) If x̄ ∈ A1 ∩ A2 holds and if A1 and A2 are both SNC at x̄, then A1 ∪ A2 is
SNC at x̄.

b) If x̄ ∈ A1 \ A2 (x̄ ∈ A2 \ A1) holds true and if A1 (A2) is SNC at x̄, then
A1 ∪A2 is SNC at x̄.

2. Let A1, A2 ⊂ X be nonempty, closed subsets of an Asplund space X . Assume that
A1 and A2 are SNC at x̄ ∈ A1 ∩ A2 while NA1(x̄) ∩

(
−NA2(x̄)

)
= {0} is valid.

Then A1 ∩A2 is SNC at x̄.

3. Let Ai ⊂ Xi, i = 1, 2, be a subset of the Banach space Xi and fix x̄i ∈ Ai. If Ai is
SNC at x̄i for i = 1, 2, then A1 ×A2 is SNC at (x̄1, x̄2).

4. Let S ⊂ Y be a closed subset of an Asplund space Y and let F : X → Y be a
continuously Fréchet differentiable mapping where X is an Asplund space as well.
Let x̄ ∈ F−1(S) be fixed and assume that S is SNC at F (x̄). If the constraint
qualification (2) holds, then F−1(S) is SNC at x̄.

Proof. Let us start with the proof of the lemma’s first assertion. From the definition of
Fréchet ε-normals and the closedness of A1 and A2, we easily see

∀ε ∈ R+
0 ∀x ∈ A1 ∪A2 : N̂ ε

A1∪A2
(x) ⊂


N̂ ε
A1

(x) ∩ N̂ ε
A2

(x) if x ∈ A1 ∩A2,

N̂ ε
A1

(x) if x ∈ A1 \A2,

N̂ ε
A2

(x) if x ∈ A2 \A1.

Now, fix x̄ ∈ A1 ∩A2 and assume that A1 and A2 are both SNC at x̄. Choose sequences
{xk}k∈N ⊂ A1 ∪ A2, {x?k}k∈N ⊂ X ?, and {εk}k∈N ⊂ R+

0 which satisfy xk → x̄, x?k
?
⇀ 0,

εk → 0, and x?k ∈ N̂
εk
A1∪A2

(xk) for all k ∈ N.
Note that whenever {xk}k∈N ∩ (A1 ∩ A2), {xk}k∈N ∩ (A1 \ A2), or {xk}k∈N ∩ (A2 \ A1)
is of infinite cardinality, then, due to the above upper estimate of N̂ εk

A1∪A2
(xk) and the

property of A1 and A2 to be SNC at x̄, the associated restriction of {x?k}k∈N converges
strongly to 0. Furthermore, we have(
{xk}k∈N ∩ (A1 ∩A2)

)
∪
(
{xk}k∈N ∩ (A1 \A2)

)
∪
(
{xk}k∈N ∩ (A2 \A1)

)
= {xk}k∈N.
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Thus, the whole sequence {x?k}k∈N converges strongly to 0, i.e. A1∪A2 is SNC at x̄. This
shows a).
For the proof of statement b), we only consider the case where x̄ ∈ A1 \ A2 holds and
A1 is SNC at x̄. The other assertion follows analogously. Since A2 is closed, we find
δ > 0 such that UδX (x̄) ∩ (A1 ∪ A2) = UδX (x̄) ∩ A1 holds true. Particularly, we have
N̂ ε
A1∪A2

(x) = N̂ ε
A1

(x) for all ε ∈ R+
0 and all x ∈ UδX (x̄)∩ (A1 ∪A2). Thus, in UδX (x̄), the

variational geometry of A1 ∪A2 is equivalent to the one of A1, and since the latter set is
SNC at x̄, the same holds true for A1 ∪A2.
The second assertion is taken from [Mordukhovich, 2006, Corollary 3.81].
Let us prove the third assertion. First, we observe that

∀ε ∈ R+
0 ∀(x

1, x2) ∈ A1 ×A2 : N̂ ε
A1×A2

(x1, x2) ⊂ N̂ ε
A1

(x1)× N̂ ε
A2

(x2)

holds true. Next, choose sequences {(x1
k, x

2
k)}k∈N ⊂ A1×A2, {(x?,1k , x?,2k )}k∈N ⊂ X ?1 ×X ?2 ,

and {εk} ⊂ R+
0 which satisfy (x1

k, x
2
k) → (x̄1, x̄2), (x?,1k , x?,2k )

?
⇀ (0, 0), εk → 0, and

(x?,1k , x?,2k ) ∈ N̂ εk
A1×A2

(x1
k, x

2
k) for all k ∈ N. We deduce xik → x̄i, x?,ik

?
⇀ 0, as well as

x?,ik ∈ N̂
εk
Ai

(xik) for all k ∈ N and i = 1, 2. Exploiting that Ai is SNC at x̄i, i = 1, 2, we
deduce x?,ik → 0, i.e. (x?,1k , x?,2k )→ (0, 0). This shows that A1 ×A2 is SNC at (x̄1, x̄2).
The forth statement of the lemma follows from [Mordukhovich, 2006, Corollary 1.69,

Theorem 3.84].

More calculus rules for sequentially normally compact sets can be found in Mor-
dukhovich and Wang [2003], Mordukhovich [2006].

4 Sequential normal compactness of decomposable sets

In optimal control, the set K of pointwise control constraints might be given as stated
below:

K := {u ∈ Lp(m;Rq) |u(ω) ∈ K(ω) a.e. on Ω} . (3)

Therein, (Ω,Σ,m) is a complete as well as σ-finite measure space, p ∈ (1,∞) is a fixed
parameter, and K : Ω ⇒ Rq is a set-valued mapping with nonempty, closed images. For
the derivation of necessary optimality conditions for optimal control problems whose
feasible set is formulated with the aid of K, we need to know more about the variational
geometry of this set. In view of Proposition 3.9, the presence of the SNC-property for K
would be benefical in order to ensure a good variational calculus.
Before we can formulate the standing assumptions of this section, we need to present

some more definitions for a better understanding of the underlying theory and background
material.
Let (Ω,Σ,m) be a measure space. It is called nonatomic whenever for every set M ∈ Σ
satisfying m(M) > 0, we find M ′ ∈ Σ such that 0 < m(M ′) < m(M) holds true.
On the other hand, the measure space (Ω,Σ,m) is called separable, if all the Lebesgue
spaces Ls(m), s ∈ [1,∞), are separable. An arbitrary domain Ω ⊂ Rd equipped with
Lebesgue’s measure and the corresponding Borelean σ-algebra is σ-finite, nonatomic,
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and separable, see [Adams and Fournier, 2003, Theorem 2.21]. Its formal completion is
complete, additionally.
Fix an arbitrary measure space (Ω,Σ,m). A set-valued mapping K : Ω ⇒ Rq is said to
be measurable if for every open set O ⊂ Rq, the preimage {ω ∈ Ω |K(ω) ∩ O 6= ∅}
is measurable. Whenever K possesses only closed images, there exist many equivalent
useful characterizations of the measurability of K, see [Aubin and Frankowska, 2009,
Section 8.1] or [Papageorgiou and Kyritsi-Yiallourou, 2009, Section 6.3].
Let (Ω,Σ,m) be a complete and σ-finite measure space again. For p ∈ (1,∞), a set
K ⊂ Lp(m;Rq) is called decomposable if for any triplet (A, u1, u2) ∈ Σ×K×K, we have
χAu1 + (1−χA)u2 ∈ K as well. Obviously, decomposability seems to be a generalization
of convexity. The notion of decomposability dates back to Rockafellar, see Rockafellar
[1968]. It is well-known that a nonempty and closed set K ∈ Lp(m;Rq) is decomposable
if and only there is a measurable set-valued mapping K : Ω ⇒ Rq with nonempty and
closed images such thatK possesses the representation (3), see [Papageorgiou and Kyritsi-
Yiallourou, 2009, Theorem 6.4.6]. In Hiai and Umegaki [1977] and [Papageorgiou and
Kyritsi-Yiallourou, 2009, Sections 6.2-6.4], the interested reader can find some more
properties and calculus rules for decomposable sets. Recently, the variational geometry
of decomposable sets has been studied in Mehlitz and Wachsmuth [2016, 2017].
Throughout the section, we postulate the following general assumptions.

Assumption 4.1. We assume that (Ω,Σ,m) is a complete, σ-finite, nonatomic, and
separable measure space.
Furthermore, let K ⊂ Lp(m;Rq) be a nonempty, closed, and decomposable set with

p ∈ (1,∞). By K : Ω ⇒ Rq, we denote the closed-valued, measurable set-valued mapping
associated to K. We assume that the images of K are derivable almost everywhere on Ω.
Let p′ ∈ (1,∞) be the conjugate coefficient associated to p.

Assumption 4.1 allows us to state an explicit formula for the Fréchet normal cone to
the decomposable set K of interest. The following result is taken from [Mehlitz and
Wachsmuth, 2016, Corollary 3.7].

Lemma 4.2. For arbitrary u ∈ K, we have

N̂K(u) =
{
η ∈ Lp′(m;Rq)

∣∣∣ η(ω) ∈ N̂K(ω)(u(ω)) a.e. on Ω
}
.

Next, we present the main result of this section. It shows that all nontrivial decom-
posable sets which satisfy Assumption 4.1 are nowhere SNC.

Theorem 4.3. If K 6= Lp(m;Rq) holds, then K is nowhere SNC.

Proof. Fix ū ∈ Lp(m;Rq) \K. Then we find a measurable set Ω′ ∈ Σ with finite measure
m(Ω′) > 0 and a constant ε > 0 such that dist(ū(ω),K(ω)) ≥ ε is valid for all ω ∈ Ω.

We define a set-valued mapping Ψ: Ω ⇒ Rq by

∀ω ∈ Ω: Ψ(ω) := argmin
{

1
2 |z − ū(ω)|22

∣∣ z ∈ K(ω)
}
.
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The measurability of ū and K implies that Ψ is measurable as well, see [Aubin and
Frankowska, 2009, Theorem 8.2.11]. On the other hand, the images of K are nonempty
and closed which is why the images of Ψ possess the same properties. That is why we find
a measurable selection of Ψ, i.e. there is a measurable function ũ : Ω→ Rq which satisfies
ũ(ω) ∈ Ψ(ω) for almost every ω ∈ Ω, see [Aubin and Frankowska, 2009, Theorem 8.1.3].
By definition, we have |ū(ω)− ũ(ω)|2 ≥ ε almost everywhere on Ω′. On the other hand,
[Mordukhovich, 2006, Proposition 5.1] yields ū(ω)−ũ(ω) ∈ N̂K(ω)(ũ(ω)) for almost every
ω ∈ Ω.
Now, we define a measurable function η : Ω→ Rq by

∀ω ∈ Ω: η(ω) := χΩ′(ω)
ū(ω)− ũ(ω)

|ū(ω)− ũ(ω)|2
.

Due to

‖η‖p
′

Lp′ (m;Rq) =

∫
Ω′

∣∣∣∣ ū(ω)− ũ(ω)

|ū(ω)− ũ(ω)|2

∣∣∣∣p′
2

dm = m(Ω′) < +∞,

we have η ∈ Lp′(m;Rq). On the other hand, observe that the relation η(ω) ∈ N̂K(ω)(ũ(ω))

holds for almost all ω ∈ Ω by definition. Consequently, Lemma 4.2 yields η ∈ N̂K(ũ).
Let v̄ ∈ K be chosen arbitrarily. Since (Ω,Σ,m) is nonatomic, we find a sequence
{Ωk}k∈N ⊂ Σ of sets possessing positive measure such that m(Ωk) → 0 holds true while
Ωk ⊂ Ω′ is valid for all k ∈ N. Let us set vk := (1− χΩk)v̄ + χΩk ũ for all k ∈ N. Clearly,
we have {vk}k∈N ⊂ K and vk → v̄ in Lp(m;Rq) by Lemma 2.2. Next, for all k ∈ N,

we define ηk := m(Ωk)
− 1
p′ χΩkη ∈ Lp

′
(m;Rq). By construction, ηk(ω) ∈ N̂K(ω)(ũ(ω)) is

obtained for almost every ω ∈ Ωk which leads us to ηk(ω) ∈ N̂K(ω)(vk(ω)) for almost all
ω ∈ Ω and all k ∈ N. Once more, we invoke Lemma 4.2 to obtain ηk ∈ N̂K(vk) for all
k ∈ N. For arbitrary u ∈ Lp(m;Rq), Hölder’s inequality yields∣∣∣〈ηk, u〉Lp(m;Rq)

∣∣∣ = m(Ωk)
− 1
p′

∣∣∣∣∫
Ωk

ū(ω)− ũ(ω)

|ū(ω)− ũ(ω)|2
· u(ω)dm

∣∣∣∣
≤ m(Ωk)

− 1
p′

(∫
Ωk

∣∣∣∣ ū(ω)− ũ(ω)

|ū(ω)− ũ(ω)|2

∣∣∣∣p′
2

dm

)1/p′ (∫
Ωk

|u(ω)|p2dm

)1/p

= ‖χΩku‖Lp(m;Rq) ,

and by means of Lemma 2.2, the last term falls to zero as k → ∞. Thus, we obtain
ηk ⇀ 0 in Lp′(m;Rq). On the other hand, we easily see ‖ηk‖Lp′ (m;Rq) = 1 for all k ∈ N,
i.e. ηk 9 0 in Lp′(m;Rq). Consequently, K is not SNC at v̄. Since the latter point was
chosen arbitrarily, K is nowhere SNC.

In the following, we present reasonable examples of decomposable sets which are
nowhere SNC.
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Example 4.4. Let (Ω,Σ,m) be a measure space which satisfies Assumption 4.1. Further-
more, for some p ∈ (1,∞), choose functions a, b ∈ Lp(m;Rq) which satisfy a(ω) ≤ b(ω)
for almost every ω ∈ Ω. We consider the sets

La := {u ∈ Lp(m;Rq) | a(ω) ≤ u(ω) a.e. on Ω} ,
Lb := {u ∈ Lp(m;Rq) |u(ω) ≤ b(ω) a.e. on Ω} ,

La,b := {u ∈ Lp(m;Rq) | a(ω) ≤ u(ω) ≤ b(ω) a.e. on Ω} .

These sets are induced by the set-valued mappings La, Lb, La,b : Ω ⇒ Rq defined below for
all ω ∈ Ω:

La(ω) := {z ∈ Rq | a(ω) ≤ z},
Lb(ω) := {z ∈ Rq | z ≤ b(ω)},
La,b(ω) := {z ∈ Rq | a(ω) ≤ z ≤ b(ω)}.

Due to the measurability of a and b, these mappings are measurable as well. Further-
more, the images of La, Lb, and La,b are nonempty, closed, and convex (and, thus,
derivable). Consequently, Assumption 4.1 is valid and due to Theorem 4.3, La, Lb, and
La,b are nowhere SNC. Note that these sets represent typical box constraints from control-
constrained optimal control.

Example 4.5. Let (Ω,Σ,m) be a measure space which satisfies Assumption 4.1. We
consider the nonempty, closed, convex cone

L2(m;Rq)+
0 := {u ∈ L2(m;Rq) | 0 ≤ u(ω) a.e. on Ω}.

Due to Example 4.4, L2(m;Rq)+
0 is nowhere SNC.

Let X be a Banach space and let G,H : X → L2(m;Rq) be continuously Fréchet differ-
entiable mappings. The constraint system

G(x) ∈ L2(m;Rq)+
0

H(x) ∈ L2(m;Rq)+
0

〈H(x), G(x)〉L2(m;Rq) = 0

represents a complementarity constraint in the Lebesgue space L2(m;Rq) which can be
used to model optimal control problems with complementarity requirements on the control
function, see Guo and Ye [2016], Mehlitz and Wachsmuth [2016]. It is easy to see that
the above system is equivalent to

(G(x), H(x)) ∈ K

where K ∈ L2(m;R2q) is defined below:

K :=
{

(u, v) ∈ L2(m;Rq)× L2(m;Rq)
∣∣ 0 ≤ u(ω) ⊥ v(ω) ≥ 0 a.e. on Ω

}
.

Thus, K equals the so-called complementarity set which is induced by the cone L2(m;Rq)+
0 .

Defining
Θ := {(a, b) ∈ Rq × Rq | 0 ≤ a ⊥ b ≥ 0},
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we have

K =
{

(u, v) ∈ L2(m;Rq)× L2(m;Rq)
∣∣ (u(ω), v(ω)) ∈ Θ a.e. on Ω

}
.

Noting that the closed set Θ can be represented as the finite union of convex sets, it is
derivable, see [Mehlitz and Wachsmuth, 2016, Lemma 2.1]. Thus, K is nowhere SNC due
to Theorem 4.3. A direct proof of this result is presented in [Mehlitz and Wachsmuth,
2016, Lemma 4.8].

Due to Theorem 4.3, we cannot rely on the SNC-property when dealing with the
variational calculus of decomposable sets. In view of the rich pool of available calculus
rules for decomposable sets, see e.g. Hiai and Umegaki [1977], Mehlitz and Wachsmuth
[2016, 2017], Papageorgiou and Kyritsi-Yiallourou [2009], it might be possible to show
some of the desirable results from Proposition 3.9 even in the absence of the SNC-
property. This, however, is beyond the scope of this paper.

5 Sequential normal compactness of convex sets in Sobolev
spaces

Below, we postulate the standing assumptions of this section.

Assumption 5.1. We assume that Ω ⊂ Rd is a bounded domain. Furthermore, we fix
functions a, b ∈W 1,p(Ω)q such that a(ω) ≤ b(ω) holds for almost all ω ∈ Ω. We consider
the sets

Wa :=
{
y ∈W 1,p(Ω)q

∣∣ a(ω) ≤ y(ω) a.e. on Ω
}
,

Wb :=
{
y ∈W 1,p(Ω)q

∣∣ y(ω) ≤ b(ω) a.e. on Ω
}
,

Wa,b :=
{
y ∈W 1,p(Ω)q

∣∣ a(ω) ≤ y(ω) ≤ b(ω) a.e. on Ω
}

where p ∈ (1,∞) is fixed.

For later use, we define

W0 :=
{
y ∈W 1,p(Ω)q

∣∣ 0 ≤ y(ω) a.e. on Ω
}
.

Note that we have Wa = W0 +{a}, Wb = {b}−W0, and Wa,b = (W0 +{a})∩({b}−W0).
In the following auxiliary lemma, we provide a useful truncation result.

Lemma 5.2. For some function y ∈W0, we define

∀k ∈ N : yk := min{y; ke}.

Then we have {yk}k∈N ⊂W0 and yk → y in W 1,p(Ω)q as k →∞.
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Proof. Noting that ke ∈ W 1,p(Ω)q holds due to the boundedness of Ω, yk ∈ W 1,p(Ω)q

follows from Lemma 2.3 for any k ∈ N and any y ∈W0. Due to the nonnegativity of ke
and y, we already have yk ∈W0 for any k ∈ N.
Choose y ∈ W0 arbitrarily. Furthermore, fix i ∈ {1, . . . , q}. For any k ∈ N, we define

measurable sets Ω1
i (k) and Ω2

i (k) as stated below:

Ω1
i (k) := {ω ∈ Ω | k ≤ yi(ω)},

Ω2
i (k) := {ω ∈ Ω | yi(ω) < k}.

Obviously, {Ω1
i (k),Ω2

i (k)} is a disjoint partition of Ω which satisfies

∀ω ∈ Ω: yk,i(ω) =

{
k if ω ∈ Ω1

i (k),

yi(ω) if ω ∈ Ω2
i (k).

Using Lemma 2.3, we obtain

∂

∂ωj
yk,i = χΩ2

i (k)

∂

∂ωj
yi

for any j ∈ {1, . . . , d}. From yi ∈ Lp(Ω), we have λ(Ω1
i (k))→ 0 as k →∞. Since

yi − yk,i = χΩ1
i (k)(yi − k)

is valid for any k ∈ N, yk,i converges pointwise to yi almost everywhere on Ω as k →∞.
Moreover, we obtain

|yi(ω)− yk,i(ω)| =
∣∣∣χΩ1

i (k)(ω)(yi(ω)− k)
∣∣∣ ≤ |yi(ω)|

for almost every ω ∈ Ω. Since yi ∈ Lp(Ω) is valid, the convergence yk,i → yi in Lp(Ω)
as k →∞ follows from the dominated convergence theorem, see [Simonnet, 1996, Theo-
rem 5.2.2]. For any j ∈ {1, . . . , d}, we deduce

∂

∂ωj
yi −

∂

∂ωj
yk,i = χΩ1

i (k)

∂

∂ωj
yi,

i.e. ∂
∂ωj

yk,i converges pointwise to ∂
∂ωj

yi almost everywhere on Ω as k →∞. Furthermore,
the estimate ∣∣∣∣ ∂∂ωj yi(ω)− ∂

∂ωj
yk,i(ω)

∣∣∣∣ ≤ ∣∣∣∣ ∂∂ωj yi(ω)

∣∣∣∣
is obtained from above for almost every ω ∈ Ω. Since we have ∂

∂ωj
yi ∈ Lp(Ω), the

convergence ∂
∂ωj

yk,i → ∂
∂ωj

yi in Lp(Ω) as k →∞ follows from the dominated convergence
theorem, see [Simonnet, 1996, Theorem 5.2.2]. By definition, yk,i → yi in W 1,p(Ω) as
k →∞ is valid for all i ∈ {1, . . . , q}. Thus, we finally derived yk → y in W 1,p(Ω)q which
completes the proof.
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Now, we are well-prepared to study the presence of the SNC-property for the closed,
convex cone W0.
In order to ensure that W 1,p(Ω) ↪→ L∞(Ω) is valid for p > d, the underlying domain

Ω needs to satisfy the so-called cone condition, see [Adams and Fournier, 2003, Para-
graph 4.6] for the definition. It is well-known that any bounded domain with Lipschitz
boundary satisfies the cone condition, see [Adams and Fournier, 2003, Paragraph 4.11].

Lemma 5.3. The following assertions hold true.

1. For p ≤ d, the cone W0 is nowhere SNC.

2. Suppose that Ω satisfies the cone condition. For p > d, the cone W0 is SNC.

Proof. First, let us consider the situation p ≤ d. The main idea of the proof is to show
that W0 possesses an empty relative interior which already shows the lack of the SNC-
property by means of Lemma 3.10.
Since we postulated p ≤ d, there exists a function ȳ ∈ W0 which is not essentially
bounded, see [Adams and Fournier, 2003, Examples 4.41, 4.43] where such a function is
constructed. Let us set

yk := min{y; ke}, wk := 1
k ȳ, zk := yk − wk

for any k ∈ N. Clearly, by means of Proposition 5.2, we have {yk}k∈N ⊂ W0 as well
as yk → y in W 1,p(Ω)q, and {wk}k∈N ⊂ W0 follows from the nonnegativity of ȳ. From
wk → 0 in W 1,p(Ω)q, we deduce zk → y in W 1,p(Ω)q. By definition, yk is essentially
bounded on Ω for any choice of k. On the other hand, wk is not essentially bounded on
Ω for all k ∈ N by construction. That is why we have zk /∈ W0 for all k ∈ N. On the
other hand, the sequence {zk}k∈N ⊂ linW0 converges to y which is why the function y
does not belong to the relative interior of W0. Since y ∈ W0 was arbitrarily chosen, we
deduce riW0 = ∅, i.e. W0 is nowhere SNC by Lemma 3.10.
For the second part of the proof, let Ω satisfy the cone condition and assume p > d.

Then we have W 1,p(Ω)q ↪→ L∞(Ω;Rq), see [Adams and Fournier, 2003, Theorem 4.12],
i.e. we find some γ > 0 such that

∀y ∈W 1,p(Ω)q : ‖y‖L∞(Ω;Rq) ≤ γ ‖y‖W 1,p(Ω)q

holds. For any y ∈ W 1,p(Ω)q, max{y; 0},−min{y; 0} ∈ W0 holds true, see Lemma
2.3, and, thus, y = max{y; 0} + min{y; 0} ∈ linW0 is derived. As a consequence,
linW0 = W 1,p(Ω)q is valid, i.e. linW0 is closed and possesses finite codimension. Finally,
we consider the constant function e ∈ W0. Then for any function z ∈ W 1,p(Ω)q which
satisfies ‖z − e‖W 1,p(Ω)q ≤

1
γ , ‖z − e‖L∞(Ω;Rq) ≤ 1 is valid. This yields |zi(ω)− 1| ≤ 1 for

all i ∈ {1, . . . , q} and almost every ω ∈ Ω. Consequently, we have z ∈ W0, i.e. e is an
interior point of W0. By means of Lemma 3.10, W0 is SNC.

Now, we consider the setsWa andWb with only upper or lower constraints, respectively.

Theorem 5.4. The following assertions hold true.
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1. For p ≤ d, the sets Wa and Wb are nowhere SNC.

2. Suppose that Ω satisfies the cone condition. For p > d, the sets Wa and Wb are
SNC.

Proof. Exploiting Wa = W0 + {a} and Wb = {b}−W0, this result follows from Lemmas
3.11 and 5.3.

In the upcoming theorem, we analyze the situation for sets Wa,b which are defined via
lower and upper bounds. Therefore, an additional assumption is needed.

Assumption 5.5. In addition to Assumption 5.1, we assume that there exists a subdo-
main Ω′ of Ω such that the restrictions a|Ω′ and b|Ω′ of a and b to Ω′ are elements of
L∞(Ω′;Rq).

It is worth to mention that in the case p > d where Ω satisfies the cone condition,
we have W 1,p(Ω)q ↪→ L∞(Ω;Rq) from [Adams and Fournier, 2003, Theorem 4.12], i.e.
Assumption 5.5 is trivially satisfied. In the following example, we show that this property
is not inherent whenever p ≤ d holds true.

Example 5.6. Let Ω ⊂ Rd be an arbitrary domain. For p ≤ d, we find a nonnegative
function u0 ∈W 1,p(Rd) which is not bounded near the origin, see [Adams and Fournier,
2003, Examples 4.41, 4.43]. Now, let {ωk}k∈N be a sequence which orders the countable
set Ω ∩Qd. We define a function ȳ : Ω→ Rq by

∀ω ∈ Ω: ȳ(ω) :=

∞∑
k=1

2−k eu0(ω − ωk).

Observe that we have

‖ȳ‖W 1,p(Ω)q = q

∥∥∥∥∥
∞∑
k=1

2−ku0(· − ωk)

∥∥∥∥∥
W 1,p(Ω)

≤ q
∞∑
k=1

2−k ‖u0(· − ωk)‖W 1,p(Ω)

≤ q
∞∑
k=1

2−k ‖u0‖W 1,p(Rd) = q ‖u0‖W 1,p(Rd) < +∞,

i.e. ȳ ∈W 1,p(Ω)q holds true. On the other hand, Ω∩Qd is dense in cl Ω, i.e. there cannot
exist a subdomain Ω′ of Ω where ȳ is essentially bounded since ȳ is not bounded near the
points from Ω ∩Qd.

Theorem 5.7. Let Assumption 5.5 be valid. Then the following assertions hold true.

1. For p ≤ d, the set Wa,b is nowhere SNC.

2. Suppose that Ω satisfies the cone condition. Furthermore, let p > d be valid and
assume that there exists ε > 0 such that εe ≤ b(ω) − a(ω) is satisfied for almost
every ω ∈ Ω. Then the set Wa,b is SNC.
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Proof. Let us first assume that p ≤ d is valid. Assumption 5.5 guarantees the existence
of a subdomain Ω′ of Ω such that the restrictions a|Ω′ and b|Ω′ of a and b to Ω′ belong
to L∞(Ω′;Rq). Lemma 2.1 yields

linWa,b ⊂
{
y ∈W 1,p(Ω)q

∣∣ y|Ω′ ∈ L∞(Ω′;Rq)
}
.

As mentioned before, there exists a function u0 ∈W 1,p(Rd) which is unbounded near the
origin since p ≤ d holds. For some ω̄ ∈ Ω, we define yω̄ : Ω→ Rq by

∀ω ∈ Ω: yw̄(ω) := eu0(ω − ω̄).

From ‖yω̄‖W 1,p(Ω)q ≤ q ‖u0‖W 1,p(Rd) < +∞, we have yω̄ ∈W 1,p(Ω)q. Let us set

Q := {yw̄ | ω̄ ∈ Ω′ ∩Qd}.

Clearly, Q is a linear independent system of infinitely many functions which are not
essentially bounded on Ω′. Thus, we have linWa,b∩Q = ∅, i.e. linWa,b possesses infinite
codimension. Due to Lemma 3.10, Wa,b is nowhere SNC.
Now, we consider the situation where p > d holds true. Then we have the embed-

ding W 1,p(Ω)q ↪→ L∞(Ω;Rq). Particularly, a and b are essentially bounded. We show
linWa,b = W 1,p(Ω)q. Choose ŷ ∈ W 1,p(Ω)q arbitrarily. From ŷ ∈ L∞(Ω;Rq), we find
constants α, β ∈ R such that αe ≤ ŷ(ω) ≤ βe holds true for almost all ω ∈ Ω. Let us
define ỹ := a+ 1

2(b− a) ∈Wa,b. The assumption of the theorem yields

Wshift
a,b := {y ∈W 1,p(Ω)q | − ε

2e ≤ y(ω) ≤ ε
2e a.e. on Ω} ⊂Wa,b − {ỹ} ⊂ linWa,b.

For M := max{|α|; |β|}, we obtain ŷ ∈ (2M/ε)Wshift
a,b ⊂ linWa,b. Since ŷ was arbi-

trarily chosen, W 1,p(Ω)q ⊂ linWa,b follows, which already yields linWa,b = W 1,p(Ω)q.
Consequently, linWa,b is a closed, finite-codimensional space. Similar as in the proof of
Theorem 5.4, one can show that ỹ is an interior point of Wa,b. This shows the relation
riWa,b = intWa,b 6= ∅. Due to Lemma 3.10, Wa,b is SNC.

Below, we briefly comment on the case where the lower bound a and the upper bound
b hit each other on an open subset of Ω.

Remark 5.8. If there exist a subdomain Ω′ of Ω and an index i0 ∈ {1, . . . , q} such that
ai0(ω) = bi0(ω) holds true for almost every ω ∈ Ω′, then we have

linWa,b ⊂
{
y ∈W 1,p(Ω)q

∣∣∃α ∈ R : yi0 |Ω′ = αai0 |Ω′
}
,

see Lemma 2.1. Obviously, the vector space on the right possesses infinite codimension
since W 1,p(Ω′) is infinite dimensional. Thus, linWa,b possesses infinite codimension.
Particularly, Wa,b is nowhere SNC, see Lemma 3.10.

As a result of the above theorem, we obtain that box constraint sets appearing fre-
quently in state-constrained optimal PDE control are nowhere SNC.
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Example 5.9. For fixed vectors y,y ∈ Rq satisfying y < y, we consider the standard
box constraint set

Wbox :=
{
y ∈W 1,p(Ω)q

∣∣y ≤ y(ω) ≤ y a.e. on Ω
}
.

For any p ≤ d, Wbox is nowhere SNC. Especially, in the standard setting of state-
constrained PDE control, i.e. p = 2 and d ≥ 2, Wbox is nowhere SNC.
In contrast, if Ω = (0, T ) equals a real interval (i.e. d = 1) while p ∈ (1,∞) is arbitrarily
chosen, then Wbox is everywhere SNC. This covers the setting of state-constrained ODE
control.
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