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We investigate the limiting normal cone of the complementarity set asso-
ciated with non-negative functions in the Sobolev space Hi(Q2). By using
results from homogenization theory, we provide lower estimates for this lim-
iting normal cone and these estimates are unpleasantly large.
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1. INTRODUCTION

In this paper, we are going to derive lower estimates (w.r.t. set inclusion) for the limiting
normal cone of the non-convex set

K:= {(Uaﬂ) S H&(Q) x Hil(Q) v 20,0 <0, <M7U>H*1(Q)><Hé(ﬂ) = 0}7

where Q € R?, d > 2, is open and bounded. Here, v > 0 is to be understood in a
pointwise a.e. sense and p < 0 for p € H-1(Q) := H}(Q)* is defined via duality, i.e.,
(e, Z>H*1(Q)><H3(Q) < 0 for all 2 € H}(Q) with 2 > 0. The precise definition of the
limiting normal cone is given in Section 2.2, after some notation has been introduced.
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Our research is motivated by the approach of using variational analysis for deriving
optimality conditions for the optimal control of the obstacle problem. To highlight this
connection, we consider the unilateral obstacle problem

Find y € H ()T such that (—Ay —u,v — y>H*1(Q)><Hé(Q) >0V € HY(Q)™T. (1.1)

Here, H} ()™ C H() is the cone of non-negative functions, —A : H} (Q) — H~1(Q) is
the negative Laplacian and u € H~1(Q) is a given right-hand side. It is well known, that
(1.1) has a unique solution and we denote this solution by S(u). Moreover, by standard
arguments, we have the characterization

y=Su) < (y,Ay+u)eK

Note that K is the graph of the normal cone mapping of H(Q)*. Next, we consider the
optimal control of the obstacle problem by a right-hand side u from the set Uyq, i.e.,

Minimize J(y,u)
wrt.  (y,u,\) € Hy(Q) x L*(Q) x HY(Q)
such that (y, ) € K, (1.2)
—Ay+ X =u,
u € Uyg.

Here, J : H}(2) x L?(2) — R is assumed to be continuously Fréchet differentiable, and
Uaa C L*(Q) is assumed to be closed and convex. Recall that the set K, which appears
in the constraints of (1.2), is not convex. The task of providing necessary optimality
conditions, i.e., conditions which are satisfied for all local minimizers of (1.2), received
great interest in the last forty years, we refer exemplarily to [Barbu, 1984; Hintermiiller,
Kopacka, 2009; Hintermiiller, Mordukhovich, Surowiec, 2014; Hintermiiller, Surowiec,
2011; Jarusek, Outrata, 2007; Mignot, 1976; Outrata, Jarusek, Stara, 2011; Schiela, D.
Wachsmuth, 2013; G. Wachsmuth, 2014; 2016].

Stationarity systems including the limiting normal cone of K are obtained in |Hinter-
miiller, Mordukhovich, Surowiec, 2014, Section 3] and [G. Wachsmuth, 2016, Proof of
Lemma 4.4, see also |Outrata, Jarusek, Stara, 2011, Proof of Theorem 16] in case of
controls from H (). Note that in the last two references, the optimality system was
not stated explicitly by means of the limiting normal cone, but it can be easily extracted
from the referenced proofs. One arrives at the optimality system

Jy(g,u) +v—Ap=0, v € Ny, (@), (1.3a)
Ju(y,u) +~v—p =0, (v,—p) € Nk (7, N). (1.3b)

Here, J, and J, denote the partial derivati_ves of J, and Ny, (@) is the usual normal cone
of the convex set U,q. Moreover, Nk (7, \) C H~1(Q) x HE(Q) is the limiting normal

cone to K at (g, \).

It can be shown that this optimality system implies weak stationarity, see (2.8) below.
However, there does not exist any stronger upper estimate (w.r.t. set inclusion) for the
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limiting normal cone of K in the literature, and it is not clear whether one is able to obtain
an optimality system which is stronger than weak stationarity by using this approach.

This is the starting point of our research. Since no improvement on the upper estimate
(2.8) seems to be possible, we investigate lower estimates. Indeed, by using results
from homogenization theory, we are able to characterize the intersection of the limiting
normal cone with LP(Q) x H} (), for all values of p € (1,2] with LP(Q) — H ().

Unfortunately, these lower estimates are rather big. In the case (7, A) = (0,0), i.e., the
biactive set coincides with 2, we obtain that the limiting normal cone contains the set
LP(Q) x H}(Q) (for the above mentioned values of p), see Theorem 4.9, and this set is

dense in H~1(Q) x H}(2). Similar results are obtained in the case (7, \) # (0,0).

To our knowledge, there are no characterizations of the limiting normal cone of K avail-
able, only the upper estimate (2.8) from |G. Wachsmuth, 2016] is known. The similar
problem of characterizing of the limiting normal cone of sets with pointwise constraints
in Lebesgue spaces has been solved only recently, see [Mehlitz, G. Wachsmuth, 2016;
2017].

Let us give a brief outline of the paper. In Section 2 we first introduce some nota-
tion. Then we state some facts about capacity theory that are needed in this paper. In
Section 2.2 we give the definition of the limiting normal cone, and in Section 2.3 the
optimality system (1.3) is compared with known optimality systems from the literature.
Afterwards, we provide a generalization of a result from homogenization theory of Cio-
ranescu and Murat (Theorem 2.1) which will play a crucial role for our main results. In
Section 3 we characterize the limiting normal cone in the case of (g, A) = (0,0) and for
multipliers in L*(Q) x H}(Q). These results are generalized in Section 4 where we con-
sider the limiting normal cone at arbitrary points and allow multipliers in LP(Q) x HZ (),
where p € (1,2) is chosen such that LP(Q2) — H~1(Q). We note that the proof in Sec-
tion 3 requires significantly less technical considerations and, thus, serves as a motivation
for Section 4. Finally, in Section 5 we give an example of an element in the limiting nor-
mal cone where one component is not a function, but rather a measure in H~1(().
Appendix A contains some auxiliary results.

2. PRELIMINARIES

We fix some notation. Throughout the paper, @ € R?, d > 2, is assumed to be open and
bounded. We do not impose any regularity of 2.

We use the notation B,(z) for the open ball with radius r and center z € R%. We also
denote the d-dimensional Lebesgue measure of a measurable set M C R? by vol(M). A
frequently appearing constant is the surface measure of the boundary of the d-dimensional
unit ball B1(0) C R?, which will be denoted by Sy. Note that vol(B;(0)) = d~15,.

For convex sets M C HY(Q) and M ¢ H~'(Q) we use

M® = {pe HHQ) : (1.0) grqywmp(e) < 0o € M},
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M° = {v € Hy(Q) : {1, v) g-1(qyx i 0y < 0V € M}
for the polar cones, and for € H~ () the annihilator is denoted by
= {v € Hy(9) = (1 0) -1 () = 0
We define K to be the set of non-negative functions in H} (), i.e.,
K:=H}(Q)y :={ve H(Q) :v>0ae in Q}.
The non-positive functionals in H~1(2) are defined via duality, i.e.,
HYQ)- =K ={ne H () : () g1 q)xm <0V € K}

The radial cone and the tangent cone (in the sense of convex analysis) to K at v € K
are defined via

Ri(v) = U MK —wv) and Ti(v) == Rk (v),
A>0

respectively. Recall that the set K is polyhedric, i.e.,
Ti(v) N pt = R (v) Npt

holds for all v € K and p € Tx(v)°, see [Mignot, 1976, Théoréme 3.2]. Note that v € K,
€ T (v)° is equivalent to (v, u) € K, i.e., K is the graph of the normal cone mapping
of K. Associated to (v, u) € K, we define the critical cone

K (v, 1) = Tic(v) 0t = {w € T (v) = (s 0) 10y ey ) = O

We mention that we use

9y = [ I3l do
as a norm in H}() and the norm in H~1(Q) is defined via duality. This implies that
—A: H} () — H7Y(Q) is an isometry. For a function v € L*(Q), we use v := max(v, 0)
and v~ := max(—v,0), i.e., v = vT — v™. Recall that v, v~ € H}(Q) for v € H}(Q).

2.1. BRIEF INTRODUCTION TO CAPACITY THEORY

In this section, we recall some facts about capacity theory, which will be needed in the
sequel. The H{(Q)-capacity of a set O C  is defined as

cap(0) := inf{||v||§{3(m cv € H}(Q) and v > 1 a.e. in a neighbourhood of 0},

see, e.g., [Attouch, Buttazzo, Michaille, 2006, Section 5.8.2|, [Bonnans, Shapiro, 2000,
Definition 6.47|, and |Delfour, Zolésio, 2001, Section 8.6.1]. We say that a property P
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(depending on = € Q) holds quasi-everywhere (q.e.) on a subset S C €, if and only if
cap({z € S : P(z) does not hold}) = 0.

A function v : Q — R is called quasi-continuous if for all € > 0, there exists an open set
Ge C Q, such that cap(G:) < € and v is continuous on 2\ G¢. A set O C Q is called
quasi-open if for all € > 0, there exists an open set G- C €2, such that cap(G.) < € and
O U G; is open.

It is known, see, e.g., [Bonnans, Shapiro, 2000, Lemma 6.50], [Delfour, Zolésio, 2001, The-
orem 8.6.1|, that every v € H&(Q) possesses a quasi-continuous representative and this
representative is uniquely determined up to sets of zero capacity. When we speak about
a function v € HOI(Q), we always refer to the quasi-continuous representative. Every
sequence which converges in Hg () possesses a pointwise quasi-everywhere convergent
subsequence, see [Bonnans, Shapiro, 2000, Lemma 6.52].

We recall, that a non-negative (or, non-positive) u € H () can be represented as
a regular Borel measure, see, e.g., [Bonnans, Shapiro, 2000, p.564]. Moreover, since p
does not charge sets of capacity zero, it can be extended to finely-open sets and the
fine support, denoted by f-supp(u), is the complement of the largest finely-open set O
with u(O) = 0. We refer to [G. Wachsmuth, 2014, Appendix A| for details. Due to [G.
Wachsmuth, 2014, Lemma A.5|, this definition of the fine support is crucial to obtain
the characterization

Kr(y,\) = {w € H}(Q) :w>0q.e. on {y =0} and w =0 q.e. on f-supp(\)}

of the critical cone. The advantage of this representation is that both conditions on w
are posed in the q.e.-sense.

By following the proof of [Heinonen, Kilpeldinen, Martio, 1993, Lemma 4.7], we find
cap(0) = inf{HVuH%g(Q;Rd) cv € H}(Q) and v > 1 q.e. on O}. (2.1)
We also recall that for all open subsets €2,, C €2, we have the characterization
we HN Q) < wueHNQ) and u=0qe onQ\Q,, (2.2)

see |[Heinonen, Kilpeldinen, Martio, 1993, Theorem 4.5].
Q 2 C ||v||%2(9) > C vol(O) for some
C > 0 and all functions v € H}(2) admissible in the definition of cap(O). Hence,

Finally, for any measurable O C Q we have Hv||12ql(
0

vol(0) < é cap(O). (2.3)

2.2. CONCEPTS OF VARIATIONAL CALCULUS

We mention two basic concepts of variational calculus that will be used in this paper.
First, we recall that the Fréchet normal cone N¢(Z) of a subset C' C X of a Banach
space X is defined via

Ne(z) = {77 € X : limsup (nx = ) < 0}.

z—Z,2eC HZE - jHX
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If the Banach space X is reflexive, the limiting normal cone (or Mordukhovich normal
cone) to C' at a point € C can be defined via

NC(j) = {77 e X" El{l'n}neN cdC, {nn}nEN CX*: M € //\\/’C(Zvn)yxn — X, Ny — 77},

see [Mordukhovich, 2006, Definition 1.1, Theorem 2.35]. Now, we are going to apply
these definitions to the non-convex set K. Due to the polyhedricity of K, we have

JVK(:% >‘) = ]CK(ya)‘)o X ’CK(:’-/,)\), (2'4>

cf. |[Franke, Mehlitz, Pilecka, 2016, Lemma 4.1| and |G. Wachsmuth, 2015, Lemma 5.2].
Hence, (v, w) € Nk(y, \) if and only if there exist sequences {yn }nen, {wWn tneny C HE (),
{)‘n}nel\h {Vn}nEN C H_I(Q) with

(yn; )\n) € Ka Yn — Y in H&(Q)a Wy — W in H&(Q)a Wnp, € ICK(yn,)\n),
A= Ain HYQ), v, —vin HYQ), vp € Ki(yn An)C,

for all n € N.

2.3. OPTIMALITY SYSTEMS

In this section, we recall two other optimality systems for (1.2), which are of interest
for our study of the limiting normal cone. We employ the notions of capacity theory
and variational calculus. To this end, let (7,u, A) be a locally optimal solution of (1.2).
Further, we fix the sets

A:={zeQ:gy(x) =0}, As:=fsupp()),

T={zeQ:j(x) >0}, B:=A\A,, (2.5)

which are called active set, strictly active set, inactive set, and biactive set, respectively.

The system of weak stationarity is obtained by using
NFeak(g X)) :={z € H}(Q): 2 =0 qe. on A}° x{w € H}(Q) : w =0 qe. on A} (2.6)

instead of Nk(g,)) in (1.3). This system is satisfied for all local minimizers under very
weak assumptions on the data, cf. [G. Wachsmuth, 2016, Lemma 4.4].

Next, we will state the definition of M-stationarity from |G. Wachsmuth, 2016]. Let
B =7UBU A, be a disjoint decomposition of the biactive set and we define
K(B, As) :={ve H}Q) :v >0 qe on Bandv=0q.e. on A, UA}.

Note that the critical cone satisfies K (7, A) = K(B,0). Then, the M-stationarity condi-
tions of |G. Wachsmuth, 2016 are obtained by replacing Nk (7, A) in (1.3) with
“with v € K(B, As)°, w € K(B,

_ there is a decomposition B =7 UBU A
/\@4(?,/\)2{(V,w)GH_I(Q)XHé(Q)' P i) S}.
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In finite dimensions, a system of M-stationarity can be shown by using the limiting normal
cone, cf. |Outrata, 1999, Theorem 3.1|. However, this is not known for the problem
(1.2) unless d = 1, cf. [Jarusek, Outrata, 2007, Theorem 11| and [G. Wachsmuth, 2016,
Lemma 2.3 and Theorem 5.4]. In particular, it is not known whether this system of
M-stationarity is a necessary optimality system for (1.2), see also |G. Wachsmuth, 2016,
Sections 5, 6].

Finally, we comment on the known relation between the defined normal cones. We
trivially have the inclusions

Nx (3, ) € N2 (5, 2) € N (g, M), (2.7)
Moreover, the inclusion B B
NK(ga A) C Ml‘geak(gv )‘) (28)
can be shown as in the proof of [G. Wachsmuth, 2016, Lemma 4.4| and this implies
Nk(5, ) € Nk (5, A) € NEe¥(g, X). (2.9)

In view of (2.7) and (2.9), we are interested in the relations between Nk (7, ), Ng' (7, A)
and A2k (5 X). The construction in [G. Wachsmuth, 2016, Section 6] shows that

if the dimension d of € is at least 2, and in dimension d = 1, the inclusion
Nic(g,A) € N (7, A)

follows from |G. Wachsmuth, 2016, Lemma 2.3 and Section 5].

2.4. A RESULT FROM HOMOGENIZATION THEORY

In this section we will repeat a (slightly generalized) result from [Cioranescu, Murat,

1997).

Theorem 2.1 ([Cioranescu, Murat, 1997, Theorem 1.2]). Let {2, },en be a sequence of
open subset of 2. Suppose there exist sequences {vy, }nen € HY(Q), {7 bnen, {itn tnen C
H=1(Q) and a distribution x4 € H~(Q) such that

v, € HY(Q) (H.1)
v, =0q.e.onQ\Q, (H.2)
v, — 1in HY(Q) (H.3)
w-Ld(Q if d > 3, ,
e (1.4)
W—52te(Q) if d =2, for somee >0
n 7 M Yn — inHilgv_Avn: n — "In»
M = s Yo = () /Ll ot (115
(Yny 2n) = 0Vzy, € Hy(2y).
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Let £ € H1(Q) be given. We denote by u,, the unique (weak) solution of
~Au, =€, u, € Hy(Q,) C HY(Q).
Then u,, converges weakly in H}(£2) towards the unique solution u of

—“Au+pu=¢& uc HNQ).

Proof. This theorem is only a slight generalization of [Cioranescu, Murat, 1997, Theo-
rem 1.2] and we will not repeat the proof. Instead, we only discuss the differences. First,
we use a right-hand side ¢ € H~1(Q) instead of f € L?(Q). It can be seen from the proof,
that the right-hand side is only used as a functional over H}(2), so the proof extends to
a right-hand side of £ € H~1(Q).

Next, we generalize the condition p € W~1°°(Q), which is used in [Cioranescu, Murat,
1997]. Again, inspecting the proof of [Cioranescu, Murat, 1997, Theorem 1.1| and [Cio-
ranescu, Murat, 1997, Theorem 1.2] reveals that we only need the property pz € H=(Q)
for all z € H} (). Using the Sobolev embedding theorem, this is guaranteed by (H.4’).

Finally, instead of condition (H.5) we can use (H.5)’ as explained in [Cioranescu, Murat,
1997, Remark 1.6].

Note that the assumptions (H.1)-(H.3) of Theorem 2.1 imply Q, = Q for large n in
dimension d = 1 due to the compact embedding H'(Q) — C(Q).

Let us explain how Theorem 2.1 is applied later. Suppose that we have a sequence
{Q }nen of open subsets of Q such that the assumptions (H.1)—(H.5’) are satisfied for
some sequences {Un tnen, {VYn}nen and {u,}nen. Further, let u € H}(Q) be arbitrary.
We define u,, as the unique weak solution of

—Au, = —Au+ pu, up € H&(Qn)

Then, Theorem 2.1 implies that u, — u in H}(2). That is, every u € H}(2) can be
approximated weakly by a sequence u,, € H} (). In particular, u, = 0 q.e. on Q\ .

3. THE BIACTIVE CASE WITH MULTIPLIERS IN L?(2)

In this section, we are going to calculate the intersection of Nk (0,0) with L?(Q) x HZ(Q).
In fact, we proof that every (v,w) € L*(Q) x H}(Q) belongs to the limiting normal cone
Nk(0,0).

The results of this section will be generalized in Section 4. The main purpose of this
section is the illustration of the technique of proof, which is much simpler in the L?(£)-
case, since we can built upon the results from [Cioranescu, Murat, 1997].
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We are going to cover ) by closed cubes. Therefore, fix a number n € N and let
{z]}ien = %Zd be a regular grid, and we define the cubes P := z]" + [—%, %]d These
cubes have edge length % and their interiors are pairwise disjoint. Furthermore, each

contains a closed hole T := B, (z1*) at the center, which is a closed ball with radius

)

nzsa ifd>3,
ap =
exp(—n?) ifd=2.

Furthermore we define B := By ,,(#!") C P to be the (open) ball with radius & that is
contained in P[*. Finally, we define the perforated domain Q,, := Q\ U,c; T}, where I,,
is the finite set of indices i such that P> N Q # (. Note that this construction will allow
us to apply Theorem 2.1, see [Cioranescu, Murat, 1997, Theorem 2.2|.

We briefly describe our approach to show that a fixed (v,w) € L?(Q2) x H}(Q2) belongs
to the limiting normal cone Nk (0,0). As described after Theorem 2.1, we get a sequence
{wn}nen with w, € H}(Q,) and w, — w in HF(Q). The next step is the definition
of v, € H _1(9). In order to obtain the desired inclusions w, € Kg(yn, \n) and v, €
Kx(Yn, An)°, we propose to define v, such that it is only supported on the holes. The
construction of y, and A, is then straightforward, see Theorem 3.4.

First, we provide the definition and the boundedness of v, in H=1(2). The idea is to
distribute the mass of v on a cell P/* to the small hole T".

Lemma 3.1. Let v € L?(Q2) € H () be given. We set J,, := {i € N: P C Q} and

define v, via
1
Up = Z XTi"n/ vdzx.
= vol(T7) Jp»

Then there is a constant C' > 0 (which only depends on the domain 2) such that

lvnllg-10) + 18 [ -10) < C IVl 2@

holds for all n € N.

Note that the boundedness of the non-negative part v;; = max(v,,0) does not simply
follow from the boundedness of v, € H~(Q).

Proof. We show the boundedness of v, and the estimate for v, follows by similar argu-
ments, see also Lemma 4.2. Let n € N be fixed. We define

1
im 1= d
o = ) e

if 1 € J,, and f; , = 0 otherwise. For ¢ € J,,, we denote by u; , the solution of

—Auim = X1 — aﬁndXan in €2, Ujn € H&(Q)
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It follows that

Uy = —A(Z 52'7”71,1'7”) + Z azndﬂi,anln. (3.1)

i€Jn 1€Jn
We can use Lemma A.1 (a) to calculate the norm of w; ,,, which results in Hui,nHip(Q) <
[— 0 [EN—
C a2in?, where we used L%(a,,) = n~¢, see (A.1). We also note that supp u;,, = B C PP,
and thls implies that u; , and u; , are orthogonal w.r.t. the H{ (Q)-inner product for i # j.

Now we continue with the calculation of the H~!(Q)-norm of v,. By using the splitting
(3.1) and since —A is an isometry, we obtain

Bi nUin
b b

1€Jn

Z a,m B@ nXBn

i€Jdn

IVl g-10) <

Hg () H=HQ)

Using the orthogonality of the functions {u;, }icj, we get

Z B@ nUin

i€Jn

2d_ d 2 2d,d
< o Sl = it S ][ v

i€Jn €

2d d vol(P, 2 2
Z Ol Tn /P" ‘I/‘ dz < C ||V||L2(Q)7

where we used vol(PP*) = (2/n)? and vol(T[") = d~! Sya? in the last step. For the other
term, we have

2 2
Z aﬁndﬁi,nXB? Z adniB; . x Br
i€Jdn H=1(Q) i€Jn L2(Q)

< Caint 3 Binl? < C )2y

1€Jn

where Y7, |Bin|? is estimated in the same way as above. Now the claim follows from
the combination of the above inequalities.

The following counterexample shows that the above statement does not generalize to
LP(Q) with p < 2.

Example 3.2. Let 1 < p < 2. We set 2 = (0,1)? C R? and define v(z,y) = 2 for some
o€ (—]; —2). We have v € LP(2) \ L%(2) and due to the Sobolev embedding theorem,
v € H1(Q). However, if we define v, as in Lemma 3.1, then |[¥nll fr-1(q) is not bounded
for n — oo.

10
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Sketch of the proof. We define 3;, and w;, € H&(Q) as in the proof of Lemma 3.1.
It can be shown that ”ui,nH?—Il(Q) > C’a%dnd. By calculating the coefficients 3;,, it
0
follows that ”Ziel B; "“inHHl(Q) — 00. On the other hand, since LP(2) embeds into
n ) ) 0
H_l(Q)v Zie[n agndﬁi,nXBf
the previous proof. Then, using the triangle inequality and since —A is an isometry, it
follows that

[vnlla-1(0) > HZ Binlin

i€ln

H-1(0) < C ||v||r(@) can be shown in the same way as in

— 00 (n— ).

d d
- g ann®Bi nX Br
HY(Q) Hiel a0

Using the above boundedness of v, in H~!(Q) provided in Lemma 3.1, one can show the
weak convergence by proving (v, — v, f>H—1(Q)><Hé(Q) — 0 for all f € C°(2). We refer
to Lemma 4.3 for a similar proof.

Lemma 3.3. Let v,,v € H~}(Q) as in Lemma 3.1. Then v,, — v.

Now we are in the position to prove the main result of this section, which shows that the
limiting normal cone to K at (0,0) contains a dense subset.

Theorem 3.4. We have L?(Q) x H}(Q2) € Nk(0,0).

Proof. Let w € H}(Q) and v € L3(Q) C H1(Q) be given. First, we choose w,, €
H} () € HL(Q) as the solution of

_Awn = —AU} —+ Hnw n Qn, Wnp, S H&(Qn)’

where 1 := S;2 ¢ max(1,d —2). Recall that Sy is the surface measure of the unit sphere
in R?. Then, according to [Cioranescu, Murat, 1997, Theorem 2.2| and Theorem 2.1 we
have w,, — w in Hg(Q).

Next, we choose v, as in Lemma 3.1. The weak convergence v, — v in H~1(Q) follows
from in Lemma 3.3. We also choose y,, := Lw, € H}(Q)4 and A\, := —1vf € H7H(Q)_.
Since wy, is zero on all holes T7*, ¢ € J,,, and v, is only defined on these holes, it follows
that (yn, \n) € K. The convergences y, — 0,\, — 0 follows since w,, and v, are
bounded in H}(2) and H~1(€2), respectively, see also Lemma 3.1.

(o}

It remains to show that w, € Kx(yn, A\n) and v, € K (yn, An)°. The first one follows
from w,, = n(Lw; —y,) and the fact that {w, # 0} C Q. In order to show the condition
for v, we use the polyhedricity of K, which implies Kx (yn, \n)° = (K — yn) N AL)°.

Let v € K with v — y,, € A% be given. Then
(Vn, v — ypn) = <—u,: —n)\n,v—yn> = <—V;,v—w;> = —<1/;,v> <0,

where the last inequality follows from v, ,v > 0. Because z was chosen arbitrarily, this
implies v, € Kx (yn, An)°. Thus we have shown that (v, w) lies in Nk (0, 0).

11
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4. THE EXTENSION TO MULTIPLIERS IN L”(()

In this section, we characterize Nk (g, A) N (LP(Q) x Hg () for (7, A) € K, where p < 2

is given such that LF(Q) — H1(Q), ie, p e (1,2) if d =2 and p € [£5,2) if d > 3.

In contrary to our approach in Section 3, we cannot work with holes possessing a uniform
radius, cf. Example 3.2. Hence, the holes T} will have different sizes, depending on their
location. We denote the radius of T;* with a;,, i.e., T' = By, ,(z}'). As in Section 3,
P! denotes the cube 27 + [, 14, B” = Byn(2}) is a ball with dlameter 1/n and I,

is the set of indices ¢ Wlth PN Q# Q). However, the definition of €2,, will differ slightly
from Section 3, see below.

In order to avoid some case distinctions between d = 2 and d > 3, we introduce the
auxiliary function L% via

L4(a) —log(a)~! fora € (0,1) and d = 2
a) =
a®2 for a € (0,00) and d > 3.

In any case, L% is monotonically increasing and the range is (0,00). Throughout this
section, v € LP(Q) is chosen arbitrarily but fixed. For technical reasons, we introduce
another index set J,,, defined as

Jo =i € In: PP CQ, 0 < v}, pn) < n'74},

For i € J,, we define the radius a;, > 0 of the holes T}* via

L4ain) = vol(P) avg (PP, [v]?) 7 ", (4.)
where .
(P ) = s / v da

is the average of the function |v|P over the set P*. In the case that i € I, \ J,, we set
a;n := 0. We define
0, =0\ | J 17,
1€Jn
and this differs from the corresponding definition in Section 3. The next lemma shows
that we have a;, < % for n large enough, i.e., T)* C P holds. Afterwards, we will only
consider these parameters n € N which guarantee a;, < %

Lemma 4.1. (a) For large n € N we have

1 1+¢
Aipn < () Vi € Jp,
2n

where € depends on the dimension, but not on ¢ and n. In the case of d = 2 we
even have

1
aipn < exp(—gn) Vi € Jy,

12
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for large n € N.
(b) For every large n € N there exists a constant C,, > 1 such that

1
Ld(aim) <

< CnLa;n
= Tiag 1z = o)

holds for all i € J,,. Moreover, C,, — 1 as n — o0.

(c) It holds that
lim vol({r # 03\ |J F') =

1€Jn

Proof. (a): Using the definition of the index set J,, and % —1€(0,1), we have

d
= 2 + |lv|® ny g +nld < 9dtlyl-d (4.2)
n Lp(P; n

For d > 3 this implies

L) = vol(PP) avg(P}, [v]?) >~ < vol(P)(1 + ave(PP, [u]?))

1+¢
a5, < 24+ (1=D/(@d=2) _ <1>
’ 2n

for large n € N and ¢ : (d 5 For d = 2 inequality (4.2) yields a; , < exp(—f ).

(b): By part (a) it follows that L%(a;,)/LY(2) — 0 as n — oo, uniformly in i € .J,. This
implies the claim.

(c): If i € I, does not belong to J, then there are three possible reasons: HVHiP(Pi") =
0, ||l/||§p(Pin) >nl= or P" ¢ Q. Therefore, we have

vol({v # 0} \ U P = Z vol({v # 0} N P

i€Jn 1€l \Jn

< Z vol(P*) + Z vol(2 N P").

i:HVHIZ/p(p_n>2nl_d ©:P"ZQ
2
For the first term we have

>ooweEn= Y e

1-d i:||u||’£p(Pin)Zn1—d

—d -
<277t Z HVHLp (P7)

nl—d

i:”V”iP(Pi”)Zn

i:HV”IL)P(Pin)z
< 2_dn_1H1/Hip(Q) -0 (n— o).

The convergence of the second term follows from Q = J,,cxy U;.prcq P*- This proves the
claim. '

13
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The next lemma parallels Lemma 3.1. For this result, the adaptive choice of the radii
@iy in (4.1) is crucial.

Lemma 4.2. We define the measurable function 7, via

Up 1= Z XTi"Bi,rw

1€Jn

where the real-valued coefficients 3;,, satisfy

1
inl < i 19

Then there is a constant C' > 0 (depending only on the domain €2 and p) such that

1 -1 <CHVHLp )+ Cllvliee)

holds for all n € N.

Proof. Let n € N be fixed. As in the proof of Lemma 3.1 we define u; ,, as the solution of

. 1
—Auipn = xrr — af,nxpr  nQ,  ui, € HY(Q).

U, = —A<Z ﬁi,nui,n> + > al,n?Binxmy. (4.3)

i€Jn 1€Jn

It follows that

From Lemma A.1 (a) we know that suppu;,, C B C P/ and

Hui,nH%{é(Q) < Ca L (azn) 17

where the constant C' > 0 does not depend on n and 7. We continue with the boundedness
of ||7n|| g-1(q). Using the isometry of —A, (4.3) yields

Z BZ?’L,U’Z’VZ

i€Jn

Z a; nn 51 TLXB”

1€Jn

1 =1

H () H=H(Q)

Since the functions u;, are orthogonal with respect to the scalar product in H&(Q), we
have

= Z 183, nl? HUMHHI(Q)

H& (Q) ZEJn

1 2
E 2d rd —1
<C (l L aln W(/Pn‘l/‘dl'>

1€Jn

- 2-2
<C Z L4 a; )™t vol(P) HVHLP (P™)
i€Jn

14
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=C ) L%ain)~" vol(P") avg(P!, viP)e vl (P
1€Jn

= C Y Wiy < C Wl -

i€Jn

For the other term we have

p
E az nn Bl 'rlXB”

Z a; nn Bl TLXB"

1€Jp _I(Q) 1€Jn Lr(Q)
=C Z CLz nn dp’/Bz n|pHXBn||Lp(Q
’LeJn
P
<C anp d(/ 1/|dx>
i€Jn
<C Z ndpdvol(Pi")(lzl?)p/ |v|P dz
i€Jn 7
<c Z/ v de < C ]2,
i€Jn

This completes the proof.

After we have established this boundedness, we are in position to prove that every func-
tion ¥ which is pointwise bounded by v can be approximated weakly by functions living
on the holes T7".

Lemma 4.3. Let 7 be a function in LP(Q) € H~(Q) such that |7| < |v|. If we define
= 3 Xy o [ 7
n = T 7y )
et vol(T7") PP

then 7, — 7 in H~1(Q).

Proof. Because 7, satisfies the requirements for Lemma 4.2, we know that 7, is bounded
in H71(Q). Hence it suffices to show the convergence on the dense subspace C§°(€2) C
H}(Q). Let f € C§°(Q) be given. We have

<’7n -, f>H*1(Q)xH3(Q ‘ = ’/ (’}n - D)fdx‘
= ‘2/ v fdx‘Jr‘/{ 5£00Use, P I

The second term converges to 0, because of Lemma 4.1 (c). For the first term we can use
that f is uniformly continuous. That mean that for each € > 0 we can find arbitrarily

15
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large n € N such that |f(z) — f(y)| < e for all z,y € P",i € J,,. Thus

1
n— ) fdz| < / Ddx/ fdy — frde
Z; / i ZZ vol(T7") P e PP

< — _
> [ 10| e /T 1) = £(a)] dy| o
’LEJ 2

<52/ 7] de < e |7l 1 q)

i€Jpn
Since € can be arbitrarily small, this proves that (7, — 7, f) ;- LQ)xHL(Q) 0 asn — oo.

The next lemma provides some technical estimates, which will be used to verify the
assumptions of Theorem 2.1 in our setting with differently sized holes. Again, the specific
choice (4.1) is crucial for these estimates.

Lemma 4.4. Let the size of the holes T]* be chosen according to (4.1). Then, there
exists a constant C' > 0, such that

Z Ld(aivn) <C HVHip(Qy (44&)
i€Jn
'Y Liain)® = 0, (4.4D)
1€Jn
nd?= Z Ld(aiﬁn)q <C HVHIEP(Q)a (4.4c)
1€Jn

where ¢ = p/(2 — p).

Proof. We start with (4.4a). Using the definition (4.1) and vol(P?) = (2/n)%, we find

2

2 L(ain) = ) vollFY) ave(PY vP)? = > vol(P)’ </p [P d96>5_1

i€Jn i€Jn i€Jn i

:22d(17%)nd(%72) Z(/ 2

|v|P dx) i
1€Jn i

Since % —1€(0,1), we can use Holder’s inequality to obtain

S L ay,) < 22407 (Z/ |u|de> I(Z 1)2_3’

i€Jn 1€Jn i€Jn

d(2-2)+d(2—2
<Cn (G-2+d( ||V||Lp(g) < Clvlifq

16
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This shows (4.4a).
Next, we verify (4.4b). We use (4.2) and (4.4a) and obtain

nd72 Z Ld(ai,n)2 < nde Z Ld(ai,n) 2d+1 nlfd — 2d+1 nL Z Ld(aim) 0.
i€Jn i€Jn i€Jn
Finally, we address (4.4c). Using (4.1) and ¢ (2/p — 1) =1 we get

nda—d Z L%a; )7 = nde—d Z vol (P11 / P dz < 240@=D HV”I[)/P(Q)'
et i€y B

As a next step, we verify that the conditions (H.1) to (H.5") of Theorem 2.1 are satisfied
for the above choice of the perforated domain €2,. We are following the strategy of
[Cioranescu, Murat, 1997, Theorem 2.2|. However, due to the variable size of the holes,
the analysis is more involved.
We start by defining an appropriate v,, € H'(Q). For i € J,, let v;,, € H}(Q) be defined
as the solution to

Vin = 1 in Tzn

—Avi, =0 in B\

vin =0 inQ\ B
Functions of this type are discussed in Lemma A.1 (b). Note that the requirements on
a;p in this lemma are satisfied by Lemma 4.1 for n € N large enough. We then define

Up =1 — Z Vin-
i€y
The next two lemmas show that (H.1) to (H.5’) are satisfied.

’Lemma 4.5. The conditions (H.1)-(H.3) are satisfied by the above choice of {vy, }nen. ‘

Proof. We start by proving (H.1). Because of 0 < v, < 1 it suffices to calculate
||an||%2(9)d. Due to Lemma A.1 (b) and (4.4a) we have

2
vanHH(Q)d < ZuvimH}%{é(Q) <C Z Ld(ai,n) <C
1€Jn i€Jn
which shows that the sequence {v;, }nen is bounded in H().
The condition (H.2) follows directly from our choice of vy,.

Finally, we want to show that {v,},en satisfies (H.3). We check that v, — 1 in L'(£).
Indeed,

1
oo =y = 3 [ feiale < Ca 3= 02 i) 0.

1€Jn i i€Jy

17
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where we used (A.5) and (4.4a). Together with the boundedness of {vy, }nen in HY(Q) <
LY(Q) and the reflexivity of H'(f2), this implies v, — 1 in H'(Q). This shows (H.3).

We remark that (4.4a) shows that the capacity of the holes | J;c; 77" remains bounded.
Indeed, the function 1 — v, from the proof can be used in (2.1) and we obtain

cap(|J T7') < I = vl < €
i€Jn

Lemma 4.6. The conditions (H.4"), (H.5’) are satisfied by the above choice of {vy, }nen
and some sequences {it, }neny and {vn}nen. In particular, we have p = Cy|v|?~P, with
Cd = max(l, d— 2)Sd.

Proof. First, we prove (H.5"). We note that Av, only acts on the boundaries 9T}" and
O0B!'. We set v,y € H~Y(Q) such that —Av, = p, — v, and p, only acts on 0B}
whereas 7, only acts on 0T;". Then it can be seen that the condition (v, z,) = 0 is true
for all z, € H, 6 (Qy,). It is possible to explicitly calculate ji,,. We denote by §;,, € H —1(Q)
the surface measure on 0B}, i.e.,

(Oim, f) = f(s)ds Vfe 5 ().
oB?

Then, using integration by parts and (A.6), it turns out that

67;,” _ Z avi,n

n mn
0B; i€Jn 0

1
6i,n = Z mai,n&i,n (45)
B =

with real-valued coefficients

N max(1,d — 2)n®d
(N Ld(aﬂl’n)—l _Ld(%)—l.

(4.6)

For later use we note that Lemma 4.1 (b) implies the existence of a constant C' indepen-
dent of 7 and n such that
0<ain<Cn®L%ain). (4.7)

Now we introduce the function z; , for i € J, as the solution of the equation
—Azip =0, inBy, zin=0 onQ\ B}
This function can be calculated explicitly and we find

Qo _ 1
ﬁ(n 2 |z — a:?|2) Vz € B, —Azin = QinXBr — —Qinlin. (4.8)

Zin(®) = nd

18
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For the H}(2)-norm of z;,, we have
2 2 —d-2
||Zi7n||H3(Q) = Cai,nn

and due to the orthogonality we have

2
5 Zimn = E Hzi,n
H Hy(Q)
i€Jn i€Jn

due to (4.7) and (4.4b). Hence, (4.5) and (4.8) imply

ey = C S 2 220 Y Lag Pt 0,

1€Jn i€Jn

I — Z Qi XBr = A(Z zim) —0 in H_I(Q) (n — o0).

i€Jn i€Jn

Using Lemma 4.7 below yields 1, — p in H~1(Q2), where u := Cy |v|*>7P. Finally, v, — u
follows from —Aw, — 0 and pu,, — p, which completes the proof of (H.5’).

Now, p = Cy |v|>7P, v € LP(2) and the bounds on p imply

W-L2e(Q) if d = 2,

e LP/2-p)(Q) ¢
. W w4q)  irass

for some € > 0. Thus the remaining condition (H.4’) follows.

It remains to check the announced convergence of y,, towards pu = Cy |v|?~P.

Lemma 4.7. Let «;,, be defined as in (4.6). Then

Z Qj,n X B! — Cd’VIQ_p in H_l(Q),
i€Jn

where Cy = max(1,d — 2)S, is a constant.

Proof. We will proof this by showing the weak convergence in L(f2), where ¢ = Pt
Indeed, the boundedness follows from

E Qi n X B

1€Jn

q

= Z O[(i],n VOl(an) < C Z nqud(ai,n)q n*d < C HVHZZJP(Q)7
L) e, i€Jn

where the last two inequalities are due to (4.7) and (4.4c), respectively.

Now it is sufficient to show the weak convergence on the dense subset C§°(£2) C L4(2)*.
Let f € C§°(€2) be given.

Due to the definition of ;, and Lemma 4.1 (b) we have

|, — max(1,d — 2) dn® Ld(am)\ < (C, —1) max(1,d — 2) dn® Ld(ai,n),
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where {C), }ren is a sequence of constants such that C;,, — 1. It follows that

q
Z inxpr —max(l,d — 2)dn? Z Ld(ai,n)XBin
i€n i€Jn
<C(C,—1)1 Z n®=4L%a; )" < C (Cp — 1)%”“2@(9) — 0,
i€Jn

L@ (4.9)

where we used (4.4c) again. Now using Lemma 4.1 (¢) we also have

q
< / WP dz — 0
Li(Q) NUse s, B

as n — 0o. By combining this with (4.9) and the definition (4.1) of a; , we arrive at

2_
S° avg(P |vP)r g
i1€ln\Jn

2
D cinxmy —max(l,d —2)d2! 7 ava(Py, P) xy = 0
i€Jn i€l

in L(€2). Using the uniform continuity of f (similar to the proof of Lemma 4.3) it is
possible to replace xpr with xpn, i.e.

n 2
<Z ainxpr —max(1l,d —2)Sy Z avg(P, [v[P)» “xpr, f> — 0,

1€Jn 1€ly,
where we used that 274418, = ZE}EIB;:ZL;, and d~ 15y is the volume of the d-dimensional

unit ball. Now we apply Lemma A.2 (Zb) to g = |v|P. As a consequence, we have

2
Ca Y avg(PI wfP)r X — Calvf?7
i€l

in L4(Q) with the constant Cy = max(1,d—2)Sy. Combined with the calculations above,
we have

<Z ainxsn — Calv*7P, f> — 0.

1€Jn

The boundedness in L(£2) of Y7, a;nxpr and the compact embedding into H~'(£)
(which follows from ¢ > p) completes the proof.

We note that the choice
v=(2Co) P ira =2, v= (2102 VP g >3

yields the same size of the holes as in [Cioranescu, Murat, 1997, (2.4)] and we obtain the
same value of y, cf. [Cioranescu, Murat, 1997, (2.3)].

Now, the assumptions of Theorem 2.1 are satisfied and, by arguing as in the first lines
of the proof Theorem 3.4, we obtain the following corollary.
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Corollary 4.8. Let w € H3(Q) be given. Then there exists a sequence {wy, }nen With
wy, € HY(Q) C HE(Q) such that w, — w in HE(Q).

By using the same arguments as in the proof of Theorem 3.4, one can show LP(2) x
H(Q) € Nk(0,0). The next theorem shows a more general result.

Theorem 4.9. Let p € (1,2) such that LP(Q) — H~1(Q) and let (v,w) € LP(Q)x H} ()
be given. Then the equivalence

(r,w) € Ng(7,)) <= (v,w) € NgF°K(7, )

holds for every (7, A) € K.

Proof. The implication “=" follows directly from (2.8) and it remains to check “<”.
Therefore, let (g,A) € K be given. As in (2.5) we define the sets Ag := f-supp(}),
Z :={y > 0}, and A := {y = 0}. Due to y = 0 q.e. on As; we can enforce § = 0

everywhere on Ag. This implies As NZ = (. Note that the set Z is quasi-open.
Now, suppose that (v,w) € N¥eak(g, X). As a reminder, NF°®(7, \) was introduced as

NFeak(g X)) :={z € H}(Q): 2 =0 qe. on A}° x {z € H}(Q) : 2 =0 q.e. on A,}

in (2.6). It can be shown that ¥ = 0 ae. on Z. In fact, Lemma A.3 implies
(v, z>Lp(Q) ' = 0 forall z € LV (Q) with z = 0 a.e. on A. Here, p' € (2,00) is
the exponent conjugate to p, ie., 1 =1/p+1/p’.

It well be convenient to work with open sets. Therefore, let € > 0 be given. Because 7
is quasi-open, there exists an open set G, such that Z U G. is open and cap(G;) < e.

The remaining part of the proof is divided into several steps. In steps 1 and 2, we
use Corollary 4.8 and Lemma 4.3 to construct approximations w,, to w and v, . to v.
The functions w, will vanish on the holes, whereas v, . is supported only on the holes.
In step 3, we construct an approximation to y, which vanishes on the support of v, ..
Afterwards, we find a point in K such that (v, ., wy) belongs to the Fréchet normal
cone in this point, cf. steps 4 and 5. Finally, we pick a diagonal sequence in step 6 and
conclude.

Step 1 (Construction of wy,): Applying Corollary 4.8 yields the existence of a sequence
{Wn }nen with @, € HE(Q,) € HY(Q) and @, — w in H}(2). Next, we define w,, €
HE(Q) by wy, = max(min(@,,w"), —w~). From [G. Wachsmuth, 2016, Lemma 4.1]
we know that max and min are weakly sequentially continuous from H}(2) x H(Q) to
HE(Q). Tt follows that w, — w. Moreover, we have {w, # 0} C {w, # 0} C Q, and
Ay € {w = 0} C {w, = 0}. By [G. Wachsmuth, 2014, Theorem A.5| it follows that
w = 0 M\-a.e. This implies w;® = 0 M-a.e., hence

N T — 9\ —
(N W) sy @) _/an dX = 0. (4.10)
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Step 2 (Construction of vy, ¢): We define v, := vxqg g, and

: /
Une ‘= XTr Ve dx.
Z;; vol(T7}") P

According to Lemma 4.3, v, . — v, as n — oo in H~1(£2). Moreover, we have

p
el + I ella-1@) < ClIvlizog) + C vl (4.11)
for a constant C' > 0 by applying Lemma 4.2 twice.

Step 3 (Construction of g,.): Now we will argue that we can choose a sequence
{gn,s}neN C Hol (©) such that

0< fu: <7 (4120)
lim Yne =Y, (4.12b)
n—oo
{tme>0yc  |J P (4.12¢)
©:PPCIUG,

Indeed, this is possible: Because of § € H}(ZUG.) and the fact that C§°(ZUG,) is dense
in H}(ZUG.) there exists a sequence {Jy « fnen in C§°(ZUG:) such that limy, o0 Gne = ¥
and {Jn > 0} + B,,3(0) C ZUG.. The last condition implies

{tne>0tc |J P
i:P" CTUG.

Then we define g, := max(min(y, Jnc),0), and we get (4.12a). Because max and min
are continuous in H}(2), we also have lim;, o %in.c = §. The remaining condition follows
from {gn > 0} C {@n, > 0}. This yields a sequence {gy  Inen satisfying (4.12).
Step 4 (Construction of (Y e, Anc) € K): In a next step, we define y, o := yn,g+%wg >0
and A\, . = A\ — %VIE < 0. In order to show that this pair belongs to K, it remains to
check
- I R 1, .
(Ane yn,E>H*1(Q)><H3(Q) = (A, Un,e) + n (A wy,) — n <Vn,67 Un,e) — n2 <Vn,e’ w,, ) = 0.
(4.13)
The first term vanishes due to 0 = (X, ) < (), ¥ne) < 0, where we used A < 0 and
(4.12a). The second terms is zero due to (4.10). The function v, . can only be non-zero
on holes T} that belong to cubes P with P* N (A\ G¢) # (. Thus, using that §,. =0
on these P/, cf. (4.12¢), the third term vanishes. Finally, the last term disappears since
V;t . only lives on the holes and w,, vanishes there. This shows (4.13). Together with the
signs of yp . and A\, ., we have (ync, Anc) € K.

Step 5 (Verification of (v, wy) € ./(\/'K(yn75,)\n,5)): In face of (2.4), we have to show
Unge € Kk (Une, Ane)® and wy, € Kk (Yn,e, Anc). By using arguments similar to those that
led to (4.13) we find (A, ¢, wy) = 0. Together with gy, ., w;} > 0 this yields

B 1
Wp =1 (yma + ﬁw: - yn,a) S TK(yn,a) N )\ig = ICK(?Jn,m )\n,a)-
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In order to show vy, . € K (Yne, Ane)®, let 2z € K ﬂ)\tg be given. Similar to the derivation
of (4.13), we find (Vpn.c, Yne) = 0. From z € KNAL_, e = 5\—% vi_and \,—Liuvf_ <0

n,e» n,e» nne >
we have (v, _, z) = 0. Thus,
?

Ve, 2z — y”15>H—1(Q)><H(}(Q) = <V”157Z>H—1(Q)><H3(Q) = <_Vn7€’Z>H*1(Q)><H01(Q) <0,

where we used z > 0 and v, . > 0 in the last step. Since z was arbitrary, we find
Une € (KN )\ig —Une)® = (Rr(Yne) N )\#,E)O. Using the polyhedricity of K, it follows
that vp . € K (Yn,e, Ane)®-

Step 6 (Choice of a diagonal sequence): Finally, we have to choose a sequence of indices
{(ng, ex) fren such that

Yk = Ynper, — Y, A = )\nkaakz — A, W 1= Wp,, — W, Vg *= Vngep, — V-

Let {ex}ren be a sequence with € > 0 and ¢ — 0. Then, we have

’LP(Q) =C (/G v[? diﬂ)l/p,

€k

v = VE:«HH%(Q) = H”XG% }Hfl(m = CHVXGEk

which converges to 0 as € — 0 since vol(G., ) — 0, which follows from cap(G¢,) — 0, see
(2.3).

Because H{ () is separable, we can find a sequence {2, }men that is dense in H} ().
We have vy, ., — ve, and §pe, — ¥ as n — oo for fixed k by steps 2 and 3. Therefore,
we can choose n; > k in such a way that the conditions

Hgnk,ak - gHHé(Q) < e and ‘<Vnk,sk - Vakazm>H—1(Q)><Hé(Q)‘ <ep Ym<k

are satisfied. From the boundedness of w,,, we conclude Yy, ¢, = Un, e + %wgk — 9.
Further, it follows that

khﬁrgo (Unper — Vs Zm>H*1(Q)><Hé(Q) =0 VmeN.

Since vp, ¢, is also bounded, cf. (4.11), and {2 }men is dense in H(9), it follows that
Un, e — V. The convergence A, ., — A follows from nj; > k and the boundedness of
vt e l-1(0), cf. (4.11). Finally, wy,, — w follows from step 1.

Step 7 (Conclusion): From steps 4 to 6, we find

(Y, \e) €K,y — y in Hi(RQ), wp — win Hy(Q),  wi € Ki(yr, \r),
Me = Ain HHQ), wvy—vin HYQ), v € Krlyr )

Hence, (v,w) € Nk (7, \).
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5. MEASURE ON A HYPERPLANE

In the following example we want to show that the limiting normal cone in (0, 0) contains
elements from H~1(Q) x H}(Q) where the H~!(Q)-component is not a function. In
particular, the limiting normal cone is strictly larger than LP(Q) x H}(2), which was our
lower estimate from Theorem 4.9.

Example 5.1. We choose d =2 and Q = (—1,1)%2. Let § € H-(Q) be defined as
(6, F) i iy = /( | J0)ds ¥ )

For every w € Hi (), we have
(0, w) € Nx(0,0).

Note that § can be written as a derivative of an L?(Q) function, hence, § € H~1(Q). We
will proceed similarly to the proof of Lemma 4.2.

Proof. First, we cover the line (—1,1) x {0} with squares P/ := [2 2EE2] 5 [ 1 1)
Again, at the center of each square there is a hole 77" with radius
a;yn = exp(—n), (5.1)

and another ball B With radius % We choose J,, :={i € Z : P* C Q}. As before, we
define Q,, :=Q\ U

We start by defining a sequence v, € H () and showing v, — § in H-1(Q). In

particular, we set
Up 1= E XTZ-"Bi,n
1€Jn

i€Jn

with i, = %n First, we show that [[v[|g-1(q) is bounded. As in the proof of

7'('0,,L<Y
Lemma 4.2 we define functions u; , as the solution of

2 .2 . 1
—Auipn = X1 — a7 ,n°XBr QUi € Hy(Q).

By the triangle inequality and since —A is an isometry, we have

Z ﬁz nUin

i€Jp

[l -1

Z A; T B@ nXB”

i€Jdp

H§(9Q) H=1(Q)

For the first term we have

Z ﬂz nUin

- Z |/81n| ||uln||H1(Q C Z a2de a'Ln -1 271

HO (©) i€Jp i€Jp
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1 1
<C Y Lain) ' 5 <C Y~ <C,
i€Jn 1€Jn
where we used ||Ui,n‘|12q1(9) < C L% a;,)"'a?d from Lemma A.1 (a). For the other term
0 )

we have

> @i Binxy = [T >_ xap :

icJn H=H(®) i€Jn H=H®)

To calculate this norm, let z € H(Q) with z > 0. We define the translation (2 o
T2)(z,y) == 2(z,y + 2). We have

0<(n XBT%Z> =n /zdxﬁn/ zdzx
< Z d Z BT (-1,1)x[-L

1
i€Jn Hfl(Q)XHé(Q) i€Jn n’n]

:/ n(z—zorz)dx
(=LD)x[=3.1] "

<2|n(z—zo T%)HLQ(Q) < 4|2l g1 e
where the last inequality is the characterization of Sobolev spaces by finite differences,

cf. [Dobrowolski, 2010, Satz 5.22]. Thus we have shown that v, is bounded in H~1(£).

With this boundedness it is easy to prove that v, — 4. This can be done in the same
way as in the proof of Lemma 4.3.

Now let w € H}(Q) be given. We define w,, as the solution of
—Aw, = —Aw + wdw inQ,,w, € H&(Qn)

Then, according to [Cioranescu, Murat, 1997, Theorem 2.10] the conditions for Theo-
rem 2.1 are satisfied, which implies w, — w in HE(Q).

Finally, we define y, := %w* and A\, = —%l/n and this implies y, — 0, A\, — O,

n

(Yn, A\n) € K. By using arguments similar to those in the proof Theorem 3.4, we find
Un € Kic(Yn, A\n)°, and wy, € Kk (Yn, An). Thus we have shown that (6, w) € Nk(0,0).

We note that the choice for the size of the holes in (5.1) is equivalent to L%(a;,) = L.
The same approach works also in higher dimensions d > 3, cf. [Cioranescu, Murat, 1997,
Theorem 2.10]. In particular, for a constant measure § that acts on a hyperplane in 2

and w € H () we have (6, w) € Ng(0,0).

6. CONCLUSION

We have established lower estimates for the limiting normal cone of the set K. In
particular, we have characterized the intersection with LP(Q) x H}(2) for all p with
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LP(Q2) < H~1(Q). This intersection is unpleasantly large.

Our method of proof does not allow to handle v € H=1(2) \ LP(£2). Therefore, we are
not able to give a full characterization of the limiting normal cone. Similarly, there is no
counterexample available which shows N (7, A) # Npeak(g, A).
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A. AUXILIARY RESULTS

First, we will provide results for some rotationally invariant solutions of Poisson’s equa-
tion. As in Section 4 we will use the helper function

—log(a)™! ifd=2
L = ’ A1l
(@) {ad2 if d > 3. (A1)

As before, we denote the surface measure of the d-dimensional unit sphere by ;.

Lemma A.l. Let B := By(0) C Q C R? be an open ball with radius b < 1 and
T := B,(0) C B be a closed ball with radius a € (0,b).

(a) We consider the problem
—Au = xr — ab" ¥y, u e HLHQ).

The solution u € H}(£2) vanishes on Q \ B and, under the additional requirement
a< % in the case d = 2, we get the estimate

lull3s @) < 5Saa®L(a)™". (A.2)

(b) We consider the problem
u=1inT, —Au=0inB\T, u=0inQ\B.

Then there is a solution u € H&(Q) with 0 < wu < 1. Under the additional require-
ments

b
a<b ifd=2 and a<y ifd > 3, (A.3)
there is a constant Cy depending only on the dimension d, such that

HUH?{(%(Q) <Cy Ld(a) (A.4)
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)l 1) < CabL¥(a). (A.5)
Moreover, the (outer) normal derivative of u at 0B is given by

Ou| —max(1,d — 2)b'~? (A.6)
onlyg  Li(a)~t — L)1~ '

Proof. For part (a), we can give an explicit solution of the partial differential equation.
It turns out that the solution satisfies u(z) = @(|x|), where

c— Q—Id( a®bHr?  if0<r <a,
a(r) =< ca+ 4 dr+03Ld() ifa<r<hb,
0 ifr>0b
with coefficients ¢1,c0 € R, and c3 = ___a? The constants ¢y, co has to be chosen

dmax(1,d—2)
in such a way that 4 is continuous. Note that our choice of c3 guarantees that « is

continuously differentiable. For the norm of u we have

H“”?f& / |Vu|2d:n—Sd/ |’ |2 d=1qp
b, _dp—d
_ ab max(1,d — 2)\?2
d2 (1 CLdb d)2/0 d+1 d’l”+Sd/a ( d r—c3 T’dil )

a b 00
< Sd/ rdtldqr 4+ 2Sda2db_2d/ rdtlqr 4 2Sda2d/ ri=dqr
0 0 a

< 84042 +285,3a2? 7 + 25,40% L4 (a) 7! < 58402 L4 (a) 71,

d=1 qp

where the last inequality uses a < 2 in the case of d = 2. Thus we have shown (A.2).

For part (b) we can again give an explicit representation of u. Since w is rotationally
invariant, we can write u(z) = 4(|z|) and find

1 if0<r<a, 0 if0<r<a,
- d(py—1_r,4d —1 . - max —9)pl—d .
U(T) = % lfa <r< b, u/(’l“) = % lfa <r< b,
0 ifob<r, 0 ifb<r.

Addltlonally, (A 6) follows from 2 I ’ op = limyp @' (r). By using the above expression for
@' (r) and fa dr = 1, we find

b
HUH?—[(%(Q) _/B |Vu]2dx—5d/ "(r)?r?tar

_ Sgmax(1,d - 2) b, _ Sgmax(1l,d—2)
= L)1~ La(p)] [ e L(a)1 — LI(b)1
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By using (A.1) it can be shown that the requirements (A.3) imply the inequality

1
Li(a) T = L)

< 2L%a). (A7)

The claim (A.4) follows. Next, we calculate [ul|z1(q). We have

b
/ lu| dz = / udx 4+ vol(T') = Sd/ a(r)rd=t dr + vol(T)
Q B\T a

Sd b d -1 _d—1 d d
< L 2 .
S T = ) /a (r)" "t dr+2%

By calculating the integral for both the cases d > 3 and d = 2, it can be seen that
fab LA (r)~1rd=1dr < b. Therefore, using (A.7) and a? < aL%(a) results in

Sdb d d d
dz < + 2%" < L% a).
/ |u| ~ d( )_1 d(b)—l 2 ~ Cdb ( )

The next result shows that each function g € L'(Q) can be approximated by simple
functions given by local averages over small cubes.

Lemma A.2. For each n € N let {P"};cr, be defined as in Section 3, i.e., each P is
a translation of [—2,1]9 the collection {P!"}cs, covers and is pairwise disjoint (up
to sets of measure zero). We denote by avg(P[, g) = vol(P/")~1 [, Pr gdz the average of

g € LY(Q), which is extended by zero outside of Q, over PP
(a) Let g € L'(2) be given. Then

Zavg " g) xpr — g in LI(Q).
’LEIn

b) Let ¢ > 1 and g € L' (Q) with ¢ > 0 a.e. on Q be given. Then
( q g g g

Zavg " g) qxpn —>gq in LI(Q).
’LEIn

Proof. We start with part (a). Since C§°(Q) is dense in L'(£2), we can find a sequence
{emtmen C C&°(Q) such that ¢, — g in L(). Because ¢y, is uniformly continuous,
the convergence

D avg(Pl om)xpr = om (n— 00)
i€ly
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in L>°(2) and therefore in L!(Q) holds for all m € N. We have

o - > ave(B s | g, < o= Pl + |om - 3 (P o)y
1€1n 1Cin

+ H > avg(Pl, g — em)xpr
i€ly

LH(Q)

LY(Q)

L1(Q)

< 2]lg = emll L) + Hsom — Y avg(P', om)xpr
i€ly

Now, we can choose m € N such that the first term becomes small and, afterwards, we
can choose n € N such that the second term is small. The convergence in L!(£2) follows.

Now we turn to the proof of part (b). For real numbers a,b > 0 we have the inequality
la — 0|7 < la? — bY|.

Indeed, w.l.o.g. @ > b, and after some rearrangement, the inequality is equivalent to the
well-known estimate [[(b,a — b)|[¢za < ||(b,a — b)|,1. By applying this inequality, we get

q 1 1
< lavg(F", g)« — gi|?dz
Li(Q) iEZIn/Pin ¢

< Z/Pn lavg(P*,g) — gl dz

i€ln

1 1
HZ avg(Pl', g)7xpr — g
i€ln,

’Z avg(P, g)xpn — g‘
i€ly

Ly(Q)’

which yields convergence according to (a).

Finally, we give a density result on quasi-open sets. Note that the result is classical for
open sets. The definition of H} (D) below is motivated by (2.2).

Lemma A.3. Let D C Q be quasi-open. Then
HY(D):={2€ H}(Q): 2=0q.e. on Q\ D}

is dense in L*(D), where s € [1,00) is such that H}(Q) < L(Q).

Proof. We note that the linear hull of the set
{fel’(D):0<f<1}

is dense in L*(D). Hence, it is sufficient to show that f € L*(D) with 0 < f < 1 can be
approximated by functions from H{ (D).
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Let € > 0 be given. Then we can find an open set G, such that D U G, is open and
cap(Ge) < e. Since HE (D U G,) is dense in L*(D U G.), we can find a function z. €
H§(DUG,) such that 0 < z. <1 and ||zz — f[|+(q) < &. Using (2.1) yields the existence
of y. € H}(2) such that 19ell 1) < 2V/E, ye 2 0, and y= > 1 q.e. on G.. We define the
function

Z. := max(0, z. — y.) € H}(Q).

From ze =0 q.e.on Q\ (DUG,), 2. <1, y. >0 and y. > 1 q.e. on G, we find 2. =0

q.e. on Q\ (DUG.) UG.. This implies z. € H}(D). Moreover, we have

2 = 2l = a2~y )l = [ laldot [ fulda
zgSya} {y5<zs
< HysHSLs(Q) < CHysHSHé(Q) <Cez2.
Using the triangle inequality yields
If = Zellos) < I = zellns) + llze = Zell o) < e + C Ve

Thus we can approximate f with functions in Z, € H& (D), and this proves the claim.
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