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We investigate the limiting normal cone of the complementarity set asso-
ciated with non-negative functions in the Sobolev space H1

0 (Ω). By using
results from homogenization theory, we provide lower estimates for this lim-
iting normal cone and these estimates are unpleasantly large.

Keywords: limiting normal cone, optimality conditions, M-stationarity, obstacle
problem
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1. Introduction

In this paper, we are going to derive lower estimates (w.r.t. set inclusion) for the limiting
normal cone of the non-convex set

K := {(v, µ) ∈ H1
0 (Ω)×H−1(Ω) : v ≥ 0, µ ≤ 0, 〈µ, v〉H−1(Ω)×H1

0 (Ω) = 0},

where Ω ⊂ Rd, d ≥ 2, is open and bounded. Here, v ≥ 0 is to be understood in a
pointwise a.e. sense and µ ≤ 0 for µ ∈ H−1(Ω) := H1

0 (Ω)? is defined via duality, i.e.,
〈µ, z〉H−1(Ω)×H1

0 (Ω) ≤ 0 for all z ∈ H1
0 (Ω) with z ≥ 0. The precise definition of the

limiting normal cone is given in Section 2.2, after some notation has been introduced.
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Our research is motivated by the approach of using variational analysis for deriving
optimality conditions for the optimal control of the obstacle problem. To highlight this
connection, we consider the unilateral obstacle problem

Find y ∈ H1
0 (Ω)+ such that 〈−∆y − u, v − y〉H−1(Ω)×H1

0 (Ω) ≥ 0 ∀v ∈ H1
0 (Ω)+. (1.1)

Here, H1
0 (Ω)+ ⊂ H1

0 (Ω) is the cone of non-negative functions, −∆ : H1
0 (Ω)→ H−1(Ω) is

the negative Laplacian and u ∈ H−1(Ω) is a given right-hand side. It is well known, that
(1.1) has a unique solution and we denote this solution by S(u). Moreover, by standard
arguments, we have the characterization

y = S(u) ⇔ (y,∆y + u) ∈ K.

Note that K is the graph of the normal cone mapping of H1
0 (Ω)+. Next, we consider the

optimal control of the obstacle problem by a right-hand side u from the set Uad, i.e.,

Minimize J(y, u)

w.r.t. (y, u, λ) ∈ H1
0 (Ω)× L2(Ω)×H−1(Ω)

such that (y, λ) ∈ K,
−∆y + λ = u,

u ∈ Uad.

(1.2)

Here, J : H1
0 (Ω)× L2(Ω)→ R is assumed to be continuously Fréchet differentiable, and

Uad ⊂ L2(Ω) is assumed to be closed and convex. Recall that the set K, which appears
in the constraints of (1.2), is not convex. The task of providing necessary optimality
conditions, i.e., conditions which are satisfied for all local minimizers of (1.2), received
great interest in the last forty years, we refer exemplarily to [Barbu, 1984; Hintermüller,
Kopacka, 2009; Hintermüller, Mordukhovich, Surowiec, 2014; Hintermüller, Surowiec,
2011; Jarušek, Outrata, 2007; Mignot, 1976; Outrata, Jarušek, Stará, 2011; Schiela, D.
Wachsmuth, 2013; G. Wachsmuth, 2014; 2016].

Stationarity systems including the limiting normal cone of K are obtained in [Hinter-
müller, Mordukhovich, Surowiec, 2014, Section 3] and [G. Wachsmuth, 2016, Proof of
Lemma 4.4], see also [Outrata, Jarušek, Stará, 2011, Proof of Theorem 16] in case of
controls from H−1(Ω). Note that in the last two references, the optimality system was
not stated explicitly by means of the limiting normal cone, but it can be easily extracted
from the referenced proofs. One arrives at the optimality system

Jy(ȳ, ū) + ν −∆p = 0, γ ∈ NUad(ū), (1.3a)
Ju(ȳ, ū) + γ − p = 0, (ν,−p) ∈ NK(ȳ, λ̄). (1.3b)

Here, Jy and Ju denote the partial derivatives of J , and NUad(ū) is the usual normal cone
of the convex set Uad. Moreover, NK(ȳ, λ̄) ⊂ H−1(Ω) × H1

0 (Ω) is the limiting normal
cone to K at (ȳ, λ̄).

It can be shown that this optimality system implies weak stationarity, see (2.8) below.
However, there does not exist any stronger upper estimate (w.r.t. set inclusion) for the
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limiting normal cone of K in the literature, and it is not clear whether one is able to obtain
an optimality system which is stronger than weak stationarity by using this approach.

This is the starting point of our research. Since no improvement on the upper estimate
(2.8) seems to be possible, we investigate lower estimates. Indeed, by using results
from homogenization theory, we are able to characterize the intersection of the limiting
normal cone with Lp(Ω) × H1

0 (Ω), for all values of p ∈ (1, 2] with Lp(Ω) ↪→ H−1(Ω).
Unfortunately, these lower estimates are rather big. In the case (ȳ, λ̄) = (0, 0), i.e., the
biactive set coincides with Ω, we obtain that the limiting normal cone contains the set
Lp(Ω) ×H1

0 (Ω) (for the above mentioned values of p), see Theorem 4.9, and this set is
dense in H−1(Ω)×H1

0 (Ω). Similar results are obtained in the case (ȳ, λ̄) 6= (0, 0).

To our knowledge, there are no characterizations of the limiting normal cone of K avail-
able, only the upper estimate (2.8) from [G. Wachsmuth, 2016] is known. The similar
problem of characterizing of the limiting normal cone of sets with pointwise constraints
in Lebesgue spaces has been solved only recently, see [Mehlitz, G. Wachsmuth, 2016;
2017].

Let us give a brief outline of the paper. In Section 2 we first introduce some nota-
tion. Then we state some facts about capacity theory that are needed in this paper. In
Section 2.2 we give the definition of the limiting normal cone, and in Section 2.3 the
optimality system (1.3) is compared with known optimality systems from the literature.
Afterwards, we provide a generalization of a result from homogenization theory of Cio-
ranescu and Murat (Theorem 2.1) which will play a crucial role for our main results. In
Section 3 we characterize the limiting normal cone in the case of (ȳ, λ̄) = (0, 0) and for
multipliers in L2(Ω)×H1

0 (Ω). These results are generalized in Section 4 where we con-
sider the limiting normal cone at arbitrary points and allow multipliers in Lp(Ω)×H1

0 (Ω),
where p ∈ (1, 2) is chosen such that Lp(Ω) ↪→ H−1(Ω). We note that the proof in Sec-
tion 3 requires significantly less technical considerations and, thus, serves as a motivation
for Section 4. Finally, in Section 5 we give an example of an element in the limiting nor-
mal cone where one component is not a function, but rather a measure in H−1(Ω).
Appendix A contains some auxiliary results.

2. Preliminaries

We fix some notation. Throughout the paper, Ω ⊂ Rd, d ≥ 2, is assumed to be open and
bounded. We do not impose any regularity of Ω.

We use the notation Br(x) for the open ball with radius r and center x ∈ Rd. We also
denote the d-dimensional Lebesgue measure of a measurable set M ⊂ Rd by vol(M). A
frequently appearing constant is the surface measure of the boundary of the d-dimensional
unit ball B1(0) ⊂ Rd, which will be denoted by Sd. Note that vol(B1(0)) = d−1Sd.

For convex sets M ⊂ H1
0 (Ω) and M̂ ⊂ H−1(Ω) we use

M◦ := {µ ∈ H−1(Ω) : 〈µ, v〉H−1(Ω)×H1
0 (Ω) ≤ 0 ∀v ∈M},
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M̂◦ := {v ∈ H1
0 (Ω) : 〈µ, v〉H−1(Ω)×H1

0 (Ω) ≤ 0 ∀µ ∈ M̂}

for the polar cones, and for µ ∈ H−1(Ω) the annihilator is denoted by

µ⊥ := {v ∈ H1
0 (Ω) : 〈µ, v〉H−1(Ω)×H1

0 (Ω) = 0}.

We define K to be the set of non-negative functions in H1
0 (Ω), i.e.,

K := H1
0 (Ω)+ := {v ∈ H1

0 (Ω) : v ≥ 0 a.e. in Ω}.

The non-positive functionals in H−1(Ω) are defined via duality, i.e.,

H−1(Ω)− := K◦ = {µ ∈ H−1(Ω) : 〈µ, v〉H−1(Ω)×H1
0 (Ω) ≤ 0 ∀v ∈ K}.

The radial cone and the tangent cone (in the sense of convex analysis) to K at v ∈ K
are defined via

RK(v) :=
⋃
λ>0

λ(K − v) and TK(v) := RK(v),

respectively. Recall that the set K is polyhedric, i.e.,

TK(v) ∩ µ⊥ = RK(v) ∩ µ⊥

holds for all v ∈ K and µ ∈ TK(v)◦, see [Mignot, 1976, Théorème 3.2]. Note that v ∈ K,
µ ∈ TK(v)◦ is equivalent to (v, µ) ∈ K, i.e., K is the graph of the normal cone mapping
of K. Associated to (v, µ) ∈ K, we define the critical cone

KK(v, µ) := TK(v) ∩ µ⊥ = {w ∈ TK(v) : 〈µ,w〉H−1(Ω)×H1
0 (Ω) = 0}.

We mention that we use
‖y‖2H1

0 (Ω) :=

∫
Ω
|∇y|2 dx

as a norm in H1
0 (Ω) and the norm in H−1(Ω) is defined via duality. This implies that

−∆ : H1
0 (Ω)→ H−1(Ω) is an isometry. For a function v ∈ L1(Ω), we use v+ := max(v, 0)

and v− := max(−v, 0), i.e., v = v+ − v−. Recall that v+, v− ∈ H1
0 (Ω) for v ∈ H1

0 (Ω).

2.1. Brief introduction to capacity theory

In this section, we recall some facts about capacity theory, which will be needed in the
sequel. The H1

0 (Ω)-capacity of a set O ⊂ Ω is defined as

cap(O) := inf
{
‖v‖2H1

0 (Ω) : v ∈ H1
0 (Ω) and v ≥ 1 a.e. in a neighbourhood of O

}
,

see, e.g., [Attouch, Buttazzo, Michaille, 2006, Section 5.8.2], [Bonnans, Shapiro, 2000,
Definition 6.47], and [Delfour, Zolésio, 2001, Section 8.6.1]. We say that a property P
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(depending on x ∈ Ω) holds quasi-everywhere (q.e.) on a subset S ⊂ Ω, if and only if
cap({x ∈ S : P (x) does not hold}) = 0.
A function v : Ω→ R is called quasi-continuous if for all ε > 0, there exists an open set
Gε ⊂ Ω, such that cap(Gε) < ε and v is continuous on Ω \ Gε. A set O ⊂ Ω is called
quasi-open if for all ε > 0, there exists an open set Gε ⊂ Ω, such that cap(Gε) < ε and
O ∪Gε is open.
It is known, see, e.g., [Bonnans, Shapiro, 2000, Lemma 6.50], [Delfour, Zolésio, 2001, The-
orem 8.6.1], that every v ∈ H1

0 (Ω) possesses a quasi-continuous representative and this
representative is uniquely determined up to sets of zero capacity. When we speak about
a function v ∈ H1

0 (Ω), we always refer to the quasi-continuous representative. Every
sequence which converges in H1

0 (Ω) possesses a pointwise quasi-everywhere convergent
subsequence, see [Bonnans, Shapiro, 2000, Lemma 6.52].
We recall, that a non-negative (or, non-positive) µ ∈ H−1(Ω) can be represented as
a regular Borel measure, see, e.g., [Bonnans, Shapiro, 2000, p.564]. Moreover, since µ
does not charge sets of capacity zero, it can be extended to finely-open sets and the
fine support, denoted by f-supp(µ), is the complement of the largest finely-open set O
with µ(O) = 0. We refer to [G. Wachsmuth, 2014, Appendix A] for details. Due to [G.
Wachsmuth, 2014, Lemma A.5], this definition of the fine support is crucial to obtain
the characterization

KK(y, λ) = {w ∈ H1
0 (Ω) : w ≥ 0 q.e. on {y = 0} and w = 0 q.e. on f-supp(λ)}

of the critical cone. The advantage of this representation is that both conditions on w
are posed in the q.e.-sense.
By following the proof of [Heinonen, Kilpeläinen, Martio, 1993, Lemma 4.7], we find

cap(O) = inf
{
‖∇v‖2L2(Ω;Rd) : v ∈ H1

0 (Ω) and v ≥ 1 q.e. on O
}
. (2.1)

We also recall that for all open subsets Ωn ⊂ Ω, we have the characterization

u ∈ H1
0 (Ωn) ⇔ u ∈ H1

0 (Ω) and u = 0 q.e. on Ω \ Ωn, (2.2)

see [Heinonen, Kilpeläinen, Martio, 1993, Theorem 4.5].
Finally, for any measurable O ⊂ Ω we have ‖v‖2

H1
0 (Ω)
≥ C ‖v‖2L2(Ω) ≥ C vol(O) for some

C > 0 and all functions v ∈ H1
0 (Ω) admissible in the definition of cap(O). Hence,

vol(O) ≤ 1

C
cap(O). (2.3)

2.2. Concepts of variational calculus

We mention two basic concepts of variational calculus that will be used in this paper.
First, we recall that the Fréchet normal cone N̂C(x̄) of a subset C ⊂ X of a Banach
space X is defined via

N̂C(x̄) :=

{
η ∈ X∗ : lim sup

x→x̄,x∈C

〈η, x− x̄〉
‖x− x̄‖X

≤ 0

}
.
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If the Banach space X is reflexive, the limiting normal cone (or Mordukhovich normal
cone) to C at a point x ∈ C can be defined via

NC(x̄) := {η ∈ X∗ : ∃{xn}n∈N ⊂ C, {ηn}n∈N ⊂ X∗ : ηn ∈ N̂C(xn), xn → x̄, ηn ⇀ η},

see [Mordukhovich, 2006, Definition 1.1, Theorem 2.35]. Now, we are going to apply
these definitions to the non-convex set K. Due to the polyhedricity of K, we have

N̂K(y, λ) = KK(y, λ)◦ ×KK(y, λ), (2.4)

cf. [Franke, Mehlitz, Pilecka, 2016, Lemma 4.1] and [G. Wachsmuth, 2015, Lemma 5.2].
Hence, (ν, w) ∈ NK(y, λ) if and only if there exist sequences {yn}n∈N, {wn}n∈N ⊂ H1

0 (Ω),
{λn}n∈N, {νn}n∈N ⊂ H−1(Ω) with

(yn, λn) ∈ K, yn → y in H1
0 (Ω), wn ⇀ w in H1

0 (Ω), wn ∈ KK(yn, λn),

λn → λ in H−1(Ω), νn ⇀ ν in H−1(Ω), νn ∈ KK(yn, λn)◦,

for all n ∈ N.

2.3. Optimality systems

In this section, we recall two other optimality systems for (1.2), which are of interest
for our study of the limiting normal cone. We employ the notions of capacity theory
and variational calculus. To this end, let (ȳ, ū, λ̄) be a locally optimal solution of (1.2).
Further, we fix the sets

A := {x ∈ Ω : ȳ(x) = 0}, As := f-supp(λ̄),

I := {x ∈ Ω : ȳ(x) > 0}, B := A \ As,
(2.5)

which are called active set, strictly active set, inactive set, and biactive set, respectively.

The system of weak stationarity is obtained by using

Nweak
K (ȳ, λ̄) := {z ∈ H1

0 (Ω) : z = 0 q.e. on A}◦×{w ∈ H1
0 (Ω) : w = 0 q.e. on As} (2.6)

instead of NK(ȳ, λ̄) in (1.3). This system is satisfied for all local minimizers under very
weak assumptions on the data, cf. [G. Wachsmuth, 2016, Lemma 4.4].

Next, we will state the definition of M-stationarity from [G. Wachsmuth, 2016]. Let
B = Î ∪ B̂ ∪ Âs be a disjoint decomposition of the biactive set and we define

K̂(B̂, Âs) := {v ∈ H1
0 (Ω) : v ≥ 0 q.e. on B̂ and v = 0 q.e. on As ∪ Âs}.

Note that the critical cone satisfies KK(ȳ, λ̄) = K̂(B, ∅). Then, the M-stationarity condi-
tions of [G. Wachsmuth, 2016] are obtained by replacing NK(ȳ, λ̄) in (1.3) with

NM
K (ȳ, λ̄) =

{
(ν, w) ∈ H−1(Ω)×H1

0 (Ω) :
there is a decomposition B = Î ∪ B̂ ∪ Âs
with ν ∈ K̂(B̂, Âs)◦, w ∈ K̂(B̂, Âs)

}
.
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In finite dimensions, a system of M-stationarity can be shown by using the limiting normal
cone, cf. [Outrata, 1999, Theorem 3.1]. However, this is not known for the problem
(1.2) unless d = 1, cf. [Jarušek, Outrata, 2007, Theorem 11] and [G. Wachsmuth, 2016,
Lemma 2.3 and Theorem 5.4]. In particular, it is not known whether this system of
M-stationarity is a necessary optimality system for (1.2), see also [G. Wachsmuth, 2016,
Sections 5, 6].

Finally, we comment on the known relation between the defined normal cones. We
trivially have the inclusions

N̂K(ȳ, λ̄) ⊂ NM
K (ȳ, λ̄) ⊂ Nweak

K (ȳ, λ̄). (2.7)

Moreover, the inclusion
NK(ȳ, λ̄) ⊂ Nweak

K (ȳ, λ̄) (2.8)

can be shown as in the proof of [G. Wachsmuth, 2016, Lemma 4.4] and this implies

N̂K(ȳ, λ̄) ⊂ NK(ȳ, λ̄) ⊂ Nweak
K (ȳ, λ̄). (2.9)

In view of (2.7) and (2.9), we are interested in the relations between NK(ȳ, λ̄), NM
K (ȳ, λ̄)

and Nweak(ȳ, λ̄). The construction in [G. Wachsmuth, 2016, Section 6] shows that

NK(0, 0) 6⊂ NM
K (0, 0)

if the dimension d of Ω is at least 2, and in dimension d = 1, the inclusion

NK(ȳ, λ̄) ⊂ NM
K (ȳ, λ̄)

follows from [G. Wachsmuth, 2016, Lemma 2.3 and Section 5].

2.4. A result from homogenization theory

In this section we will repeat a (slightly generalized) result from [Cioranescu, Murat,
1997].

Theorem 2.1 ([Cioranescu, Murat, 1997, Theorem 1.2]). Let {Ωn}n∈N be a sequence of
open subset of Ω. Suppose there exist sequences {vn}n∈N ⊂ H1(Ω), {γn}n∈N, {µn}n∈N ⊂
H−1(Ω) and a distribution µ ∈ H−1(Ω) such that

vn ∈ H1(Ω) (H.1)
vn = 0 q.e. on Ω \ Ωn (H.2)

vn ⇀ 1 in H1(Ω) (H.3)

µ ∈

{
W−1,d(Ω) if d ≥ 3,

W−1,2+ε(Ω) if d = 2, for some ε > 0
(H.4’)

µn → µ, γn ⇀ µ in H−1(Ω), −∆vn = µn − γn,
〈γn, zn〉 = 0∀zn ∈ H1

0 (Ωn).

}
(H.5’)
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Let ξ ∈ H−1(Ω) be given. We denote by un the unique (weak) solution of

−∆un = ξ, un ∈ H1
0 (Ωn) ⊂ H1

0 (Ω).

Then un converges weakly in H1
0 (Ω) towards the unique solution u of

−∆u+ µu = ξ, u ∈ H1
0 (Ω).

Proof. This theorem is only a slight generalization of [Cioranescu, Murat, 1997, Theo-
rem 1.2] and we will not repeat the proof. Instead, we only discuss the differences. First,
we use a right-hand side ξ ∈ H−1(Ω) instead of f ∈ L2(Ω). It can be seen from the proof,
that the right-hand side is only used as a functional over H1

0 (Ω), so the proof extends to
a right-hand side of ξ ∈ H−1(Ω).

Next, we generalize the condition µ ∈ W−1,∞(Ω), which is used in [Cioranescu, Murat,
1997]. Again, inspecting the proof of [Cioranescu, Murat, 1997, Theorem 1.1] and [Cio-
ranescu, Murat, 1997, Theorem 1.2] reveals that we only need the property µz ∈ H−1(Ω)
for all z ∈ H1

0 (Ω). Using the Sobolev embedding theorem, this is guaranteed by (H.4’).

Finally, instead of condition (H.5) we can use (H.5)’ as explained in [Cioranescu, Murat,
1997, Remark 1.6].

Note that the assumptions (H.1)–(H.3) of Theorem 2.1 imply Ωn = Ω for large n in
dimension d = 1 due to the compact embedding H1(Ω) ↪→ C(Ω̄).

Let us explain how Theorem 2.1 is applied later. Suppose that we have a sequence
{Ωn}n∈N of open subsets of Ω such that the assumptions (H.1)–(H.5’) are satisfied for
some sequences {vn}n∈N, {γn}n∈N and {µn}n∈N. Further, let u ∈ H1

0 (Ω) be arbitrary.
We define un as the unique weak solution of

−∆un = −∆u+ µu, un ∈ H1
0 (Ωn).

Then, Theorem 2.1 implies that un ⇀ u in H1
0 (Ω). That is, every u ∈ H1

0 (Ω) can be
approximated weakly by a sequence un ∈ H1

0 (Ωn). In particular, un = 0 q.e. on Ω \ Ωn.

3. The biactive case with multipliers in L2(Ω)

In this section, we are going to calculate the intersection of NK(0, 0) with L2(Ω)×H1
0 (Ω).

In fact, we proof that every (ν, w) ∈ L2(Ω)×H1
0 (Ω) belongs to the limiting normal cone

NK(0, 0).

The results of this section will be generalized in Section 4. The main purpose of this
section is the illustration of the technique of proof, which is much simpler in the L2(Ω)-
case, since we can built upon the results from [Cioranescu, Murat, 1997].
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We are going to cover Ω by closed cubes. Therefore, fix a number n ∈ N and let
{xni }i∈N = 2

nZ
d be a regular grid, and we define the cubes Pni := xni + [− 1

n ,
1
n ]d. These

cubes have edge length 2
n and their interiors are pairwise disjoint. Furthermore, each

contains a closed hole Tni := Ban(xni ) at the center, which is a closed ball with radius

an :=

{
n

d
2−d if d ≥ 3,

exp(−n2) if d = 2.

Furthermore we define Bn
i := B1/n(xni ) ⊂ Pni to be the (open) ball with radius 1

n that is
contained in Pni . Finally, we define the perforated domain Ωn := Ω \

⋃
i∈In T

n
i , where In

is the finite set of indices i such that Pni ∩Ω 6= ∅. Note that this construction will allow
us to apply Theorem 2.1, see [Cioranescu, Murat, 1997, Theorem 2.2].

We briefly describe our approach to show that a fixed (ν, w) ∈ L2(Ω) ×H1
0 (Ω) belongs

to the limiting normal cone NK(0, 0). As described after Theorem 2.1, we get a sequence
{wn}n∈N with wn ∈ H1

0 (Ωn) and wn ⇀ w in H1
0 (Ω). The next step is the definition

of νn ∈ H−1(Ω). In order to obtain the desired inclusions wn ∈ KK(yn, λn) and νn ∈
KK(yn, λn)◦, we propose to define νn such that it is only supported on the holes. The
construction of yn and λn is then straightforward, see Theorem 3.4.

First, we provide the definition and the boundedness of νn in H−1(Ω). The idea is to
distribute the mass of ν on a cell Pni to the small hole Tni .

Lemma 3.1. Let ν ∈ L2(Ω) ⊂ H−1(Ω) be given. We set Jn := {i ∈ N : Pni ⊂ Ω} and
define νn via

νn :=
∑
i∈Jn

χTn
i

1

vol(Tni )

∫
Pn
i

ν dx.

Then there is a constant C > 0 (which only depends on the domain Ω) such that

‖νn‖H−1(Ω) + ‖ν+
n ‖H−1(Ω) ≤ C ‖ν‖L2(Ω)

holds for all n ∈ N.

Note that the boundedness of the non-negative part ν+
n = max(νn, 0) does not simply

follow from the boundedness of νn ∈ H−1(Ω).

Proof. We show the boundedness of νn and the estimate for ν+
n follows by similar argu-

ments, see also Lemma 4.2. Let n ∈ N be fixed. We define

βi,n :=
1

vol(Tni )

∫
Pn
i

ν dx

if i ∈ Jn and βi,n = 0 otherwise. For i ∈ Jn, we denote by ui,n the solution of

−∆ui,n = χTn
i
− adnndχBn

i
inΩ, ui,n ∈ H1

0 (Ω).

9
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It follows that
νn = −∆

(∑
i∈Jn

βi,nui,n

)
+
∑
i∈Jn

adnn
dβi,nχBn

i
. (3.1)

We can use Lemma A.1 (a) to calculate the norm of ui,n, which results in ‖ui,n‖2H1
0 (Ω)
≤

C a2d
n n

d, where we used Ld(an) = n−d, see (A.1). We also note that suppui,n = Bn
i ⊂ Pni ,

and this implies that ui,n and uj,n are orthogonal w.r.t. theH1
0 (Ω)-inner product for i 6= j.

Now we continue with the calculation of the H−1(Ω)-norm of νn. By using the splitting
(3.1) and since −∆ is an isometry, we obtain

‖νn‖H−1(Ω) ≤
∥∥∥∥∑
i∈Jn

βi,nui,n

∥∥∥∥
H1

0 (Ω)

+

∥∥∥∥∑
i∈Jn

adnn
dβi,nχBn

i

∥∥∥∥
H−1(Ω)

.

Using the orthogonality of the functions {ui,n}i∈Jn we get∥∥∥∥∑
i∈Jn

βi,nui,n

∥∥∥∥2

H1
0 (Ω)

=
∑
i∈Jn

|βi,n|2‖ui,n‖2H1
0 (Ω)

≤ C a2d
n n

d
∑
i∈Jn

|βi,n|2 ≤ C a2d
n n

d
∑
i∈Jn

1

vol(Tni )2

∣∣∣∫
Pn
i

ν dx
∣∣∣2

≤ C a2d
n n

d
∑
i∈Jn

vol(Pni )

vol(Tni )2

∫
Pn
i

|ν|2 dx ≤ C ‖ν‖2L2(Ω),

where we used vol(Pni ) = (2/n)d and vol(Tni ) = d−1 Sd a
d
n in the last step. For the other

term, we have∥∥∥∥∑
i∈Jn

adnn
dβi,nχBn

i

∥∥∥∥2

H−1(Ω)

≤ C
∥∥∥∥∑
i∈Jn

adnn
dβi,nχBn

i

∥∥∥∥2

L2(Ω)

≤ C a2d
n n

d
∑
i∈Jn

|βi,n|2 ≤ C ‖ν‖2L2(Ω),

where
∑

i∈Jn |βi,n|
2 is estimated in the same way as above. Now the claim follows from

the combination of the above inequalities.

The following counterexample shows that the above statement does not generalize to
Lp(Ω) with p < 2.

Example 3.2. Let 1 < p < 2. We set Ω = (0, 1)2 ⊂ R2 and define ν(x, y) = xα for some
α ∈ (−1

p ,−
1
2). We have ν ∈ Lp(Ω) \ L2(Ω) and due to the Sobolev embedding theorem,

ν ∈ H−1(Ω). However, if we define νn as in Lemma 3.1, then ‖νn‖H−1(Ω) is not bounded
for n→∞.

10
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Sketch of the proof. We define βi,n and ui,n ∈ H1
0 (Ω) as in the proof of Lemma 3.1.

It can be shown that ‖ui,n‖2H1
0 (Ω)

≥ C a2d
n n

d. By calculating the coefficients βi,n it
follows that

∥∥∑
i∈In βi,nui,n

∥∥
H1

0 (Ω)
→ ∞. On the other hand, since Lp(Ω) embeds into

H−1(Ω),
∥∥∑

i∈In a
d
nn

dβi,nχBn
i

∥∥
H−1(Ω)

≤ C ‖ν‖Lp(Ω) can be shown in the same way as in
the previous proof. Then, using the triangle inequality and since −∆ is an isometry, it
follows that

‖νn‖H−1(Ω) ≥
∥∥∥∑
i∈In

βi,nui,n

∥∥∥
H1

0 (Ω)
−
∥∥∥∑
i∈In

adnn
dβi,nχBn

i

∥∥∥
H−1(Ω)

→∞ (n→∞).

Using the above boundedness of νn in H−1(Ω) provided in Lemma 3.1, one can show the
weak convergence by proving 〈νn − ν, f〉H−1(Ω)×H1

0 (Ω) → 0 for all f ∈ C∞0 (Ω). We refer
to Lemma 4.3 for a similar proof.

Lemma 3.3. Let νn, ν ∈ H−1(Ω) as in Lemma 3.1. Then νn ⇀ ν.

Now we are in the position to prove the main result of this section, which shows that the
limiting normal cone to K at (0, 0) contains a dense subset.

Theorem 3.4. We have L2(Ω)×H1
0 (Ω) ⊂ NK(0, 0).

Proof. Let w ∈ H1
0 (Ω) and ν ∈ L2(Ω) ⊂ H−1(Ω) be given. First, we choose wn ∈

H1
0 (Ωn) ⊂ H1

0 (Ω) as the solution of

−∆wn = −∆w + µw in Ωn, wn ∈ H1
0 (Ωn),

where µ := Sd2
−d max(1, d− 2). Recall that Sd is the surface measure of the unit sphere

in Rd. Then, according to [Cioranescu, Murat, 1997, Theorem 2.2] and Theorem 2.1 we
have wn ⇀ w in H1

0 (Ω).
Next, we choose νn as in Lemma 3.1. The weak convergence νn ⇀ ν in H−1(Ω) follows
from in Lemma 3.3. We also choose yn := 1

nw
−
n ∈ H1

0 (Ω)+ and λn := − 1
nν

+
n ∈ H−1(Ω)−.

Since wn is zero on all holes Tni , i ∈ Jn, and νn is only defined on these holes, it follows
that (yn, λn) ∈ K. The convergences yn → 0, λn → 0 follows since w−n and ν+

n are
bounded in H1

0 (Ω) and H−1(Ω), respectively, see also Lemma 3.1.
It remains to show that wn ∈ KK(yn, λn) and νn ∈ KK(yn, λn)◦. The first one follows
from wn = n( 1

nw
+
n −yn) and the fact that {wn 6= 0} ⊂ Ωn. In order to show the condition

for νn, we use the polyhedricity of K, which implies KK(yn, λn)◦ = ((K − yn) ∩ λ⊥n )◦.
Let v ∈ K with v − yn ∈ λ⊥n be given. Then

〈νn, v − yn〉 =
〈
−ν−n − nλn, v − yn

〉
=
〈
−ν−n , v − w−n

〉
= −

〈
ν−n , v

〉
≤ 0,

where the last inequality follows from ν−n , v ≥ 0. Because z was chosen arbitrarily, this
implies νn ∈ KK(yn, λn)◦. Thus we have shown that (ν, w) lies in NK(0, 0).

11
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4. The extension to multipliers in Lp(Ω)

In this section, we characterize NK(ȳ, λ̄) ∩
(
Lp(Ω)×H1

0 (Ω)
)
for (ȳ, λ̄) ∈ K, where p < 2

is given such that Lp(Ω) ↪→ H−1(Ω), i.e., p ∈ (1, 2) if d = 2 and p ∈ [ 2d
d+2 , 2) if d ≥ 3.

In contrary to our approach in Section 3, we cannot work with holes possessing a uniform
radius, cf. Example 3.2. Hence, the holes Tni will have different sizes, depending on their
location. We denote the radius of Tni with ai,n, i.e., Tni = Bai,n(xni ). As in Section 3,
Pni denotes the cube xni + [− 1

n ,
1
n ]d, Bn

i = B1/n(xni ) is a ball with diameter 1/n and In
is the set of indices i with Pni ∩ Ω 6= ∅. However, the definition of Ωn will differ slightly
from Section 3, see below.
In order to avoid some case distinctions between d = 2 and d ≥ 3, we introduce the
auxiliary function Ld via

Ld(a) :=

{
− log(a)−1 for a ∈ (0, 1) and d = 2

ad−2 for a ∈ (0,∞) and d ≥ 3.

In any case, Ld is monotonically increasing and the range is (0,∞). Throughout this
section, ν ∈ Lp(Ω) is chosen arbitrarily but fixed. For technical reasons, we introduce
another index set Jn, defined as

Jn := {i ∈ In : Pni ⊂ Ω, 0 < ‖ν‖pLp(Pn
i ) < n1−d}.

For i ∈ Jn, we define the radius ai,n > 0 of the holes Tni via

Ld(ai,n) = vol(Pni ) avg(Pni , |ν|p)
2
p
−1
, (4.1)

where
avg(Pni , |ν|p) :=

1

vol(Pni )

∫
Pn
i

|ν|p dx

is the average of the function |ν|p over the set Pni . In the case that i ∈ In \ Jn we set
ai,n := 0. We define

Ωn := Ω \
⋃
i∈Jn

Tni ,

and this differs from the corresponding definition in Section 3. The next lemma shows
that we have ai,n ≤ 1

n for n large enough, i.e., Tni ⊂ Pni holds. Afterwards, we will only
consider these parameters n ∈ N which guarantee ai,n ≤ 1

n .

Lemma 4.1. (a) For large n ∈ N we have

ai,n <

(
1

2n

)1+ε

∀i ∈ Jn,

where ε depends on the dimension, but not on i and n. In the case of d = 2 we
even have

ai,n < exp(−1

8
n) ∀i ∈ Jn

12
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for large n ∈ N.
(b) For every large n ∈ N there exists a constant Cn > 1 such that

Ld(ai,n) ≤ 1

Ld(ai,n)−1 − Ld( 1
n)−1

≤ CnLd(ai,n)

holds for all i ∈ Jn. Moreover, Cn → 1 as n→∞.

(c) It holds that
lim
n→∞

vol
(
{ν 6= 0} \

⋃
i∈Jn

Pni
)

= 0.

Proof. (a): Using the definition of the index set Jn and 2
p − 1 ∈ (0, 1), we have

Ld(ai,n) = vol(Pni ) avg(Pni , |ν|p)
2
p
−1 ≤ vol(Pni )(1 + avg(Pni , |ν|p))

=

(
2

n

)d
+ ‖ν‖pLp(Pn

i ) <

(
2

n

)d
+ n1−d < 2d+1n1−d. (4.2)

For d ≥ 3 this implies

ai,n < 2d+1n(1−d)/(d−2) <

(
1

2n

)1+ε

for large n ∈ N and ε := 1
2(d−2) . For d = 2 inequality (4.2) yields ai,n < exp(−1

8n).

(b): By part (a) it follows that Ld(ai,n)/Ld( 1
n)→ 0 as n→∞, uniformly in i ∈ Jn. This

implies the claim.
(c): If i ∈ In does not belong to Jn then there are three possible reasons: ‖ν‖pLp(Pn

i ) =

0, ‖ν‖pLp(Pn
i ) ≥ n

1−d, or Pni 6⊂ Ω. Therefore, we have

vol({ν 6= 0} \
⋃
i∈Jn

Pni ) =
∑

i∈In\Jn

vol({ν 6= 0} ∩ Pni )

≤
∑

i:‖ν‖p
Lp(Pn

i
)
≥n1−d

vol(Pni ) +
∑

i:Pn
i 6⊂Ω

vol(Ω ∩ Pni ).

For the first term we have∑
i:‖ν‖p

Lp(Pn
i

)
≥n1−d

vol(Pni ) =
∑

i:‖ν‖p
Lp(Pn

i
)
≥n1−d

(2n)−d

≤ 2−dn−1
∑

i:‖ν‖p
Lp(Pn

i
)
≥n1−d

‖ν‖pLp(Pn
i )

≤ 2−dn−1‖ν‖pLp(Ω) → 0 (n→∞).

The convergence of the second term follows from Ω =
⋃
n∈N

⋃
i:Pn

i ⊂Ω P
n
i . This proves the

claim.

13
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The next lemma parallels Lemma 3.1. For this result, the adaptive choice of the radii
ai,n in (4.1) is crucial.

Lemma 4.2. We define the measurable function ν̃n via

ν̃n :=
∑
i∈Jn

χTn
i
βi,n,

where the real-valued coefficients βi,n satisfy

|βi,n| ≤
1

vol(Tni )

∫
Pn
i

|ν|dx.

Then there is a constant C > 0 (depending only on the domain Ω and p) such that

‖ν̃n‖H−1(Ω) ≤ C ‖ν‖
p
2

Lp(Ω) + C ‖ν‖Lp(Ω)

holds for all n ∈ N.

Proof. Let n ∈ N be fixed. As in the proof of Lemma 3.1 we define ui,n as the solution of

−∆ui,n = χTn
i
− adi,nndχBn

i
inΩ, ui,n ∈ H1

0 (Ω).

It follows that
ν̃n = −∆

(∑
i∈Jn

βi,nui,n

)
+
∑
i∈Jn

adi,nn
dβi,nχBn

i
. (4.3)

From Lemma A.1 (a) we know that suppui,n ⊂ Bn
i ⊂ Pni and

‖ui,n‖2H1
0 (Ω) ≤ C a

2d
i,nL

d(ai,n)−1,

where the constant C > 0 does not depend on n and i. We continue with the boundedness
of ‖ν̃n‖H−1(Ω). Using the isometry of −∆, (4.3) yields

‖ν̃n‖H−1(Ω) ≤
∥∥∥∥∑
i∈Jn

βi,nui,n

∥∥∥∥
H1

0 (Ω)

+

∥∥∥∥∑
i∈Jn

adi,nn
dβi,nχBn

i

∥∥∥∥
H−1(Ω)

.

Since the functions ui,n are orthogonal with respect to the scalar product in H1
0 (Ω), we

have ∥∥∥∥∑
i∈Jn

βi,nui,n

∥∥∥∥2

H1
0 (Ω)

=
∑
i∈Jn

|βi,n|2‖ui,n‖2H1
0 (Ω)

≤ C
∑
i∈Jn

a2 d
i,n L

d(ai,n)−1 1

vol(Tni )2

(∫
Pn
i

|ν| dx
)2

≤ C
∑
i∈Jn

Ld(ai,n)−1 vol(Pni )
2− 2

p ‖ν‖2Lp(Pn
i )

14
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= C
∑
i∈Jn

Ld(ai,n)−1 vol(Pni ) avg(Pni , |ν|p)
2
p
−1 ‖ν‖pLp(Pn

i )

= C
∑
i∈Jn

‖ν‖pLp(Pn
i ) ≤ C ‖ν‖

p
Lp(Ω) .

For the other term we have∥∥∥∥∑
i∈Jn

adi,nn
dβi,nχBn

i

∥∥∥∥p
H−1(Ω)

≤ C
∥∥∥∥∑
i∈Jn

adi,nn
dβi,nχBn

i

∥∥∥∥p
Lp(Ω)

= C
∑
i∈Jn

(ai,nn)dp|βi,n|p‖χBn
i
‖pLp(Ω)

≤ C
∑
i∈Jn

ndp−d
(∫

Pn
i

|ν| dx
)p

≤ C
∑
i∈Jn

ndp−d vol(Pni )
(1− 1

p
)p
∫
Pn
i

|ν|p dx

≤ C
∑
i∈Jn

∫
Pn
i

|ν|p dx ≤ C ‖ν‖pLp(Ω).

This completes the proof.

After we have established this boundedness, we are in position to prove that every func-
tion ν̃ which is pointwise bounded by ν can be approximated weakly by functions living
on the holes Tni .

Lemma 4.3. Let ν̃ be a function in Lp(Ω) ⊂ H−1(Ω) such that |ν̃| ≤ |ν|. If we define

ν̃n :=
∑
i∈Jn

χTn
i

1

vol(Tni )

∫
Pn
i

ν̃ dx,

then ν̃n ⇀ ν̃ in H−1(Ω).

Proof. Because ν̃n satisfies the requirements for Lemma 4.2, we know that ν̃n is bounded
in H−1(Ω). Hence it suffices to show the convergence on the dense subspace C∞0 (Ω) ⊂
H1

0 (Ω). Let f ∈ C∞0 (Ω) be given. We have∣∣∣〈ν̃n − ν̃, f〉H−1(Ω)×H1
0 (Ω)

∣∣∣ =
∣∣∣∫

Ω
(ν̃n − ν̃)f dx

∣∣∣
≤
∣∣∣∑
i∈Jn

∫
Pn
i

(ν̃n − ν̃)f dx
∣∣∣+
∣∣∣∫
{ν̃ 6=0}\

⋃
i∈Jn P

n
i

fν̃ dx
∣∣∣

The second term converges to 0, because of Lemma 4.1 (c). For the first term we can use
that f is uniformly continuous. That mean that for each ε > 0 we can find arbitrarily
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large n ∈ N such that |f(x)− f(y)| < ε for all x, y ∈ Pni , i ∈ Jn. Thus∣∣∣∣∑
i∈Jn

∫
Pn
i

(ν̃n − ν̃)f dx

∣∣∣∣ ≤∑
i∈Jn

∣∣∣∣ 1

vol(Tni )

∫
Pn
i

ν̃ dx

∫
Tn
i

f dy −
∫
Pn
i

fν̃ dx

∣∣∣∣
≤
∑
i∈Jn

∫
Pn
i

|ν̃(x)|
∣∣∣∣ 1

vol(Tni )

∫
Tn
i

|f(y)− f(x)|dy
∣∣∣∣dx

≤ ε
∑
i∈Jn

∫
Pn
i

|ν̃|dx ≤ ε ‖ν̃‖L1(Ω) .

Since ε can be arbitrarily small, this proves that 〈ν̃n − ν̃, f〉H−1(Ω)×H1
0 (Ω) → 0 as n→∞.

The next lemma provides some technical estimates, which will be used to verify the
assumptions of Theorem 2.1 in our setting with differently sized holes. Again, the specific
choice (4.1) is crucial for these estimates.

Lemma 4.4. Let the size of the holes Tni be chosen according to (4.1). Then, there
exists a constant C > 0, such that∑

i∈Jn

Ld(ai,n) ≤ C ‖ν‖pLp(Ω), (4.4a)

nd−2
∑
i∈Jn

Ld(ai,n)2 → 0, (4.4b)

nd q−d
∑
i∈Jn

Ld(ai,n)q ≤ C ‖ν‖pLp(Ω), (4.4c)

where q = p/(2− p).

Proof. We start with (4.4a). Using the definition (4.1) and vol(Pni ) = (2/n)d, we find

∑
i∈Jn

Ld(ai,n) =
∑
i∈Jn

vol(Pni ) avg(Pni , |ν|p)
2
p
−1

=
∑
i∈Jn

vol(Pni )
2− 2

p

(∫
Pn
i

|ν|p dx
) 2

p
−1

= 2
2 d (1− 1

p
)
n
d ( 2

p
−2)

∑
i∈Jn

(∫
Pn
i

|ν|p dx
) 2

p
−1

Since 2
p − 1 ∈ (0, 1), we can use Hölder’s inequality to obtain

∑
i∈Jn

Ld(ai,n) ≤ 2
2 d (1− 1

p
)
n
d ( 2

p
−2)
(∑
i∈Jn

∫
Pn
i

|ν|p dx

) 2
p
−1 (∑

i∈Jn

1
)2− 2

p

≤ C nd ( 2
p
−2)+d (2− 2

p
) ‖ν‖pLp(Ω) ≤ C ‖ν‖

p
Lp(Ω).
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This shows (4.4a).

Next, we verify (4.4b). We use (4.2) and (4.4a) and obtain

nd−2
∑
i∈Jn

Ld(ai,n)2 ≤ nd−2
∑
i∈Jn

Ld(ai,n) 2d+1 n1−d = 2d+1 n−1
∑
i∈Jn

Ld(ai,n)→ 0.

Finally, we address (4.4c). Using (4.1) and q (2/p− 1) = 1 we get

nd q−d
∑
i∈Jn

Ld(ai,n)q = nd q−d
∑
i∈Jn

vol(Pni )q−1

∫
Pn
i

|ν|p dx ≤ 2d (q−1) ‖ν‖pLp(Ω).

As a next step, we verify that the conditions (H.1) to (H.5’) of Theorem 2.1 are satisfied
for the above choice of the perforated domain Ωn. We are following the strategy of
[Cioranescu, Murat, 1997, Theorem 2.2]. However, due to the variable size of the holes,
the analysis is more involved.
We start by defining an appropriate vn ∈ H1(Ω). For i ∈ Jn let vi,n ∈ H1

0 (Ω) be defined
as the solution to

vi,n = 1 in Tni
−∆vi,n = 0 in Bn

i \ Tni
vi,n = 0 in Ω \Bn

i .

Functions of this type are discussed in Lemma A.1 (b). Note that the requirements on
ai,n in this lemma are satisfied by Lemma 4.1 for n ∈ N large enough. We then define

vn := 1−
∑
i∈Jn

vi,n.

The next two lemmas show that (H.1) to (H.5’) are satisfied.

Lemma 4.5. The conditions (H.1)–(H.3) are satisfied by the above choice of {vn}n∈N.

Proof. We start by proving (H.1). Because of 0 ≤ vn ≤ 1 it suffices to calculate
‖∇vn‖2L2(Ω)d . Due to Lemma A.1 (b) and (4.4a) we have

‖∇vn‖2L2(Ω)d ≤
∑
i∈Jn

‖vi,n‖2H1
0 (Ω) ≤ C

∑
i∈Jn

Ld(ai,n) ≤ C

which shows that the sequence {vn}n∈N is bounded in H1(Ω).

The condition (H.2) follows directly from our choice of vn.

Finally, we want to show that {vn}n∈N satisfies (H.3). We check that vn → 1 in L1(Ω).
Indeed,

‖vn − 1‖L1(Ω) =
∑
i∈Jn

∫
Bn

i

|vi,n| dx ≤ Cd
∑
i∈Jn

1

n
Ld(ai,n)→ 0,
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where we used (A.5) and (4.4a). Together with the boundedness of {vn}n∈N in H1(Ω) ↪→
L1(Ω) and the reflexivity of H1(Ω), this implies vn ⇀ 1 in H1(Ω). This shows (H.3).

We remark that (4.4a) shows that the capacity of the holes
⋃
i∈Jn T

n
i remains bounded.

Indeed, the function 1− vn from the proof can be used in (2.1) and we obtain

cap
( ⋃
i∈Jn

Tni

)
≤ ‖1− vn‖2H1

0 (Ω) ≤ C.

Lemma 4.6. The conditions (H.4’), (H.5’) are satisfied by the above choice of {vn}n∈N
and some sequences {µn}n∈N and {γn}n∈N. In particular, we have µ = Cd |ν|2−p, with
Cd = max(1, d− 2)Sd.

Proof. First, we prove (H.5’). We note that ∆vn only acts on the boundaries ∂Tni and
∂Bn

i . We set γn, µn ∈ H−1(Ω) such that −∆vn = µn − γn and µn only acts on ∂Bn
i

whereas γn only acts on ∂Tni . Then it can be seen that the condition 〈γn, zn〉 = 0 is true
for all zn ∈ H1

0 (Ωn). It is possible to explicitly calculate µn. We denote by δi,n ∈ H−1(Ω)
the surface measure on ∂Bn

i , i.e.,

〈δi,n, f〉 =

∫
∂Bn

i

f(s) ds ∀f ∈ C∞0 (Ω).

Then, using integration by parts and (A.6), it turns out that

µn =
∑
i∈Jn

∂vn
∂n

∣∣∣∣
∂Bn

i

δi,n = −
∑
i∈Jn

∂vi,n
∂n

∣∣∣∣
∂Bn

i

δi,n =
∑
i∈Jn

1

nd
αi,nδi,n (4.5)

with real-valued coefficients

αi,n :=
max(1, d− 2)nd d

Ld(ai,n)−1 − Ld( 1
n)−1

. (4.6)

For later use we note that Lemma 4.1 (b) implies the existence of a constant C indepen-
dent of i and n such that

0 ≤ αi,n ≤ C nd Ld(ai,n). (4.7)

Now we introduce the function zi,n for i ∈ Jn as the solution of the equation

−∆zi,n = αi,n inBn
i , zi,n = 0 onΩ \Bn

i .

This function can be calculated explicitly and we find

zi,n(x) =
αi,n
2 d

(
n−2 − |x− xni |2

)
∀x ∈ Bn

i , −∆zi,n = αi,nχBn
i
− 1

nd
αi,nδi,n. (4.8)

18
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For the H1
0 (Ω)-norm of zi,n we have

‖zi,n‖2H1
0 (Ω) = C α2

i,nn
−d−2

and due to the orthogonality we have∥∥∥∑
i∈Jn

zi,n

∥∥∥2

H1
0 (Ω)

=
∑
i∈Jn

‖zi,n‖2H1
0 (Ω) = C

∑
i∈Jn

α2
i,nn

−d−2 ≤ C
∑
i∈Jn

Ld(ai,n)2 nd−2 → 0,

due to (4.7) and (4.4b). Hence, (4.5) and (4.8) imply

µn −
∑
i∈Jn

αi,nχBn
i

= ∆
(∑
i∈Jn

zi,n

)
→ 0 in H−1(Ω) (n→∞).

Using Lemma 4.7 below yields µn → µ in H−1(Ω), where µ := Cd |ν|2−p. Finally, γn ⇀ µ
follows from −∆vn ⇀ 0 and µn → µ, which completes the proof of (H.5’).

Now, µ = Cd |ν|2−p, ν ∈ Lp(Ω) and the bounds on p imply

µ ∈ Lp/(2−p)(Ω) ⊂

{
W−1,2+ε(Ω) if d = 2,

W−1,d(Ω) if d ≥ 3

for some ε > 0. Thus the remaining condition (H.4’) follows.

It remains to check the announced convergence of µn towards µ = Cd |ν|2−p.

Lemma 4.7. Let αi,n be defined as in (4.6). Then∑
i∈Jn

αi,nχBn
i
→ Cd |ν|2−p in H−1(Ω),

where Cd = max(1, d− 2)Sd is a constant.

Proof. We will proof this by showing the weak convergence in Lq(Ω), where q = p
2−p .

Indeed, the boundedness follows from∥∥∥∥∑
i∈Jn

αi,nχBn
i

∥∥∥∥q
Lq(Ω)

=
∑
i∈Jn

αqi,n vol(Bn
i ) ≤ C

∑
i∈Jn

nq dLd(ai,n)q n−d ≤ C ‖ν‖pLp(Ω),

where the last two inequalities are due to (4.7) and (4.4c), respectively.

Now it is sufficient to show the weak convergence on the dense subset C∞0 (Ω) ⊂ Lq(Ω)?.
Let f ∈ C∞0 (Ω) be given.

Due to the definition of αi,n and Lemma 4.1 (b) we have

|αi,n −max(1, d− 2) dnd Ld(ai,n)| ≤ (Cn − 1) max(1, d− 2) dnd Ld(ai,n),
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where {Cn}n∈N is a sequence of constants such that Cn → 1. It follows that∥∥∥∥∑
i∈Jn

αi,nχBn
i
−max(1, d− 2)dnd

∑
i∈Jn

Ld(ai,n)χBn
i

∥∥∥∥q
Lq(Ω)

≤ C (Cn − 1)q
∑
i∈Jn

ndq−dLd(ai,n)q ≤ C (Cn − 1)q‖ν‖pLp(Ω) → 0,
(4.9)

where we used (4.4c) again. Now using Lemma 4.1 (c) we also have∥∥∥∥ ∑
i∈In\Jn

avg(Pni , |ν|p)
2
p
−1
χBn

i

∥∥∥∥q
Lq(Ω)

≤
∫

Ω\
⋃

i∈Jn P
n
i

|ν|p dx→ 0

as n→∞. By combining this with (4.9) and the definition (4.1) of ai,n we arrive at∑
i∈Jn

αi,nχBn
i
−max(1, d− 2)d 2d

∑
i∈In

avg(Pni , |ν|p)
2
p
−1
χBn

i
→ 0

in Lq(Ω). Using the uniform continuity of f (similar to the proof of Lemma 4.3) it is
possible to replace χBn

i
with χPn

i
, i.e.〈∑

i∈Jn

αi,nχBn
i
−max(1, d− 2)Sd

∑
i∈In

avg(Pni , |ν|p)
2
p
−1
χPn

i
, f
〉
→ 0,

where we used that 2−dd−1Sd =
vol(Bn

i )
vol(Pn

i ) , and d
−1Sd is the volume of the d-dimensional

unit ball. Now we apply Lemma A.2 (b) to g = |ν|p. As a consequence, we have

Cd
∑
i∈In

avg(Pni , |ν|p)
2
p
−1
χPn

i
→ Cd|ν|2−p

in Lq(Ω) with the constant Cd = max(1, d−2)Sd. Combined with the calculations above,
we have 〈∑

i∈Jn

αi,nχBn
i
− Cd|ν|2−p, f

〉
→ 0.

The boundedness in Lq(Ω) of
∑

i∈Jn αi,nχBn
i
and the compact embedding into H−1(Ω)

(which follows from q > p) completes the proof.

We note that the choice

ν ≡
(
2dC0

)−1/(2−p) if d = 2, ν ≡
(
2dC2−d

0

)−1/(2−p) if d ≥ 3

yields the same size of the holes as in [Cioranescu, Murat, 1997, (2.4)] and we obtain the
same value of µ, cf. [Cioranescu, Murat, 1997, (2.3)].
Now, the assumptions of Theorem 2.1 are satisfied and, by arguing as in the first lines
of the proof Theorem 3.4, we obtain the following corollary.
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Corollary 4.8. Let w ∈ H1
0 (Ω) be given. Then there exists a sequence {wn}n∈N with

wn ∈ H1
0 (Ωn) ⊂ H1

0 (Ω) such that wn ⇀ w in H1
0 (Ω).

By using the same arguments as in the proof of Theorem 3.4, one can show Lp(Ω) ×
H1

0 (Ω) ⊂ NK(0, 0). The next theorem shows a more general result.

Theorem 4.9. Let p ∈ (1, 2) such that Lp(Ω) ↪→ H−1(Ω) and let (ν, w) ∈ Lp(Ω)×H1
0 (Ω)

be given. Then the equivalence

(ν, w) ∈ NK(ȳ, λ̄) ⇐⇒ (ν, w) ∈ Nweak
K (ȳ, λ̄)

holds for every (ȳ, λ̄) ∈ K.

Proof. The implication “⇒” follows directly from (2.8) and it remains to check “⇐”.
Therefore, let (ȳ, λ̄) ∈ K be given. As in (2.5) we define the sets As := f-supp(λ̄),
I := {ȳ > 0}, and A := {ȳ = 0}. Due to ȳ = 0 q.e. on As we can enforce ȳ = 0
everywhere on As. This implies As ∩ I = ∅. Note that the set I is quasi-open.

Now, suppose that (ν, w) ∈ Nweak(ȳ, λ̄). As a reminder, Nweak
K (ȳ, λ̄) was introduced as

Nweak
K (ȳ, λ̄) := {z ∈ H1

0 (Ω) : z = 0 q.e. on A}◦ × {z ∈ H1
0 (Ω) : z = 0 q.e. on As}

in (2.6). It can be shown that ν = 0 a.e. on I. In fact, Lemma A.3 implies
〈ν, z〉Lp(Ω),Lp′ (Ω) = 0 for all z ∈ Lp

′
(Ω) with z = 0 a.e. on A. Here, p′ ∈ (2,∞) is

the exponent conjugate to p, i.e., 1 = 1/p+ 1/p′.

It well be convenient to work with open sets. Therefore, let ε > 0 be given. Because I
is quasi-open, there exists an open set Gε, such that I ∪Gε is open and cap(Gε) < ε.

The remaining part of the proof is divided into several steps. In steps 1 and 2, we
use Corollary 4.8 and Lemma 4.3 to construct approximations wn to w and νn,ε to ν.
The functions wn will vanish on the holes, whereas νn,ε is supported only on the holes.
In step 3, we construct an approximation to ȳ, which vanishes on the support of νn,ε.
Afterwards, we find a point in K such that (νn,ε, wn) belongs to the Fréchet normal
cone in this point, cf. steps 4 and 5. Finally, we pick a diagonal sequence in step 6 and
conclude.

Step 1 (Construction of wn): Applying Corollary 4.8 yields the existence of a sequence
{w̃n}n∈N with w̃n ∈ H1

0 (Ωn) ⊂ H1
0 (Ω) and w̃n ⇀ w in H1

0 (Ω). Next, we define wn ∈
H1

0 (Ω) by wn := max(min(w̃n, w
+),−w−). From [G. Wachsmuth, 2016, Lemma 4.1]

we know that max and min are weakly sequentially continuous from H1
0 (Ω)×H1

0 (Ω) to
H1

0 (Ω). It follows that wn ⇀ w. Moreover, we have {wn 6= 0} ⊂ {w̃n 6= 0} ⊂ Ωn and
As ⊂ {w = 0} ⊂ {wn = 0}. By [G. Wachsmuth, 2014, Theorem A.5] it follows that
w = 0 λ̄-a.e. This implies w±n = 0 λ̄-a.e., hence〈

λ̄, w±n
〉
H−1(Ω)×H1

0 (Ω)
=

∫
Ω
w±n dλ̄ = 0. (4.10)

21



Limiting normal cone in Sobolev spaces Harder, Wachsmuth

Step 2 (Construction of νn,ε): We define νε := νχΩ\Gε
and

νn,ε :=
∑
i∈Jn

χTn
i

1

vol(Tni )

∫
Pn
i

νε dx.

According to Lemma 4.3, νn,ε ⇀ νε as n→∞ in H−1(Ω). Moreover, we have

‖νn,ε‖H−1(Ω) + ‖ν+
n,ε‖H−1(Ω) ≤ C ‖ν‖

p
2

Lp(Ω) + C ‖ν‖Lp(Ω) (4.11)

for a constant C > 0 by applying Lemma 4.2 twice.
Step 3 (Construction of ȳn,ε): Now we will argue that we can choose a sequence
{ȳn,ε}n∈N ⊂ H1

0 (Ω) such that

0 ≤ ȳn,ε ≤ ȳ, (4.12a)
lim
n→∞

ȳn,ε = ȳ, (4.12b)

{ȳn,ε > 0} ⊂
⋃

i:Pn
i ⊂I∪Gε

Pni . (4.12c)

Indeed, this is possible: Because of ȳ ∈ H1
0 (I∪Gε) and the fact that C∞0 (I∪Gε) is dense

in H1
0 (I∪Gε) there exists a sequence {ỹn,ε}n∈N in C∞0 (I∪Gε) such that limn,→∞ ỹn,ε = ȳ

and {ỹn,ε > 0}+B 2
√

d
n

(0) ⊂ I ∪Gε. The last condition implies

{ỹn,ε > 0} ⊂
⋃

i:Pn
i ⊂I∪Gε

Pni .

Then we define ȳn,ε := max(min(ȳ, ỹn,ε), 0), and we get (4.12a). Because max and min
are continuous in H1

0 (Ω), we also have limn→∞ ȳn,ε = ȳ. The remaining condition follows
from {ȳn,ε > 0} ⊂ {ỹn,ε > 0}. This yields a sequence {ȳn,ε}n∈N satisfying (4.12).
Step 4 (Construction of (yn,ε, λn,ε) ∈ K): In a next step, we define yn,ε := ȳn,ε+

1
nw
−
n ≥ 0

and λn,ε := λ̄ − 1
nν

+
n,ε ≤ 0. In order to show that this pair belongs to K, it remains to

check

〈λn,ε, yn,ε〉H−1(Ω)×H1
0 (Ω) = 〈λ̄, ȳn,ε〉+

1

n
〈λ̄, w−n 〉 −

1

n
〈ν+
n,ε, ȳn,ε〉 −

1

n2
〈ν+
n,ε, w

−
n 〉

!
= 0.

(4.13)
The first term vanishes due to 0 = 〈λ̄, ȳ〉 ≤ 〈λ̄, ȳn,ε〉 ≤ 0, where we used λ̄ ≤ 0 and
(4.12a). The second terms is zero due to (4.10). The function νn,ε can only be non-zero
on holes Tni that belong to cubes Pni with Pni ∩ (A \Gε) 6= ∅. Thus, using that ȳn,ε = 0
on these Pni , cf. (4.12c), the third term vanishes. Finally, the last term disappears since
ν+
n,ε only lives on the holes and w−n vanishes there. This shows (4.13). Together with the
signs of yn,ε and λn,ε, we have (yn,ε, λn,ε) ∈ K.

Step 5 (Verification of (νn,ε, wn) ∈ N̂K(yn,ε, λn,ε)): In face of (2.4), we have to show
νn,ε ∈ KK(yn,ε, λn,ε)

◦ and wn ∈ KK(yn,ε, λn,ε). By using arguments similar to those that
led to (4.13) we find 〈λn,ε, wn〉 = 0. Together with ȳn,ε, w+

n ≥ 0 this yields

wn = n
(
ȳn,ε +

1

n
w+
n − yn,ε

)
∈ TK(yn,ε) ∩ λ⊥n,ε = KK(yn,ε, λn,ε).
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In order to show νn,ε ∈ KK(yn,ε, λn,ε)
◦, let z ∈ K∩λ⊥n,ε be given. Similar to the derivation

of (4.13), we find 〈νn,ε, yn,ε〉 = 0. From z ∈ K∩λ⊥n,ε, λn,ε = λ̄− 1
n ν

+
n,ε, and λ̄,− 1

n ν
+
n,ε ≤ 0

we have 〈ν+
n,ε, z〉 = 0. Thus,

〈νn,ε, z − yn,ε〉H−1(Ω)×H1
0 (Ω) = 〈νn,ε, z〉H−1(Ω)×H1

0 (Ω) =
〈
−ν−n,ε, z

〉
H−1(Ω)×H1

0 (Ω)
≤ 0,

where we used z ≥ 0 and ν−n,ε ≥ 0 in the last step. Since z was arbitrary, we find
νn,ε ∈ (K ∩ λ⊥n,ε − yn,ε)◦ = (RK(yn,ε) ∩ λ⊥n,ε)◦. Using the polyhedricity of K, it follows
that νn,ε ∈ KK(yn,ε, λn,ε)

◦.

Step 6 (Choice of a diagonal sequence): Finally, we have to choose a sequence of indices
{(nk, εk)}k∈N such that

yk := ynk,εk → ȳ, λk := λnk,εk → λ̄, wk := wnk
⇀ w, νk := νnk,εk ⇀ ν.

Let {εk}k∈N be a sequence with εk > 0 and εk → 0. Then, we have

∥∥ν − νεk∥∥H−1(Ω)
=
∥∥νχGεk

∥∥
H−1(Ω)

≤ C
∥∥νχGεk

∥∥
Lp(Ω)

= C
(∫

Gεk

|ν|p dx
)1/p

,

which converges to 0 as ε→ 0 since vol(Gεk)→ 0, which follows from cap(Gεk)→ 0, see
(2.3).

Because H1
0 (Ω) is separable, we can find a sequence {zm}m∈N that is dense in H1

0 (Ω).
We have νn,εk ⇀ νεk and ȳn,εk → ȳ as n → ∞ for fixed k by steps 2 and 3. Therefore,
we can choose nk ≥ k in such a way that the conditions

‖ȳnk,εk − ȳ‖H1
0 (Ω) < εk and

∣∣〈νnk,εk − νεk , zm〉H−1(Ω)×H1
0 (Ω)

∣∣ < εk ∀m ≤ k

are satisfied. From the boundedness of w−n , we conclude ynk,εk = ȳnk,εk + 1
n w
−
nk
→ ȳ.

Further, it follows that

lim
k→∞

〈νnk,εk − ν, zm〉H−1(Ω)×H1
0 (Ω) = 0 ∀m ∈ N.

Since νnk,εk is also bounded, cf. (4.11), and {zm}m∈N is dense in H1
0 (Ω), it follows that

νnk,εk ⇀ ν. The convergence λnk,εk → λ̄ follows from nk ≥ k and the boundedness of
‖ν+
nk,εk
‖H−1(Ω), cf. (4.11). Finally, wnk

⇀ w follows from step 1.

Step 7 (Conclusion): From steps 4 to 6, we find

(yk, λk) ∈ K, yk → y in H1
0 (Ω), wk ⇀ w in H1

0 (Ω), wk ∈ KK(yk, λk),

λk → λ in H−1(Ω), νk ⇀ ν in H−1(Ω), νk ∈ KK(yk, λk)
◦.

Hence, (ν, w) ∈ NK(ȳ, λ̄).
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5. Measure on a hyperplane

In the following example we want to show that the limiting normal cone in (0, 0) contains
elements from H−1(Ω) × H1

0 (Ω) where the H−1(Ω)-component is not a function. In
particular, the limiting normal cone is strictly larger than Lp(Ω)×H1

0 (Ω), which was our
lower estimate from Theorem 4.9.

Example 5.1. We choose d = 2 and Ω = (−1, 1)2. Let δ ∈ H−1(Ω) be defined as

〈δ, f〉H−1(Ω)×H1
0 (Ω) =

∫
(−1,1)

f(s, 0) ds ∀f ∈ C∞0 (Ω).

For every w ∈ H1
0 (Ω), we have

(δ, w) ∈ NK(0, 0).

Note that δ can be written as a derivative of an L2(Ω) function, hence, δ ∈ H−1(Ω). We
will proceed similarly to the proof of Lemma 4.2.

Proof. First, we cover the line (−1, 1) × {0} with squares Pni := [2i
n ,

2i+2
n ] × [− 1

n ,
1
n ].

Again, at the center of each square there is a hole Tni with radius

ai,n = exp(−n), (5.1)

and another ball Bn
i with radius 1

n . We choose Jn := {i ∈ Z : Pni ⊂ Ω}. As before, we
define Ωn := Ω \

⋃
i∈Jn T

n
i .

We start by defining a sequence νn ∈ H−1(Ω) and showing νn ⇀ δ in H−1(Ω). In
particular, we set

νn :=
∑
i∈Jn

χTn
i
βi,n

with βi,n = 1
πa2i,nn

. First, we show that ‖νn‖H−1(Ω) is bounded. As in the proof of
Lemma 4.2 we define functions ui,n as the solution of

−∆ui,n = χTn
i
− a2

i,nn
2χBn

i
inΩ, ui,n ∈ H1

0 (Ω).

By the triangle inequality and since −∆ is an isometry, we have

‖νn‖H−1(Ω) ≤
∥∥∥∥∑
i∈Jn

βi,nui,n

∥∥∥∥
H1

0 (Ω)

+

∥∥∥∥∑
i∈Jn

adi,nn
dβi,nχBn

i

∥∥∥∥
H−1(Ω)

.

For the first term we have∥∥∥∥∑
i∈Jn

βi,nui,n

∥∥∥∥2

H1
0 (Ω)

=
∑
i∈Jn

|βi,n|2‖ui,n‖2H1
0 (Ω) ≤ C

∑
i∈Jn

a2 d
i,n L

d(ai,n)−1 β2
i,n
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≤ C
∑
i∈Jn

Ld(ai,n)−1 1

n2
≤ C

∑
i∈Jn

1

n
≤ C,

where we used ‖ui,n‖2H1
0 (Ω)
≤ C Ld(ai,n)−1a2d

i,n from Lemma A.1 (a). For the other term
we have ∥∥∥∥∑

i∈Jn

adi,nn
dβi,nχBn

i

∥∥∥∥
H−1(Ω)

=

∥∥∥∥πn∑
i∈Jn

χBn
i

∥∥∥∥
H−1(Ω)

.

To calculate this norm, let z ∈ H1
0 (Ω) with z ≥ 0. We define the translation (z ◦

τ 2
n

)(x, y) := z(x, y + 2
n). We have

0 ≤
〈
n
∑
i∈Jn

χBn
i
, z

〉
H−1(Ω)×H1

0 (Ω)

= n
∑
i∈Jn

∫
Bn

i

z dx ≤ n
∫

(−1,1)×[− 1
n
, 1
n

]
z dx

=

∫
(−1,1)×[− 1

n
,1]
n(z − z ◦ τ 2

n
) dx

≤ 2 ‖n(z − z ◦ τ 2
n

)‖L2(Ω) ≤ 4 ‖z‖H1
0 (Ω),

where the last inequality is the characterization of Sobolev spaces by finite differences,
cf. [Dobrowolski, 2010, Satz 5.22]. Thus we have shown that νn is bounded in H−1(Ω).

With this boundedness it is easy to prove that νn ⇀ δ. This can be done in the same
way as in the proof of Lemma 4.3.

Now let w ∈ H1
0 (Ω) be given. We define wn as the solution of

−∆wn = −∆w + πδw inΩn, wn ∈ H1
0 (Ωn).

Then, according to [Cioranescu, Murat, 1997, Theorem 2.10] the conditions for Theo-
rem 2.1 are satisfied, which implies wn ⇀ w in H1

0 (Ω).

Finally, we define yn := 1
nw
−
n and λn := − 1

nνn and this implies yn → 0, λn → 0,
(yn, λn) ∈ K. By using arguments similar to those in the proof Theorem 3.4, we find
νn ∈ KK(yn, λn)◦, and wn ∈ KK(yn, λn). Thus we have shown that (δ, w) ∈ NK(0, 0).

We note that the choice for the size of the holes in (5.1) is equivalent to Ld(ai,n) = 1
n .

The same approach works also in higher dimensions d ≥ 3, cf. [Cioranescu, Murat, 1997,
Theorem 2.10]. In particular, for a constant measure δ that acts on a hyperplane in Ω
and w ∈ H1

0 (Ω) we have (δ, w) ∈ NK(0, 0).

6. Conclusion

We have established lower estimates for the limiting normal cone of the set K. In
particular, we have characterized the intersection with Lp(Ω) × H1

0 (Ω) for all p with
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Lp(Ω) ↪→ H−1(Ω). This intersection is unpleasantly large.

Our method of proof does not allow to handle ν ∈ H−1(Ω) \ Lp(Ω). Therefore, we are
not able to give a full characterization of the limiting normal cone. Similarly, there is no
counterexample available which shows NK(ȳ, λ̄) 6= Nweak

K (ȳ, λ̄).
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A. Auxiliary results

First, we will provide results for some rotationally invariant solutions of Poisson’s equa-
tion. As in Section 4 we will use the helper function

Ld(a) :=

{
− log(a)−1 if d = 2,

ad−2 if d ≥ 3.
(A.1)

As before, we denote the surface measure of the d-dimensional unit sphere by Sd.

Lemma A.1. Let B := Bb(0) ⊂ Ω ⊂ Rd be an open ball with radius b ≤ 1 and
T := Ba(0) ⊂ B be a closed ball with radius a ∈ (0, b).

(a) We consider the problem

−∆u = χT − adb−dχB, u ∈ H1
0 (Ω).

The solution u ∈ H1
0 (Ω) vanishes on Ω \ B and, under the additional requirement

a < 1
e in the case d = 2, we get the estimate

‖u‖2H1
0 (Ω) ≤ 5Sda

2dLd(a)−1. (A.2)

(b) We consider the problem

u = 1 in T, −∆u = 0 in B \ T, u = 0 in Ω \B.

Then there is a solution u ∈ H1
0 (Ω) with 0 ≤ u ≤ 1. Under the additional require-

ments
a < b2 if d = 2 and a <

b

2
if d ≥ 3, (A.3)

there is a constant Cd depending only on the dimension d, such that

‖u‖2H1
0 (Ω) ≤ Cd L

d(a) (A.4)
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‖u‖L1(Ω) ≤ Cd bLd(a). (A.5)

Moreover, the (outer) normal derivative of u at ∂B is given by

∂u

∂n

∣∣∣∣
∂B

=
−max(1, d− 2)b1−d

Ld(a)−1 − Ld(b)−1
. (A.6)

Proof. For part (a), we can give an explicit solution of the partial differential equation.
It turns out that the solution satisfies u(x) = ũ(|x|), where

ũ(r) :=


c1 − 1

2d(1− adb−d)r2 if 0 ≤ r < a,

c2 + adb−d

2d r2 + c3
1

Ld(r)
if a ≤ r < b,

0 if r ≥ b

with coefficients c1, c2 ∈ R, and c3 = ad

dmax(1,d−2) . The constants c1, c2 has to be chosen
in such a way that ũ is continuous. Note that our choice of c3 guarantees that ũ is
continuously differentiable. For the norm of u we have

‖u‖2H1
0 (Ω) =

∫
B
|∇u|2 dx = Sd

∫ b

0
|ũ′(r)|2rd−1 dr

=
Sd
d2

(1− adb−d)2

∫ a

0
rd+1 dr + Sd

∫ b

a

(adb−d
d

r − c3
max(1, d− 2)

rd−1

)2
rd−1 dr

≤ Sd
∫ a

0
rd+1 dr + 2Sda

2db−2d

∫ b

0
rd+1 dr + 2Sda

2d

∫ ∞
a

r1−d dr

≤ Sdad+2 + 2Sda
2db2−d + 2Sda

2dLd(a)−1 ≤ 5Sda
2dLd(a)−1,

where the last inequality uses a < 1
e in the case of d = 2. Thus we have shown (A.2).

For part (b) we can again give an explicit representation of u. Since u is rotationally
invariant, we can write u(x) = ũ(|x|) and find

ũ(r) :=


1 if 0 ≤ r ≤ a,
Ld(r)−1−Ld(b)−1

Ld(a)−1−Ld(b)−1 if a < r < b,

0 if b ≤ r,
ũ′(r) :=


0 if 0 ≤ r ≤ a,
max(1,d−2) r1−d

Ld(a)−1−Ld(b)−1 if a < r < b,

0 if b ≤ r.

Additionally, (A.6) follows from ∂u
∂n

∣∣
∂B

= limr↑b ũ
′(r). By using the above expression for

ũ′(r) and
∫ b
a ũ
′(r) dr = 1, we find

‖u‖2H1
0 (Ω) =

∫
B\T
|∇u|2 dx = Sd

∫ b

a
ũ′(r)2rd−1 dr

=
Sd max(1, d− 2)

Ld(a)−1 − Ld(b)−1

∫ b

a
ũ′(r) dr =

Sd max(1, d− 2)

Ld(a)−1 − Ld(b)−1
.
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By using (A.1) it can be shown that the requirements (A.3) imply the inequality

1

Ld(a)−1 − Ld(b)−1
≤ 2Ld(a). (A.7)

The claim (A.4) follows. Next, we calculate ‖u‖L1(Ω). We have∫
Ω
|u|dx =

∫
B\T

udx+ vol(T ) = Sd

∫ b

a
ũ(r)rd−1 dr + vol(T )

≤ Sd
Ld(a)−1 − Ld(b)−1

∫ b

a
Ld(r)−1rd−1 dr + 2dad.

By calculating the integral for both the cases d ≥ 3 and d = 2, it can be seen that∫ b
a L

d(r)−1rd−1 dr ≤ b. Therefore, using (A.7) and ad ≤ aLd(a) results in∫
Ω
|u| dx ≤ Sdb

Ld(a)−1 − Ld(b)−1
+ 2dad ≤ Cd b Ld(a).

The next result shows that each function g ∈ L1(Ω) can be approximated by simple
functions given by local averages over small cubes.

Lemma A.2. For each n ∈ N let {Pni }i∈In be defined as in Section 3, i.e., each Pni is
a translation of [− 1

n ,
1
n ]d, the collection {Pni }i∈In covers Ω and is pairwise disjoint (up

to sets of measure zero). We denote by avg(Pni , g) = vol(Pni )−1
∫
Pn
i
g dx the average of

g ∈ L1(Ω), which is extended by zero outside of Ω, over Pni .

(a) Let g ∈ L1(Ω) be given. Then∑
i∈In

avg(Pni , g)χPn
i
→ g in L1(Ω).

(b) Let q ≥ 1 and g ∈ L1(Ω) with g ≥ 0 a.e. on Ω be given. Then∑
i∈In

avg(Pni , g)
1
qχPn

i
→ g

1
q in Lq(Ω).

Proof. We start with part (a). Since C∞0 (Ω) is dense in L1(Ω), we can find a sequence
{ϕm}m∈N ⊂ C∞0 (Ω) such that ϕm → g in L1(Ω). Because ϕm is uniformly continuous,
the convergence ∑

i∈In

avg(Pni , ϕm)χPn
i
→ ϕm (n→∞)

28



Limiting normal cone in Sobolev spaces Harder, Wachsmuth

in L∞(Ω) and therefore in L1(Ω) holds for all m ∈ N. We have∥∥∥g −∑
i∈In

avg(Pni , g)χPn
i

∥∥∥
L1(Ω)

≤ ‖g − ϕm‖L1(Ω) +
∥∥∥ϕm −∑

i∈In

avg(Pni , ϕm)χPn
i

∥∥∥
L1(Ω)

+
∥∥∥∑
i∈In

avg(Pni , g − ϕm)χPn
i

∥∥∥
L1(Ω)

≤ 2 ‖g − ϕm‖L1(Ω) +
∥∥∥ϕm −∑

i∈In

avg(Pni , ϕm)χPn
i

∥∥∥
L1(Ω)

.

Now, we can choose m ∈ N such that the first term becomes small and, afterwards, we
can choose n ∈ N such that the second term is small. The convergence in L1(Ω) follows.

Now we turn to the proof of part (b). For real numbers a, b ≥ 0 we have the inequality

|a− b|q ≤ |aq − bq|.

Indeed, w.l.o.g. a ≥ b, and after some rearrangement, the inequality is equivalent to the
well-known estimate ‖(b, a− b)‖`q ≤ ‖(b, a− b)‖`1 . By applying this inequality, we get∥∥∥∑

i∈In

avg(Pni , g)
1
qχPn

i
− g

1
q

∥∥∥q
Lq(Ω)

≤
∑
i∈In

∫
Pn
i

|avg(Pni , g)
1
q − g

1
q |q dx

≤
∑
i∈In

∫
Pn
i

|avg(Pni , g)− g|dx

=
∥∥∥∑
i∈In

avg(Pni , g)χPn
i
− g
∥∥∥
L1(Ω)

,

which yields convergence according to (a).

Finally, we give a density result on quasi-open sets. Note that the result is classical for
open sets. The definition of H1

0 (D) below is motivated by (2.2).

Lemma A.3. Let D ⊂ Ω be quasi-open. Then

H1
0 (D) := {z ∈ H1

0 (Ω) : z = 0 q.e. on Ω \ D}

is dense in Ls(D), where s ∈ [1,∞) is such that H1
0 (Ω) ↪→ Ls(Ω).

Proof. We note that the linear hull of the set

{f ∈ Ls(D) : 0 ≤ f ≤ 1}

is dense in Ls(D). Hence, it is sufficient to show that f ∈ Ls(D) with 0 ≤ f ≤ 1 can be
approximated by functions from H1

0 (D).
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Let ε > 0 be given. Then we can find an open set Gε such that D ∪ Gε is open and
cap(Gε) < ε. Since H1

0 (D ∪ Gε) is dense in Ls(D ∪ Gε), we can find a function zε ∈
H1

0 (D∪Gε) such that 0 ≤ zε ≤ 1 and ‖zε− f‖Ls(Ω) < ε. Using (2.1) yields the existence
of yε ∈ H1

0 (Ω) such that ‖yε‖H1
0 (Ω) < 2

√
ε, yε ≥ 0, and yε ≥ 1 q.e. on Gε. We define the

function
z̃ε := max(0, zε − yε) ∈ H1

0 (Ω).

From zε = 0 q.e. on Ω \ (D ∪Gε), zε ≤ 1, yε ≥ 0 and yε ≥ 1 q.e. on Gε, we find z̃ε = 0
q.e. on Ω \ (D ∪Gε) ∪Gε. This implies z̃ε ∈ H1

0 (D). Moreover, we have

‖z̃ε − zε‖sLs(Ω) = ‖max(−zε,−yε)‖sLs(Ω) =

∫
{zε≤yε}

|zε|s dx+

∫
{yε<zε}

|yε|s dx

≤ ‖yε‖sLs(Ω) ≤ C ‖yε‖
s
H1

0 (Ω) ≤ C ε
s
2 .

Using the triangle inequality yields

‖f − z̃ε‖Ls(Ω) ≤ ‖f − zε‖Ls(Ω) + ‖zε − z̃ε‖Ls(Ω) ≤ ε+ C
√
ε.

Thus we can approximate f with functions in z̃ε ∈ H1
0 (D), and this proves the claim.
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