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POD-based multiobjective optimal control of PDEs with non-smooth
objectives

Dennis Beermann1, Michael Dellnitz2, Sebastian Peitz2, ∗, and Stefan Volkwein1

1 Department of Mathematics and Statistics, University of Konstanz
2 Department of Mathematics, Paderborn University

A framework for set-oriented multiobjective optimal control of partial differential equations using reduced order modeling has
recently been developed [1]. Following concepts from localized reduced bases methods, error estimators for the reduced cost
functionals are utilized to construct a library of locally valid reduced order models. This way, a superset of the Pareto set can
efficiently be computed while maintaining a prescribed error bound. In this article, this algorithm is applied to a problem with
non-smooth objective functionals. It is shown that the extension to non-smooth problems can be realized in a straightforward
manner and the implications on the numerical results are discussed.
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1 Introduction

During the past decade, considering multiple objectives in the development of a system has steadily been gaining importance
in a wide range of applications. There are nowadays only few problems where only one objective is of interest. When
designing an application where the underlying dynamical system is given by a partial differential equation (PDE), this results
in a multiobjective PDE-constrained optimization or optimal control problem. For example, in buildings we want to provide a
comfortable room temperature while at the same time minimizing the energy consumption. This example illustrates that many
objectives are often equally important and also contradictory such that we are forced to accept a trade-off between them. This
results in a multiobjective optimization problem (MOP), where multiple objectives have to be minimized at the same time.
Similar to scalar optimization problems, we want to find an optimal solution to this problem. However, in the multiobjective
situation, we have to identify the set of optimal compromises, the so-called Pareto set (see [2] for a detailed introduction of
theory and algorithms).

When addressing PDE-constrained MOPs, many function evaluations are required and hence, the computational effort
quickly becomes prohibitively large. To overcome the problem of expensive function evaluations, model-order reduction is a
widely used concept. Here, the underlying PDE is replaced by a surrogate model which can be solved much faster [3]. In this
context, reduced-order models (ROMs) based on Galerkin projection and Proper Orthogonal Decomposition (POD) [4] have
proven to be a powerful tool, in particular in a multi-query context such as parameter estimation, uncertainty quantification
or optimization. During the last years, the first publications have appeared where PDE-constrained MOPs are solved using
POD reduced-order modeling [5–8]. A set-oriented approach has recently been developed in [1], where – similar to localized
reduced basis approaches [9] – a library of locally valid ROMs is used to efficiently solve PDE-constrained MOPs. In this
article, these results are extended to non-smooth objective functions, where the non-smoothness is introduced by considering
L1 norms. To measure the error between the objective computed by using the POD Galerkin approximation and the objective
based on the Galerkin finite element (FE) approximation, we make use of an a-posteriori error analysis, where the obtained
error bound is based on an a-posteriori error bound for the state.

2 Considering Non-Smooth Objective Functionals

Let Ω ⊂ Rd, d ∈ {2, 3} be a Lipschitz domain, T > 0 a final time and U := Rm the control space. We consider the following
multiobjective optimal control problem (MOCP) which contains L1 objective functions and is thus non-smooth:

min
u∈U

J(y, u) =
1

2

(∫
Ω

|y(T, x)− yd,1(x)|dx,
∫

Ω

|y(T, x)− yd,2(x)|dx, |u|22
)T

(1a)

subject to the semilinear PDE constraints

yt(t, x)−∆y(t, x) + y3(t, x) =
m∑
i=1

uiχi(x) for (t, x) ∈ (0, T )× Ω,

∂y
∂n (t, s) = 0 for (t, s) ∈ (0, T )× Σ,

y(0, x) = y0(x) for x ∈ Ω,

(1b)
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and the bilateral control constraints

ua ≤ u ≤ ub in U . (1c)

The PDE (1b) is understood in a canonical weak sense for which the spaces V := H1(Ω),H := L2(Ω) and V h` ⊂ V h ⊂ V
are of importance. Let V h denote a FE space and V h` be a low-dimensional subspace created by POD. It is then well-known
that there are well-defined, non-linear solution operators

S : U → L2(0, T ;V ) ∩H1(0, T ;V ′) ∩C([0, T ]×Ω), Sh : U → H1(0, T ;V h), Sh` : U → H1(0, T ;V h`)

for the weak, FE-discretized and POD-surrogate formulations of (1b). This allows us to define reduced cost functions

Ĵ , Ĵh, Ĵh` : U → R3, Ĵ(u) = J(S(u), u), Ĵh(u) = J(Sh(u), u), Ĵh`(u) = J(Sh`(u), u)

For a more detailed description, the reader is referred to [1]. The state equation considered therein is the same. However, the
objectives in (1a) are non-differentiable in the first two components since the mapping z 7→ ‖z‖L1(Ω) is non-differentiable
from L2(Ω) to R. Therefore, the problem is treated with the global, derivative-free subdivision algorithm presented in [10].

It has been shown in [1] that an a-posteriori error estimator ∆pr(yh`) ∈ R+ exists which satisfies

‖yh(T )− yh`(T )‖2L2(Ω) ≤ ∆pr(T, yh`)

Using this estimator, we present an error estimator for the cost function J :
Theorem 2.1 Let yh ∈ H1(0, T ;V h) and yh` ∈ H1(0, T ;V `) be high-fidelity and reduced solutions to (1b) for a control

u ∈ U . The cost function error can then be estimated by∣∣Ji(yh, u)− Ji(yh`, u)
∣∣ ≤ ∆J(y`) :=

√
|Ω|∆pr(T, y`), i = 1, 2 (2)

P r o o f. Using the Hölder’s inequality we have∣∣Ji(yh, u)− Ji(yh`, u)
∣∣ =

∣∣‖yh(T )− yd,i‖L1(Ω) − ‖yh`(T )− yd,i‖L1(Ω)

∣∣
≤ ‖yh(T )− yh`(T )‖L1(Ω) ≤ ‖1‖L2(Ω) · ‖yh(T )− yh`(T )‖L2(Ω)

≤
√
|Ω|∆pr(T, yh`)

which gives the proof.

3 An Algorithm for Set-Oriented Multiobjective Optimal Control of PDEs using POD

The aim in multiobjective optimization is to compute the set of optimal compromises – or the set of non-dominated solutions
– for the concurrent objectives in (1). Non-dominated solutions are characterized by the fact that there exists no admissible
solution which is superior in all objectives. For example, consider u1, u2 ∈ Uad. If u1 dominates u2, then

Ĵi(u1) ≤ Ĵi(u2) for i = 1, . . . , k

and Ĵi(u1) < Ĵi(u2) for at least one i ∈ {1, . . . , k}, (3)

where k is the number of objectives. The set of non-dominated solutions is also known as the Pareto set, it’s image is the
Pareto front. Here the Pareto set is computed using a global, derivative-free subdivision algorithm for function values with
uncertainties [10]. If these uncertainties can be bounded, i.e. ∆J

i ≤ ∆J
max,i for i = 1, . . . , k, then the non-dominance property

(3) can be extended to confident dominance: u1 confidently dominates u2, if

Ĵi(u1) + ∆J
max,i ≤ Ĵi(u2)−∆J

max,i for i = 1, . . . , k

and Ĵi(u1) + ∆J
max,i < Ĵi(u2)−∆J

max,i for at least one i ∈ {1, . . . , k}. (4)

In the algorithm, the parameter domain is divided into a finite set of disjoint boxes (represented by a finite set of sample
points) which are alternatingly subdivided and selected using a non-dominance test. In the latter, all boxes containing only
confidently dominated points according to (4) are discarded. This way an arbitrarily close covering of the set of almost Pareto
optimal points (i.e. all points satisfying (4)) is obtained.

Using the error estimate (2) from the previous section, we can develop an algorithm which uses a libraryR of locally valid
ROMs in order to approximate the objectives for a large number of sample points (the indices of which are contained in the
set N ) that need to be evaluated for the non-dominance test. Since the evlaution of the sample points requires an evaluation
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of (1b), the computation quickly becomes numerically infeasible. To this end, we want to approximate the FE solution using
ROMs. The detailed procedure of evaluating all sample points using locally valid ROMs fromR is described in Algorithm 1.
Based on the 2-norm, the closest ROM is selected for each sample point and the function value as well as the error estimator
are computed. If the accuracy is sufficient for all points, i.e. the prescribed error bound ∆J

sc,max is satisfied, then we proceed
with the non-dominance test. Otherwise, an additional ROM is added to the library at the point uref with the largest error. This
procedure is repeated until all points are approximated sufficiently accurately. In order to increase the numerical efficiency,
the error estimator ∆J is tightened by a heuristic factor Csc, where ∆J

sc = ∆J/Csc (for details, see [1]).

Algorithm 1 (Greedy localized reduced basis approach)

Require: ∆J
sc,max ∈ Rk, Csc, set of sample points N ⊂ Uad;

1: Consider all sample points as insufficiently approximated, i.e. I = N ;
2: while I 6= ∅ do
3: for i = 1, . . . , |I| do
4: Identify the closest ROM with respect to the 2-norm:

iclose = arg min
j∈{1,...,|R|}

∥∥ui − ujref∥∥2
.

5: Compute Ĵh`(ui) using ROM iclose;
6: Evaluate the error ∆J

sc(u
i) for ROM iclose using (2);

7: if ∆J
sc(u

i) ≤ ∆J
sc,max then

8: Accept Ĵh`(ui) as sufficiently accurate;
9: Remove i from the set I;

10: Identify the sample point with the largest error:

imax = arg max
s∈I

∆J
sc(u

s)

11: Add ROM to libraryR with uref = uimax ;
12: Remove all ROMs fromR that have not been used;

4 Results

The Pareto sets and fronts of (1) obtained using both a FEM discretization and the localized reduced basis approach are shown
in Figure 1. The control space is U = [−1, 1]4, which is also the size of the initial box in the subdivision algorithm. For
further details of the numerical setup, the reader is referred to [1], from which only the norm in the objective functions has
been changed here. We observe a good agreement between both the Pareto sets and the Pareto fronts. The error bound ∆J

sc,max

for the objectives Ĵh`
1 and Ĵh`

2 is satisfied as desired. In order to also bound the error in the control space, further assumptions
on the objectives have to be made. When comparing the two Pareto sets, we see that the inexact solution is thicker, which is a
consequence of the inexactness in the objective functions and the condition (4) for confident dominance.

From a computational point of view, the ROM-based approach is significantly more efficient. Over all subdivision steps,
the number of expensive FEM computations can be reduce by a factor of approximately 130. This ratio even increases during
later iterations of the subdivision scheme – in the 20th subdivision step, it is approximately 220.

It is worth mentioning that when comparing Fig. 1 with [1, Fig. 5], the shape of the Pareto front has changed drastically from
the smooth setup to this one. While the Pareto sets are qualitatively comparable, it is interesting to note that the distribution of
ROMs turns out to be much more uniform in the smooth setting [1] than in Figure 1, where we observe an intense clustering
in some regions of the admissible set. This can most likely be attributed to the non-smoothness of the cost functions in the
current example, by which certain regions in the control space can only be poorly approximated by reduced models. In order
to further increase the numerical efficiency, it would be interesting to investigate the reason for this and to adapt the algorithm,
e.g. by directly treating these regions with FEM computations.

5 Conclusion

The present work demonstrates that the subdivision algorithm combined with localized reduced-order models for PDE-
constrained MOCPs from [1] can easily be extended to non-smooth objectives. To this end, the cost function error estimators
have been adapted to L1 norms. The performance of the algorithm is very similar to the smooth setup, which demonstrates
the strength of this derivative-free strategy. Additional work needs to be done both algorithmically and theoretically in order
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Fig. 1: a Pareto set of (1) after 20 subdivision steps using a FEM discretization. Projection onto the first three components of u, and u4 is
visualized by the box coloring. b The Pareto set based on local ROMs and the inexact sampling algorithm with ∆J

sc,max = (0.15, 0.15, 0)>.
c The corresponding Pareto fronts, where the FEM-based solution is shown in green and the POD-based solution in red. The points are the
images of the box centers. d Assignment of sample points to ROMs. Each of the colored patches has been assigned to one of the ROMs
which are represented by black dots.

to further improve the numerical efficiency and to investigate the clustering phenomenon of local ROMs in the non-smooth
problem.
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