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Analysis and an Interior Point Approach
for TV Image Reconstruction Problems on Smooth Surfaces∗

Marc Herrmann† , Roland Herzog‡ , Heiko Kröner§ , Stephan Schmidt† , and José Vidal‡

Abstract. [Lai, Chan (Computer Vision and Image Understanding, 2011)] introduced an analog of the total
variation image reconstruction approach [Rudin, Osher, Fatemi (Physica D, 1992)] for images on
smooth surfaces. The problem is de�ned in terms of quantities intrinsic to the surface and it is
therefore independent of the parametrization. In this paper, a rigorous analytical framework is
developed for this model and its Fenchel predual. It is shown that the predual of the total variation
problem is a quadratic optimization problem for the predual vector �eld p ∈H(div;S) with pointwise
inequality constraints on the surface. As in the �at case, p serves as an edge detector. A function
space interior point method is proposed for the predual problem, which is discretized by conforming
Raviart�Thomas �nite elements on a triangulation of the surface. Well-posedness of the barrier
problems is established. Numerical examples including denoising and inpainting problems with both
gray-scale and color images on scanned 3D geometries of considerable complexity are presented.

Key words. total bounded variation, Fenchel predual problem, interior-point methods, image reconstruction,
image denoising, image inpainting, surfaces

AMS subject classi�cations. 94A08, 92C55, 68U10, 49M29, 65K05

1. Introduction. We consider the image reconstruction problem

(1)

 Minimize
1

2

∫
S
|Ku− f |2 ds+

α

2

∫
S
|u|2 ds+ β

∫
S
|∇u|

over u ∈ BV (S)

where S ⊂ R3 is a smooth, compact, orientable and connected surface without boundary.
BV (S) denotes the space of functions of bounded variation on the surface S, and

∫
S |∇u| is
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the surface analog of the total-variation seminorm, both of which are introduced in section 2.
Furthermore, the observed data f ∈ L2(S), parameters β > 0, α ≥ 0 and the observation
operator K ∈ L(L2(S)) are given. By K∗ ∈ L(L2(S)) we denote the Hilbert space adjoint of
K. It will be shown that BV (S) ↪→ L2(S) so that the integrals in (1) are well de�ned. We
assume throughout that either α > 0 holds, or else that K is injective and has closed range,
i.e., there exists a constant γ > 0 such that ‖Ku‖L2(S) ≥ γ ‖u‖L2(S) for all u ∈ L2(S). This
second case is equivalent to K∗K being a coercive operator in L(L2(S)); see for instance [27,
Chapter A.2].

The motivation to study (1) goes back to the seminal work in [46], where the total variation
(TV) seminorm

∫
|Du| was proposed as a regularizing functional in image reconstruction.

Due to the choice of norms in the �delity and regularizations terms, problem (1) is also
termed a TV�L2 model. A large body of literature on this topic has emerged; see for instance
[15, 16, 17, 48, 51] and the references therein. The operator K appearing in (1) expresses
available a-priori knowledge about the relation between the image u to be reconstructed and
the observed data f . Common examples include K = id for classical image denoising [46],
K = masking for inpainting problems [19, Chapter 6.5], K = blur for deblurring problems
[13, 23], and K = coarsen for un-zooming problems [38].

The increasing interest in studying image processing problems on surfaces is due to its
numerous applications, for instance, in computer vision [33], geophysics [32], and medical
imaging [37]. This is accompanied by the ongoing development in 3D scanning, remote sensing
and other data acquisition hardware. In the applications mentioned unavoidable sampling
errors from the imaging equipment, or the need to compress large-scale images, e.g., for limited-
bandwidth internet applications, are potential sources of noise, necessitating post processing.
The predominant approach in surface image processing so far is based on extensions of the
nonlinear, anisotropic di�usion method going back to [40]. In particular, we mention [3, 20, 21]
for surface intrinsic concepts, and [8, 9, 39] for volume-based formulations. We also point out
[7] who consider an extension of the Mumford�Shah image segmentation problem using the
active contour method on surfaces, with a subsequent restoration phase on the segmented parts
driven by linear isotropic di�usion.

As an alternative to di�usion driven image restoration our focus here is on problem (1),
which was recently proposed in [35] as an analog of the TV�L2 reconstruction model for images
de�ned on smooth surfaces. One of the algorithms considered for its solution was Chambolle's
projection method [15], based on the formal convex dual problem of (1). The intention of
the present paper is to extend the work of [35] in several directions. We establish a rigorous
relation between the primal and dual problems in appropriate function spaces. To be precise,
we formulate the predual of (1), which is a quadratic convex problem (14) with pointwise
bound constraints in H(div;S), the analog on surfaces of the space of vector-valued L2 func-
tions whose divergence is likewise square integrable. The distinction between dual and predual
problems is necessary due to BV (S) being non-re�exive. A similar analysis has previously
been pursued in [31] for the '�at' case. Notice however that in [31] the BV seminorm is de-
�ned in a way which is not rotationally invariant but has the advantage of leading to pointwise
simple bounds −β 1 ≤ p ≤ β 1 for the dual variable p. This structure is particularly amenable



TV IMAGE RECONSTRUCTION PROBLEMS ON SMOOTH SURFACES 3

to numerical solution via a primal-dual active set method. By contrast, we propose to use
an interior-point method, which deals nicely with pointwise nonlinear constraints of the form
|p|2 ≤ β arising in the coordinate free setting that naturally comes with surfaces. We establish
the well-posedness of the barrier approximations for positive barrier parameter and provide
necessary and su�cient optimality conditions in function space. Another distinction from
previous work is that we do not introduce additional regularization terms as in [31, Sect. 3],
which would lift the predual problem to one in H1,2(S;R2) but add arti�cial di�usion. The
last di�erence concerns the type of discretization employed. While Cartesian grids are natural
in '�at' image processing tasks and lend themselves to �nite di�erence approximations, sur-
faces are naturally triangularized, for instance by 3D scanner software. Based on the rigorous
formulation of the predual problem we are led to choose a conforming �nite element discretiza-
tion of the space H(div;S) by the surface analog of (possibly higher-order) Raviart�Thomas
�nite element spaces introduced in [43]. Notice that in [35] piecewise linear Lagrangian �nite
elements were considered, which are alsoH(div;S) conforming but do not exhaust that space.

This paper is organized as follows. In section 2 we introduce the proper functional analytic
framework for the discussion of (1) and its predual. In particular, we recall the de�nition of
the spaces BV (S) and H(div;S) on a smooth surface S. Section 3 is devoted to the study
of the Fenchel predual problem. In section 4 we formulate a function space interior point
approach for the solution of the predual problem, analyze the well-posedness of the barrier
approximations, and provide necessary and su�cient optimality conditions. Details concern-
ing the discretization by Raviart�Thomas surface �nite elements and the implementation of
our method are also given in that section. Subsequently, numerical results are presented in
section 5. While the presentation focuses on scalar (gray-scale) image data, an extension to
multi-channel (color) images is rather straightforward and is presented, along with numerical
results for denoising and inpainting problems, likewise in that section. We end with conclusions
and an outlook in section 6.

2. Functional Analytic Framework. In this section we introduce the necessary analytical
framework to extend the de�nition of functions of bounded variation (BV) as well as functions
in H(div) on an open subset of Rn to functions de�ned on smooth surfaces.

2.1. Concepts from Di�erential Geometry. In a nutshell, a smooth surface S is a two-
dimensional manifold of class C∞ embedded in R3. In the interest of keeping the paper
self-contained, we brie�y summarize the required concepts from di�erential geometry. The
interested reader is referred, for instance, to [22, 34, 41] for further background material.

De�nition 1. A subset S ⊂ R3, endowed with the relative topology of R3, is a smooth surface
if for every point p ∈ S there exists an open set V ⊂ S containing p, an open set U ⊂ R2 and

a homeomorphism x : U → V with the additional properties that x ∈ C∞(U ;R3) holds and

that the Jacobian of x has rank 2 on U .

A mapping x as above is called a parametrization at p. A collection of parametrizations
covering all of S is said to be an atlas of S. We will always associate with a smooth surface an
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atlas of parametrizations, and it will not matter throughout the paper which particular atlas
is being used.

A function f : S → R is said to be of class Ck if, for any parametrization x in the atlas, the
function f ◦x : U ⊂ R2 → R is of class Ck. Similarly, this notion can be de�ned for functions f
de�ned only on an open subset of S by appropriately restricting those parametrizations whose
image intersects the domain of de�nition of f .

We continue with the notions of tangent vectors and the tangent space at a point p ∈ S.
Consider a di�erentiable curve γ : (−ε, ε)→ S such that γ(0) = p. ThenX := γ̇(0) ∈ R3 is said
to be the tangent vector to the curve γ at p. The tangent space at p, denoted by Tp(S), consists
of all tangent vectors of such curves γ at p. It is a vector space of dimension 2. If p belongs to

the image of some parametrization x, then it is easy to verify that
{
∂x
∂u1

(x−1(p)), ∂x∂u2 (x−1(p))
}

constitutes a basis for Tp(S). Therefore, any tangent vector X at p can be represented as
X = Xi ∂x

∂ui
(x−1(p)). Here and in the sequel we use Einstein's summation convention. The

coe�cients Xi are the components of the tangent vector X ∈ Tp(S) in the local basis induced
by the parametrization x.

The tangent bundle of S (as a set) is de�ned as T (S) :=
⋃
p∈S{p} × Tp(S). A (tangential)

vector �eld1 of class Ck (k ≥ 0) is a map X : S → T (S) with the following properties:

(i) X(p) ∈ {p} × Tp(S) for all p ∈ S, i.e., X is a section.
(ii) For any parametrization x : U → V , the component functions p 7→ Xi(p) in the

representation

(2) X(p) = Xi(p)
∂x

∂ui
(x−1(p)), p ∈ V

are of class Ck on V .

Finally we recall the notion of divergence of a Ck vector �eld X for k ≥ 1. Suppose that
X has the representation (2) w.r.t. the parametrization x. De�ne the di�erential operators
(∂i ·)(p), i = 1, 2, by

(∂if)(p) :=
∂(f ◦ x)

∂ui
(x−1(p))

for C1 functions f de�ned in a neighborhood of p ∈ S. Following [45, Chapter 1.2.3], we have

(3) (divX)(p) :=
1√

detG(p)
∂i

(
Xi
√

detG
)

(p), p ∈ V.

Here G is the metric tensor for the parametrization x at p, de�ned by its entries

(gij)(p) :=

(
∂x

∂ui
(x−1(p))

)>( ∂x

∂uj
(x−1(p))

)
, p ∈ V,

1Vector �elds on the surface and their corresponding function spaces will be denoted by bold-face symbols.
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where a>b denotes the Euclidean inner product in the ambient space R3. Since the vectors
∂x
∂ui

(x−1(p)), i = 1, 2 are linearly independent, G(p) is positive de�nite and also symmetric.

Due to the fact that every tangent space to a point p on the surface inherits the standard
inner product from the ambient space R3, we can introduce the pointwise inner product of two
Ck vector �elds as (X,Y )2 := X>Y , resulting in a real-valued Ck function on S. Moreover,

the pointwise 2-norm of a vector �eld will be denoted by |X|2 = (X,X)
1/2
2 . When X and Y

are given by representations of type (2) w.r.t. a parametrization x, then the product (X,Y )2
is represented by gij X

i Y j . Notice that the notions of tangent space, tangent bundle, vector
�elds and their divergence, as well as the inner product (·, ·)2 and the norm | · |2 are intrinsic
quantities, i.e., independent of the atlas used to describe the surface S.

Assumption 2. Throughout this paper we will assume that the smooth surface S ⊂ R3 is

compact and connected.

It can be shown that for smooth surfaces, connectedness implies that any two points can be
joined by a smooth path. As a further consequence of Assumption 2 S is also orientable; cf. [2,
Prob. 2.43]. That is, the Jacobian of the transition map x−1 ◦ y between any two intersecting
parametrizations has positive determinant on its domain of de�nition.

2.2. Sobolev Functions and Functions of Bounded Variation. In this section we recall
the notions of Lebesgue and Sobolev spaces Lp(S) and H1,p(S) on the surface S, as well as
the spaces H(div;S) and BV (S) required for the subsequent analysis.

For m ∈ N0, C
m(S) denotes the space of Cm functions on the surface S. Moreover,

Cm(S;T (S)) denotes the space of Cm vector �elds. As usual, the support of a function f is
de�ned as

supp f := cl {p ∈ S : f(p) 6= 0}

with clC denoting the closure of a set C ⊂ S.

We begin with the recollection of the spaces Lp(S). Let f be a continuous function on S
with support in the range V of a parametrization x : U → V . Then, we have by de�nition∫

S
f ds :=

∫
U
f(x(u))

√
detG(x(u)) du,

where the measure ds is de�ned as ds =
√

(detG) ◦ x du, with du denoting the Lebesgue
measure in R2. This de�nition of the integral extends to arbitrary continuous functions on
S by using a partition of unity; cf. [29, Ch. 1.2]. As it is shown there the integrability of a
function and the value of its integral over S depend neither on the atlas nor on the partition
of unity used.

For 1 ≤ p <∞ the space Lp(S) is de�ned as the completion of C∞(S) w.r.t. the norm

(4) ‖f‖Lp(S) :=

(∫
S
|f |p ds

)1/p

.
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We also recall that L∞(S) is de�ned as the space of functions such that

‖f‖L∞(S) := ess sup
p∈S

|f(p)| <∞.

Naturally, these de�nitions extend to vector �elds f ∈ Lp(S;T (S)). For instance, we have

‖f‖Lp(S;T (S)) :=

(∫
S
|f |p2 ds

)1/p

.

The spaces L2(S) and L2(S;T (S)) are Hilbert spaces w.r.t. the usual inner products (·, ·)L2(S)

and (·, ·)L2(S;T (S)).

We are now in the position to de�ne functions of bounded variation on surfaces satisfying
Assumption 2. Background material on BV functions on �at domains can be found, for
instance, in [26], [53, Ch. 5] or [1, Ch. 10].

De�nition 3 (see also [35, Sect. 3.1] or [6, Sect. 4]). A function u ∈ L1(S) belongs to BV (S)
if the TV-seminorm de�ned by

(5)

∫
S
|∇u| := sup

{∫
S
udiv η ds : η ∈ V

}
is �nite, where

V := {η ∈ C∞(S;T (S)) : |η(p)|2 ≤ 1 for all p ∈ S} .

We equip the space BV (S) with the norm

(6) ‖u‖BV (S) = ‖u‖L1(S) +

∫
S
|∇u|, u ∈ BV (S).

It is worth remarking that, as in the planar case,
∫
S |∇u| =

∫
S |∇u| ds holds for all functions

u ∈ C∞(S) and indeed for u ∈ H1,1(S); see [45, p.18] and De�nition 4 below. Notice that both
contributions to the norm ‖ · ‖BV (S) are independent of the parametrization. We also remark

that the space C∞(S;T (S)) can be replaced by C1(S;T (S)) without a�ecting the de�nition;
compare [1, Def. 10.1.1], [53, p.221] or [6].

According to De�nition 3, it is clear that the embedding BV (S) ↪→ L1(S) holds. Next,
we are going to prove that even BV (S) ↪→ L2(S) is valid, as is known for two-dimensional
�at domains; see for instance [1, Th. 10.1.3]. This result is essential to establish the well-
posedness of (1) in the sequel. Its proof requires the notion of intermediate convergence of
BV (S) functions as well as the concept of �rst-order Sobolev spaces H1,p(S). We summarize
only the essential concepts and refer the reader to [28, 29] for an in-depth introduction to
Sobolev spaces on manifolds.
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De�nition 4. Let u ∈ C∞(S). We call ∇u : S → R3 the gradient, de�ned locally in terms

of any parametrization x by

∇u := gij (∂iu)
∂x

∂uj
.

The gradient assigns to each point p ∈ S a vector (∇u)(p) in Tp(S) ⊂ R3 verifying(
(∇u)(p), v

)
2

= vi(∂iu)(p)

for all v = vi ∂x∂ui (x
−1(p)) ∈ Tp(S). Here, gij are the components of the inverse of the metric

tensor G = (gij). Furthermore, we de�ne

|∇u|2 :=
(
gij(∂iu)(∂ju)

)1/2
.

Now for 1 ≤ p <∞ and a function u ∈ C∞(S), de�ne the norm

(7) ‖u‖H1,p(S) :=

(
‖u‖pLp(S) +

∫
S
|∇u|p2 ds

)1/p

.

The Sobolev space H1,p(S) is then given by

H1,p(S) := cl (C∞(S))

where the closure is w.r.t. the norm (7).

The counterpart of the following de�nition in the classical framework can be found in [1,
De�nition 10.1.3].

De�nition 5. Let {un} be a sequence of functions in BV (S) and suppose u ∈ BV (S). We

say that un → u in the sense of intermediate convergence if

(i) un → u strongly in L1(S) and

(ii)

∫
S
|∇un| →

∫
S
|∇u|.

The following lemma can be proved analogously as in [1, Th. 10.1.2]. The proof uses a
partition-of-unity argument as well as molli�cation.

Lemma 6. For any u ∈ BV (S), there exists a sequence {uk} ⊂ C∞(S) with uk → u in the

intermediate sense.

Proposition 7. The space BV (S), equipped with the norm (6), is a Banach space and the

embedding

BV (S) ↪→ Lp(S)

holds for all 1 ≤ p ≤ 2.
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Proof. The �rst part of the claim can be shown along the lines of [1, Prop. 10.1.1, Th. 10.1.1]
taking into consideration the de�nition of the ‖ · ‖Lp(S) given in (4). Hence, let us focus on
the proof of the second claim. To this aim, let us de�ne {un} ⊂ C∞(S) which converges to
u ∈ BV (S) in the sense of intermediate convergence. Due to [29, Th. 2.6], we have that the
embedding H1,q(S) ↪→ Lp(S) is continuous for all q ∈ [1, 2) and p = 2q

2−q . In particular, for

q = 1 and p = 2 we have H1,1(S) ↪→ L2(S), so there exists c > 0 such that(∫
S
|un|2 ds

)1/2

≤ c
(∫

S
|un| ds+

∫
S
|∇un|2 ds

)
since {un} ⊂ C∞(S) ⊂ H1,1(S). Hence,(∫

S
|u|2 ds

)1/2

=

(∫
S

lim
n→∞

|un|2 ds
)1/2

≤ lim inf
n→∞

(∫
S
|un|2 ds

)1/2

≤ lim inf
n→∞

c

(∫
S
|un| ds+

∫
S
|∇un|2 ds

)
= c

(
‖u‖L1(S) +

∫
S
|∇u|

)
= c ‖u‖BV (S).

Then, applying [29, Cor. 2.1], we have that BV (S) ↪→ Lp(S) holds for all p ∈ [1, 2].

To close this section we introduce the following space of vector �elds, which will play a
fundamental role throughout the paper,

H(div;S) :=
{
v ∈ L2(S;T (S)) : div v ∈ L2(S)

}
.

We equip this space with the norm

(8) ‖v‖H(div;S) :=
(
‖v‖2

L2(S;T (S))
+ ‖div v‖2L2(S)

)1/2
,

which is induced by the inner product

(v, w)H(div;S) := (v, w)L2(S;T (S)) + (div v, divw)L2(S).

H(div;S) is a Hilbert space.

3. The Fenchel Predual on Surfaces. The dual problem of TV�L2 has been stated in
various references; see for instance [14, 15, 18]. In particular, it appears in [35] exactly for
problem (1) on smooth surfaces. However, the arguments used to derive the dual problem
in these references were all formal, and in particular no function space was assigned to the
problem. To the best of our knowledge [31] is the only reference where this analysis is made
rigorous. Due to the lack of re�exivity of BV spaces, the dual and predual problems are di�er-
ent. As has been shown in [31] the predual, posed as a problem in H(div), is the appropriate
concept.



TV IMAGE RECONSTRUCTION PROBLEMS ON SMOOTH SURFACES 9

In this section we adapt this rigorous analysis to problem (1) on the surface S. As expected
from [35] the predual problem is a quadratic optimization problem for the predual tangent �eld
p ∈ H(div;S) with pointwise constraints on the surface; see (14) below. We will show that
both problems are equivalent and that the primal solution can be recovered from the predual
solution. We wish to point out that the constraints |p|2 ≤ β arising in our setting are nonlinear.
This is in contrast with [31, eq. (2.1)], where simple bounds −β 1 ≤ p ≤ β 1 were obtained due
to a slightly di�erent de�nition of the TV-seminorm, which is, however, not invariant under
changes of the parametrization.

Solving the predual problem has a number of advantages compared to solving the primal
problem directly. First, we do not have to deal with the discretization of the nonsmooth term∫
S |∇u| in the �nite element context, nor employ an optimization algorithm for the nonsmooth
problem (1); we mention however that such a program was carried out in a di�erent context
in [4]. Second, as was pointed out in [5], the �nite element solution of minimization problems
in BV spaces may su�er from low convergence rates. Finally, as was observed previously in
[14, 15, 18, 31], we mention that the predual variable p serves as an edge detector in the image.

Let us recall some preliminary results from convex analysis; see for instance [52, Ch. 2.8].
Given two locally convex Hausdor� spaces X, Y , two proper convex functions F : X →
R ∪ {∞}, G : Y → R ∪ {∞} as well as a bounded linear map A : X → Y we have, due to the
Fenchel-Young inequality, the relation of weak duality

(9) inf
x∈X
{F (x) +G(Ax)} ≥ sup

y∗∈Y ∗
{−F ∗(A∗y∗)−G∗(−y∗)} .

Here F ∗ : X∗ → R and G∗ : Y ∗ → R are the Fenchel conjugates of F and G, de�ned by

(10) F ∗(x∗) = sup
x∈X
{〈x, x∗〉 − F (x)} and G∗(y∗) = sup

y∈Y
{〈y, y∗〉 −G(y)}

and X∗ and Y ∗ are the topological dual spaces of X and Y . Moreover A∗ : Y ∗ → X∗ stands
for the adjoint operator of A. Under the assumption

(11) A(domF ) ∩ {y ∈ Y : G is continuous in y} 6= ∅

strong Fenchel duality holds, i.e.,

(12) inf
x∈X
{F (x) +G(Ax)} = max

y∗∈Y ∗
{−F ∗(A∗y∗)−G∗(−y∗)} .

We now apply this to our speci�c setting. As in [31] we de�ne the operator B as

(13) B := α id +K∗K ∈ L(L2(S)),

where id is the identity mapping. Furthermore, we de�ne

‖w‖2B−1 = (w,B−1w)L2(S) = (w,w)B−1

for any w ∈ L2(S). Notice that in view of our standing assumptions (α > 0 or K∗K coercive),
‖w‖B−1 is a norm equivalent to the standard norm of L2(S).
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Theorem 8. The Fenchel dual problem of

(14)


Minimize

1

2
‖div p+K∗f‖2B−1

over p ∈H(div;S)

subject to |p|2 ≤ β a.e. on S

is equivalent to the optimization problem (1). In other words, (14) can be seen as the predual

of the primal problem (1).

Proof. The proof proceeds along the lines of [31, Th. 2.2]. We invoke the Fenchel duality
theory in the setting X = H(div;S), Y = L2(S) and A = −div : X → Y . It is convenient to
identify Y with Y ∗ so that A∗ = −div∗ : Y → X∗. De�ne the functions F : H(div;S) → R
and G : L2(S)→ R as

(15)
F (p) :=

{
0 if |p|2 ≤ β a.e. on S,

∞ otherwise,

G(v) :=
1

2
‖v −K∗f‖2B−1 .

From [31] we have

(16) G∗(v∗) = sup
v∈L2(S)

{
(v, v∗)L2(S) −G(v)

}
=

1

2
‖Kv∗ + f‖2L2(S) +

α

2
‖v∗‖2L2(S) −

1

2
‖f‖2L2(S)

for v∗ ∈ L2(S). With regard to F ∗ : H(div;S)∗ → R it is clear that

F ∗(p∗) = sup
p∈B0
〈p, p∗〉H(div;S),H(div;S)∗

holds, where

B0 := {p ∈H(div;S) : |p|2 ≤ β a.e. on S} .

It can be shown by a projection argument that the set

B1 := {p ∈ C∞(S;T (S)) : |p|2 ≤ β a.e. on S}

is dense in B0 in the topology of H(div;S). Hence, for every u ∈ L2(S) we obtain

F ∗((−div)∗u) = sup{〈p, (−div)∗u〉H(div;S),H(div;S)∗ : p ∈ B1}
= sup{(u,−div p)L2(S) : p ∈ B1}
= β sup{(u,div p)L2(S) : p ∈ C∞(S;T (S)) : |p|2 ≤ 1 a.e. on S}.

Therefore according to De�nition 3 we get

(17) F ∗((−div)∗u) =

β
∫
S
|∇u| if u ∈ BV (S),

∞ otherwise.
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Thus, since F and G are proper and convex and condition (11) is ful�lled for them, there is
no duality gap between the optimal values of (1) and (14), i.e., (9) becomes an equality and

inf
p∈H(div;S)

{F (p) +G(−div p)}

= sup
u∈L2(S)

{−F ∗((− div)∗u)−G∗(−u)}

= sup
u∈BV (S)

{−F ∗((−div)∗u)−G∗(−u)}

= sup
u∈BV (S)

{
−1

2
‖Ku − f‖2L2(S) −

α

2
‖u ‖2L2(S) − β

∫
S
|∇u |

}
+

1

2
‖f‖2L2(S).(18)

Finally, it is immediate to check that (18) is in turn equivalent to (1) .

Corollary 9. Problem (1) and its predual (14) are solvable.

Proof. The existence of a solution to (14) follows from standard arguments using the
direct method of the calculus of variations and the embedding BV (S) ↪→ L2(S) proved in
Proposition 7. We refer the reader to the proof of Proposition 11 for details, where the same
arguments are applied to a variation of (14). Regarding the solvability of (1), since condition
(11) is ful�lled for F and G de�ned in the proof of Theorem 8, we conclude that the supremum
in the RHS of (18) is attained, so (12) holds and the optimization problem (1) is solvable.

The following theorem shows how the optimal solutions to (1) and (14) are related to each
other.

Theorem 10. Suppose that p is an optimal solution to (14) and u is optimal to (1). Then

(19) B u = divp+K∗f.

Proof. Suppose that p and u are optimal to (14) and (1), respectively. Then the following
conditions are ful�lled, see for instance [25, Prop. 4.1],

(20)
(−div)∗u ∈ ∂F (p) in H(div;S)∗,

−div p ∈ ∂G∗(−u) in L2(S),

where ∂F stands for the standard representation of the subdi�erential of the convex function
F : H(div;S)→ R, and ∂G∗ is de�ned analogously. The second condition in (20) is equivalent
to

G∗(−u) +G(−div p)− (−div p, −u)L2(S) = 0.

Using the expressions (15) and (16) for G and G∗, this becomes

1

2
‖K(−u) + f‖2L2(S) +

α

2
‖u‖2L2(S) −

1

2
‖f‖2L2(S) +

1

2
‖div p+K∗f‖2B−1 = (divp, u)L2(S),

or equivalently,

1

2
‖Ku‖2L2(S) +

α

2
‖u‖2L2(S) +

1

2
‖div p+K∗f‖2B−1 = (divp+K∗f, u)L2(S).
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Applying the de�nition of B, see (13), we obtain

1

2

∥∥u−B−1(div p+K∗f)
∥∥2
B

= 0

and (19) follows.

4. Algorithmic Approach and Finite Element Discretization. In this section we describe
a novel approach for solving (1) via its predual (14). Once again, recall that the pointwise
constraints |p|2 ≤ β are nonlinear. This is in contrast with |p|∞ ≤ β obtained in [31] due to a
slightly di�erent de�nition of the TV-seminorm. The nonlinearity of the constraint would ren-
der the analysis and application of a primal-dual active set method more challenging although
this has been successfully pursued, for instance, in [30, 50] in di�erent contexts.

Our solution approach is based on a logarithmic barrier method to deal with the inequality
constraints. Consequently, we consider the following family of convex problems for a decreasing
sequence of barrier parameters µ↘ 0:

(21)


Minimize

1

2
‖div p+K∗f‖2B−1 − µ

∫
S

ln
(
β2 − |p|22

)
ds

over p ∈H(div;S)

subject to |p|2 ≤ β a.e. on S.

Notice that the constraint |p|2 ≤ β is explicitly kept in (21) for mathematical convenience and
it avoids the need to de�ne the logarithmic barrier term for negative arguments. For any �xed
barrier parameter µ > 0, problem (21) will be solved using Newton's method. The constraint
|p|2 ≤ β is not enforced explicitly but its satisfaction will be monitored throughout the Newton
iterations. More details concerning the implementation are given in section 5.

For convenience, we use the abbreviations

(22) H(p) :=
1

2
‖div p+K∗f‖2B−1 and b(p) := −µ

∫
S

ln
(
β2 − |p|22

)
ds

in the sequel.

4.1. Existence and Uniqueness for the Predual Barrier Problem. The analysis of interior
point methods in Lp spaces including a convergence analysis of the central path has been
addressed in [42, 49] in the context of optimal control problems. Notice that the presence of
the logarithmic barrier term helps to overcome the lack of strict convexity of the objective in
(14). We therefore obtain the following result.

Proposition 11. For every µ > 0, problem (21) possesses a unique solution p ∈H(div;S).

Proof. It is easy to check that the objective H(p) + b(p) is bounded below by b(0) =
−µ (areaS) ln(β2) but it may attain the value ∞. Let us consider a minimizing sequence
{pn}. Owing to the boundedness of both terms in the objective as well as |pn|2 ≤ β, {pn} is



TV IMAGE RECONSTRUCTION PROBLEMS ON SMOOTH SURFACES 13

bounded in H(div;S). Hence there exists a subsequence (again denoted by {pn}) such that
pn ⇀ p in L2(S;T (S)) holds with |p|2 ≤ β a.e. on S, as well as div pn ⇀ div p in L2(S).

By weak sequential lower semicontinuity of H,

H(p) =
1

2
‖div p+K∗f‖2B−1 ≤ lim inf

n→∞

1

2
‖div pn +K∗f‖2B−1

holds. Let us argue that b is also weakly sequentially lower semicontinuous w.r.t. L2(S;T (S)).
To this end, it su�ces to show that b is sequentially lower semicontinuous w.r.t. the strong
topology of L2(S;T (S)) on

B := {q ∈ L2(S;T (S)) : |q|2 ≤ β a.e. on S},

since B is closed and convex and b is convex in B. Arguing similarly as in the proof of [49,
Proposition 2], suppose that qn → q in L2(S;T (S)) holds, where qn ∈ B, and thus q ∈ B
holds as well. We have to show b(q) ≤ lim infn→∞ b(qn), which is clear if the right hand side
is ∞. In case lim infn→∞ b(qn) <∞, we can select a subsequence, denoted by {qj}, such that

lim
j→∞

b(qj) = lim inf
n→∞

b(qn) and qj
j→∞−−−→ q a.e. on S.

In particular, b(qj) ≤ C holds for all j.

Let us de�ne

gn := −µ ln max{β2 − |qn|
2
2, 1}, hn := −µ ln min{β2 − |qn|

2
2, 1},

g := −µ ln max{β2 − |q|22, 1}, h := −µ ln min{β2 − |q|22, 1}.

Since x 7→ lnx is Lipschitz continuous with Lipschitz constant 1 on [1,∞), we have

|gn − g| ≤ µ
∣∣max{β2 − |qn|

2
2, 1} −max{β2 − |q|22, 1}

∣∣ ≤ µ ∣∣|qn|22 − |q|22∣∣ ≤ µβ2
holds. Notice that limj→∞ qj = q a.e. on S implies limj→∞ gj = g and limj→∞ hj = h a.e. on
S. Hence Lebesgue's dominated convergence theorem implies

lim
j→∞

∫
S
gj ds =

∫
S
g ds.

Consequently,

lim
j→∞

∫
S
hj ds = lim

j→∞
b(qj)− lim

j→∞

∫
S
gj ds

exists as well.

Using hn ≥ 0 and |gn| ≤ µ
∣∣|qn|22 − β2 + 1

∣∣, we obtain
0 ≤

∫
S
hj ds ≤ C −

∫
S
gj ds ≤ C + µ

∫
S

∣∣|qj |22 − β2 + 1
∣∣ ds ≤ C + C ′
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for all j. By Fatou's lemma, we thus conclude

0 ≤
∫
S
h ds =

∫
S

lim
j→∞

hj ds ≤ lim
j→∞

∫
S
hj ds ≤ C + C ′.

This implies

lim inf
n→∞

∫
S

(gn + hn) ds = lim inf
n→∞

b(qn) = lim
j→∞

b(qj) ≥
∫
S

(g + h) ds = b(q).

Consequently, both summands H and b in the objective are weakly sequentially lower semi-
continuous, which implies that p is a (global) minimizer of (21).

To show its uniqueness, we verify that the second part of the objective b is strictly convex
where it is �nite. To this end, let p1 and p2 be two elements of B where b(p1), b(p2) <∞ and
p1 not equal to p2 a.e. on S. Then by classical arguments there exists a set E ⊂ S of positive
surface measure and ε > 0 such that |p1 − p2|2 ≥ ε a.e. on E.

Let us de�ne g(p) := |p|22 and h(z) := −µ ln(β2 − z), whence b(p) =
∫
S h(g(p)) ds holds.

On the set E, we have the following pointwise estimate due to the strong convexity of g,

(∗) g
(
λp1 + (1− λ)p2

)
− λ g(p1)− (1− λ) g(p2) = −λ (1− λ) |p1 − p2|

2
2 ≤ −λ (1− λ) ε2

for all λ ∈ [0, 1]. Next we use that h is convex and strictly increasing on [0, β2). Its minimal
slope is attained at z = 0 so we have h′(z) ≥ h′(0) = µ/β2 for all z ∈ [0, β2). Consequently,
we have h(r) ≥ h(`) + h′(`)(r − `) ≥ h(`) + h′(0)(r − `) for all 0 ≤ ` ≤ r < β2. Applying this
estimate with ` = g

(
λp1 +(1−λ)p2

)
and r = λ g(p1)+(1−λ) g(p2) and using (∗), we obtain

h
(
g
(
λp1 + (1− λ)p2

))
≤ h

(
λ g(p1) + (1− λ) g(p2)

)
− µ

β2
λ (1− λ) ε2.

Using the convexity of h we can estimate further

h
(
g
(
λp1 + (1− λ)p2

))
≤ λh

(
g(p1)

)
+ (1− λ)h

(
g(p2)

)
− µ

β2
λ (1− λ) ε2,

which holds a.e. on E. Similarly, we obtain the same estimate without the last term on S \E.
Integrating these inequalities over S, we �nally obtain the estimate

b
(
λp1 + (1− λ)p2

)
≤ λ b(p1) + (1− λ) b(p2)−

µ

β2
λ (1− λ) ε2 (areaE),

which con�rms the strict convexity of b on its domain.

Next we address the �rst-order necessary and su�cient optimality conditions for (21).
The main di�culty compared to �nite dimensional barrier methods is that one cannot a-priori
exclude that the minimizer approaches the bound |p|2 ≤ β on parts of the surface, which
complicates the discussion of di�erentiability of the barrier term. The proof uses techniques
introduced in [47], where optimal control problems with pointwise simple bounds on the control



TV IMAGE RECONSTRUCTION PROBLEMS ON SMOOTH SURFACES 15

and also the state were discussed. Although the present problem is generally simpler due to the
absence of state constraints, the nonlinearity of the constraint |p|2 ≤ β requires modi�cations.
We therefore do provide the proof of the following theorem but postpone it to the appendix
to streamline the presentation. .

Theorem 12. The vector �eld p ∈ H(div;S) is the unique solution for (21) if and only if

|p|2 ≤ β holds a.e. on S and

(23)
(

div p+K∗f, div δp
)
B−1 + µ

∫
S

2 (p, δp)2

β2 − |p|22
ds = 0

for all δp ∈H(div;S).

4.2. Implementation. All numerical studies are based on two di�erent geometries ob-
tained by scanning physical objects with the Artec Eva 3D scanner. The scanner software
provides Wavefront .obj �les, which contain a description of the geometry via vertices and
triangles. In both examples the surface of the scanned object is closed, i.e., without boundary,
in accordance with our analysis. The surface texture is provided by the scanner software as a
2D �at bitmap �le (see Figure 1, left), together with a mapping of each physical surface tri-
angle into said bitmap. Thus, originally the textured object is described by a varying number
of pixels glued onto each surface triangle. Due to the impossibility of continuously mapping
a closed surface onto the �at bitmap, there are necessarily discontinuities in the bitmap and
there may also be regions which do not appear on the physical surface. Essentially, two adja-
cent triangles on the surface can be part of discontinuous regions in the texture �le. This data
is shown in Figure 1 for our �rst test case.

In order to apply our novel solution scheme, the above mentioned Wavefront object in-
cluding the texture needs to be made available to the �nite element library which is used
to discretize the predual barrier problems (21). One way of achieving this is to provide the
texture data f at each quadrature point. However, for ease of implementation and processing
within the �nite element framework FEniCS [36], we instead converted the textured object
into the �nite element setting by interpolation. To account for both natural discontinuities
in the texture as well as the discontinuity of the surface-to-texture mapping, we chose a dis-
continuous Lagrange (DG) �nite element representation of the texture data f . To be more
precise, let Pr de�ne the space of polynomials of maximum degree r, then the texture f and
the �nal output u of our scheme are to ful�ll f|K , u|K ∈ Pr for all triangles K of the scanned
surface. Thus, u and f are elements of the DGr �nite element space on the surface. The image
data f is always scaled to the interval [0, 1].

To carry out the texture preprocessing, we compute the spatial location for each degree of
freedom of the surface DG function f within the texture bitmap and use the respective gray
value at the nearest pixel. For color textures, this is realized via a vector valued DG function
on the surfaces with values in the RGB color space. In the original Wavefront object each
surface triangle usually obtains data from multiple texture pixels. Thus, in order to maintain
an appropriate quality of the texture in the DG setting, higher order �nite element spaces are
needed, depending on the quality of the scan. Although in the original Wavefront object the
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Figure 1. Left: Texture Bitmap as delivered by the scanner software. Right: Texture mapped onto the
geometry.

number of pixels per triangle may vary signi�cantly, we use a constant �nite element order
r = 2 or r = 3 in our examples.

Before recovering the image u we determine the predual (edge detector) vector �eld p ∈
H(div;S) via a sequence of barrier problems (21). For the latter we employ a conforming
discretization by surface Raviart�Thomas �nite elements. The Raviart�Thomas element space
RTr+1 is designed to be the smallest polynomial space with RTr+1|K ⊂ Pr+1 such that the
divergence maps onto Pr; see [43], [27, Chapter 1.4.7] or [36, Ch. 3.4.1]. For our problem the
RTr+1 space for the unknown p on the surface is created via mapping the surface element
to a �at 2D reference element, as described in [44] and similarly in [35] for the case of linear
continuous Lagrange elements. As seen in Theorem 10 we have the relation

(24) u = B−1(div p+K∗f).

In our examples, which demonstrate denoising and inpainting, K, K∗ and therefore B are
all pointwise operations which do not involve di�erentiation. We therefore choose matching
polynomial degrees, i.e., u ∈ DGr, p ∈ RTr+1 and f ∈ DGr. In terms of �nite element
functions, (24) is realized by solving an orthogonal projection problem in L2(S), which is
represented by a block-diagonal mass matrix in DGr and therefore inexpensive to solve.

5. Numerical Results.

5.1. Gray-Scale Denoising. In this section we consider the classical denoising problem
with K = id. The initial test case is the scanned terracotta duck from Figure 1 but with



TV IMAGE RECONSTRUCTION PROBLEMS ON SMOOTH SURFACES 17

the texture data converted to a gray scale. Recall that our image data is scaled to a range
[0, 1]. The geometry consists of 354, 330 triangles and 177, 167 vertices. The surface texture is

Figure 2. Duck test case: noise free and noisy originals (top row) and denoising results for β = 0.1 and
β = 0.3 (bottom row). The object was kindly scanned by the Rechenzentrum of Würzburg University.

mostly uniform, however there are some details around the eye and a second order DG function
(r = 2) manages to resolve these quite well. Also there are sharp interfaces between body,
beak and feet. As such, this object provides an excellent �rst test case and we expect that
these interfaces are preserved by the total variation approach.

For simplicity add arti�cial noise based on a normal distribution with standard deviation
σ = 0.1 and mean value µ = 0.0 to each entry in the coe�cient vector representing the image
data f . The denoising results shown in Figure 2 were obtained by the interior point method
starting from a penalty parameter of µ = 1.0 and stopping at µ = 0.02. For this and the
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subsequent color denoising problem described in the following subsection, the value α = 0.0 is
used and we consider only changes in β. Notice that B in (13) is boundedly invertible even
for α = 0 since K = id holds.

For both β = 0.1 and β = 0.3 the terminal value for µ was reached after 4 reductions,
necessitating the solution of �ve instances of problem (21) with a Newton scheme. As shown
in Figure 3 this did not require more than 5 Newton steps for any value of µ. Total wall-
clock time on four non-hyper threaded cores of an Intel i5-4690 CPU running at 3.50 Ghz was
slightly less than 40 minutes. Comparing the results shown in Figure 2 one can see that�as
expected�with increasing values of β, the noise is reduced more e�ectively and although the
object looks progressively smoother due to a reduction in contrast, sharp corners are preserved.
The convergence plots for di�erent values of β are also shown in Figure 3. It is worth noting
that the decrease rate of µ in our solver is adaptively based on backtracking, which can be
seen in the increasing reduction of µ in the data sets in Figure 3.

5.2. Color Denoising. The second test case consists of a scanned shoe, whose data is
provided by the Artec Group Inc.2 under the Creative Commons Attribution 3.0 Unported
License. The shoe consists of exactly 100, 000 triangles and 50, 002 vertices. It provides an
excellent second test case because of discontinuous color changes given by the stripes, while
at the same time there are also very �ne features on the sole and a leathery texture on the
outside. Noise is added in the same way to each of the RGB channels as described for the
gray-scale test case above. In this example we chose to represent the color texture in terms
of a vector valued discontinuous Galerkin function of order r = 3. This amounts to problems
with 1.8 million degrees of freedom for the predual variable p associated with a single color
channel.

The denoising procedure was conducted individually per RGB channel. Initial, noisy and
denoised objects are shown in Figure 4. The sharp edges between the stripes are preserved
for di�erent values of β. Details of the leather's structure, most prominently visible in the
yellow stripes in the noise-free image, start reappearing after the bulk of the noise is removed
for β = 0.5. Notice however that some of these features are part of the geometric resolution
and not just the texture. On the other hand, the dotted texture in the interior and part of the
stitchings seem less discernible due to the reduced contrast for β = 0.5. As was noted earlier,
the predual vector �eld p can be interpreted as an edge detector, which is shown in Figure 5
for each RGB channel.

We also conducted experiments using the joint BV -norm, cf. [10]

∫
S
|∇u| = sup


∫
S

3∑
j=1

uj div ηj ds : η ∈W


of the vector-valued unknown u = (u1, u2, u3) ∈ [BV (S)]3. In contrast to the scalar case the

2https://www.artec3d.com

https://www.artec3d.com
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Figure 3. Convergence of the inner and outer iterations of the interior point method for the duck denoising.
Di�erent colors denote outer iterations and their decreasing penalty parameter µ with a stopping criterion of
‖δp‖L2(S;T (S)) = 10−5. Di�erent subplots for respective denoising parameters β = 0.1, 0.2, 0.3, 0.5.

test space is now de�ned as

W :=

{
(η1,η2,η3) ∈ [C∞(S;T (S))]3 :

3∑
j=1

|ηj(p)|22 ≤ 1 for all p ∈ S

}
,

compare [12, 24]. It can be expected that this modi�cation better suppresses color fringes
(similar to chromatic aberration), which occur when the value of two or more color channels
have jump discontinuities at neighboring pixels. We refer the reader to [11, Chapter 6.3.4] for
a discussion of alternative de�nitions of vector-valued BV norms in the context of color image
restoration.

Use of the joint BV norm leads to the following modi�ed predual problem compared to
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Figure 4. Shoe test case: noise free and noisy originals (top row) and denoising results for β = 0.2 and
β = 0.5 (bottom row).
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Figure 5. Shoe test case: |p|2 acts as an edge detector for each RGB channel. Solid black corresponds to
a value of |p|2 ≥ 0.4. Final results for β = 0.5 are shown. Take note of the di�erent jump amplitudes and
positions for each color channel.

(14), 

Minimize
1

2

∥∥∥∥∥∥
div p1

div p2

div p3

+K∗f

∥∥∥∥∥∥
2

B−1

over (p1,p2,p3) ∈ [H(div;S)]3

subject to
3∑
j=1

|pj |22 ≤ β
2 a.e. on S,

see also [12]. Notice that the variables pj in this problem are coupled through the inequality
constraints even if � as is the case in our examples � K and K∗ act on each color compo-
nent separately. This leads to an increased complexity of the problem. The conversion of the
inequality constraints into a barrier term as in (21) is straightforward. In our numerical ex-
periments, we did not experience signi�cantly improved results using this model and therefore
do not pursue this further here.

5.3. Color Inpainting. The problem of not being able to scan an object completely is
quite common, as there might be areas the scanner cannot look into due to its size and the
non-convexity and curvature of the object. The inside of the tip of a shoe might be such an
example. Data corruption can be another reason for lack or loss of data. Although these issue
concern both geometry and texture, the focus of this subsection is on the reconstruction of
missing texture information alone.

We simulate the loss of texture data during the scan process on the outside of an object
by setting to zero all degrees of freedom in the image data which belong to cells with indices
in the range 30, 000 to 33, 000. This corresponds to a data loss of 3%. We denote this
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erased image region by E ⊂ S. Due to the apparently layered scan process the index range
chosen corresponds to bands or �stripes� as shown in Figure 6, which are better visible than
unreachable areas inside the tip.

Figure 6. Shoe with missing texture (top left) and TV-inpainting solutions for β = 0.5, β = 0.7 and β = 1.0.

As usual for TV inpainting problems the mapping K is now chosen so as to ignore the
corrupted data. This leads to

(25) (Ku)(p) := χS\E(p)u(p),

where χ is an indicator function with value 1 in the uncorrupted area S \ E. Since K is
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self-adjoint and idempotent,

K∗(Ku) = K(Ku) = Ku.

(Ku)(p)− f(p) = 0 holds for all p ∈ E and the (corrupted) value of f|E does not increase the
data �delity part of the objective in (1).

Contrary to the denoising situation, K∗K is no longer invertible and α > 0 is required.
Using the de�nition of K one easily deduces the formula

(B u)(p) =

{
αu(p) for p ∈ E

(α+ 1)u(p) for p ∈ S \ E.

The results of the inpainting test case are shown in Figure 6 for di�erent values of β and with
α = 0.1 constant for each case.

6. Conclusion and Outlook. We considered an analog of the TV�L2 image reconstruction
approach for images on smooth surfaces. Complementary to [35], we proved the well-posedness
of the model and its predual, and rigorously established strong duality with the predual in
function space. The predual problem is a quadratic optimization problem for the vector �eld
p ∈ H(div;S) with pointwise nonlinear inequality constraints on the surface. As in the �at
case, p serves as an edge detector. We proposed and analyzed a function space interior point
method for the predual problem. Based on the �nding that the latter is posed in H(div;S),
we are led to choose a conforming �nite element discretization by the surface analog of �rst- or
higher-order Raviart�Thomas �nite element spaces. In contrast to linear Lagrangian elements
employed in [35], our discretization exhausts the space when the surface mesh is re�ned.
Numerical examples, which comprise denoising and inpainting problems, show the viability of
the approach for real-world geometries consisting of more than 350, 000 and 175, 000 vertices.
Our method can be easily adapted to surfaces with boundary, by replacing H(div;S) with
H0(div;S). This amounts to imposing the boundary condition p · n = 0 along the boundary
∂S, where n is the outer unit normal vector in the tangent plane. The analysis presented
carries over with minor changes.

There is room for improvement in various directions. For instance, the polynomial order r
of the �nite element space DGr for the image data f could be adjusted locally to re�ect the level
of detail present in each surface cell. This would then naturally lead to discretizations of p and
u with varying polynomial degree as well. Moreover, we have so far been solving the predual
problem with a basic primal interior point approach, running Newton's method to convergence
for each value of the barrier parameter µ. A more sophisticated primal-dual method with
inexact system solves would help reduce the computational cost for high-dimensional problems.
While we are exploiting the MPI-based parallelism of the FEniCS library for system assembly
and direct system solves already, more e�ciency might be gained by preconditioned iterative
solvers with tailored preconditioners. This is left for future research.
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Appendix A. Proof of Theorem 12 and Auxiliary Results. Let us denote by

`(p) :=

{
−µ ln

(
β2 − |p|22

)
if |p|2 < β

∞ otherwise

}
and ∇`(p) = 2µ

p

β2 − |p|22
if |p|2 < β

the pointwise barrier term and its gradient3, de�ned for p ∈ R3 and in particular for p in the
tangent space Tp(S) of the surface S at some point. Moreover, let

b(p) :=

∫
S
`(p) ds and 〈b′(p), δp〉 :=

∫
S

(
∇`(p), δp

)
2
ds

denote the integrated barrier term (cf. (22)) and its formal derivative for vector �elds p, δp ∈
L2(S;T (S)). Let us recall from the proof of Proposition 11 that b is convex and it can take
values in R ∪ {∞}. We denote by ∂b(p) ⊂ L2(S;T (S))∗ the convex subdi�erential of b at p.
Notice that L2(S;T (S))∗ can be identi�ed with L2(S;T (S)∗) and also with L2(S;T (S)).

Before stating the proof of Theorem 12 we require some preliminary results. The following
lemma parallels [47, Lemma 4.4] and its proof is therefore omitted.

Lemma 13. Consider p, δp ∈ L2(S;T (S)) such that all of b(p), b(p + δp) and 〈b′(p), δp〉
are �nite. Then b is directionally di�erentiable at p in the direction δp, and its directional

derivative satis�es

(26) b′(p; δp) = 〈b′(p), δp〉 ≥
∫
S

(m, δp)2 ds for all m ∈ ∂b(p),

where the subdi�erential is considered a subset of L2(S;T (S)).

The next result is equal to [47, Prop. 4.5] but the proof requires a number of modi�cations.

Proposition 14. Let p ∈ L2(S;T (S)) be given. Then we have:

(i) If ∇`(p) belongs to L2(S;T (S)), then ∂b(p) = {∇`(p)}.

(ii) If ∇`(p) does not belong to L2(S;T (S)), then ∂b(p) = ∅.
Proof. The proof is split into three parts, which combine to yield the result.

Part A: We begin by considering the case b(p) <∞, which implies |p|2 < β a.e. on S. By
convexity of `, we obtain (∇`(p), δp)2 ≤ `(p+ δp)− `(p) a.e. and therefore∫

S

(
∇`(p), δp

)
2
ds = 〈b′(p), δp〉 ≤ b(p+ δp)− b(p)

for all δp ∈ L2(S;T (S)), provided that ∇`(p) ∈ L2(S;T (S)) holds. This shows ∇`(p) ∈ ∂b(p)
in this case.

3This should not be confused with the gradient of a scalar function on S in De�nition 4. In the present
context the gradient ∇`(p) is the transpose of the derivative of the function ` : R3 → R.
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Part B: Now suppose that m ∈ ∂b(p) holds and let E ⊂ S be an arbitrary measurable
subset and v : S → T (S) be a vector �eld of class C0. Due to the compactness of S,
‖v‖L∞(S;T (S)) is �nite. We are going to show that necessarily

(∗)
∫
E

(
∇`(p), v

)
2
ds =

∫
E

(m, v)2 ds

holds, which then implies m = ∇`(p) and ∇`(p) ∈ L2(S;T (S)). To this end, de�ne Eδ :=
{p ∈ E : β−|p|2 > δ} for δ > 0. Next we de�ne vk := χE1/k

v and εk := (2 k ‖v‖L∞(S;T (S)))
−1

for k ∈ N. Then, since ∇`(p) = 2µ p

β2−|p|22
belongs to L∞(Eδ;T (S)) for any δ > 0, we have

∣∣〈b′(p), ±εkvk〉
∣∣ = ±2µ εk

∫
E1/k

(p, vk)2

β2 − |p|22
ds <∞.

Moreover,

(∗∗) b(p± εkvk) = −µ
∫
S\E1/k

ln
(
β2 − |p|22

)
ds− µ

∫
E1/k

ln
(
β2 − |p± εkvk|22

)
ds.

The �rst integral is �nite since b(p) is. For the second integral, we use that

β − |p± εkvk|2 ≥ β − |p|2 − εk‖v‖L∞(S;T (S)) ≥
1

k
− 1

2 k
=

1

2 k

holds a.e. on E1/k. Hence by multiplication with β + |p± εkvk|2 ≥ β we conclude

β2 − |p± εkvk|22 ≥
β

2 k
a.e. on E1/k

and thus the second integral in (∗∗) is �nite as well. So we have shown that for δp = ±εkvk,
the terms b(p), b(p+ δp) and 〈b′(p), δp〉 are all �nite. Hence Lemma 13 yields

〈b′(p), ±εkvk〉 ≥ ±εk
∫
S

(m, vk)2 ds for all m ∈ ∂b(p).

This implies

(∗ ∗ ∗)
∫
S

(
∇`(p), vk

)
2
ds = 〈b′(p), vk〉 =

∫
S

(m, vk)2 ds for all m ∈ ∂b(p), k ∈ N.

It remains to pass to the limit in (∗ ∗ ∗) to show (∗). Let us begin with the second term
in (∗ ∗ ∗) and observe that χE v = limk→∞ vk holds a.e. on S since the set where |p|2 = β
holds has zero measure. Moreover, the integrand is dominated pointwise by |(m, vk)2| ≤
|m|2‖v‖L∞(S;T (S)) ∈ L2(S). Thus by Lebesgue's dominated convergence theorem we obtain

lim
k→∞

∫
S

(m, vk)2 ds =

∫
E

(m, v)2 ds.
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We now address the �rst term in (∗ ∗ ∗). Since it is not clear whether or not ∇`(p) belongs
to L2(S;T (S)), we cannot argue by dominated convergence. Instead, let us de�ne

S+ := {p ∈ S : (p, v)2 ≥ 0} and S− := S \ S+.

Then

χS+

(
∇`(p), vk

)
2

=

{
2µ (p,v)2

β2−|p|22
≥ 0 on S+ ∩ E1/k

0 elsewhere

and therefore {χS+

(
∇`(p), vk

)
2
}k∈N is non-negative and monotone increasing on S+ with

pointwise limit χS+∩E
(
∇`(p), v

)
2
. By the monotone convergence theorem,

lim
k→∞

∫
S+

(
∇`(p), vk

)
2
ds =

∫
S+∩E

(
∇`(p), v

)
2
ds

holds. Similarly, this result can be shown with S− as well. We can therefore pass to the limit
in (∗ ∗ ∗) and conclude (∗), which in turn proves m = ∇`(p) as well as ∇`(p) ∈ L2(S;T (S)).

Part C: If b(p) =∞, then by de�nition ∂b(p) = ∅ holds.

The result now follows easily by combining Parts A�C.

So far we have considered the subdi�erential of the barrier term b w.r.t. the L2(S;T (S))
topology. This is however not su�cient since problem (21) is posed in H(div;S) and further
modi�cations of the arguments in [47] are required. Let us de�ne by b̃ the restriction of b to
H(div;S), and let

(27) ∂b̃(p) :=
{
m̃ ∈H(div;S) : b̃(q) ≥ b̃(p) + (m̃, q − p)H(div;S) for all q ∈H(div;S)

}
denote the subdi�erential of b̃ at p ∈H(div;S). Finally, Π : L2(S;T (S))→H(div;S) denotes
the H(div;S)-orthogonal projector, de�ned by

m̃ = Πm ⇔ (m̃, z)H(div;S) = (m, z)L2(S;T (S)) for all z ∈H(div;S).

Corollary 15. Let p ∈H(div;S) be given. Then we have ∂b̃(p) = Π ∂b(p) and consequently:

(i) If ∇`(p) belongs to L2(S;T (S)), then ∂b̃(p) = {Π∇`(p)}.

(ii) If ∇`(p) does not belong to L2(S;T (S)), then ∂b̃(p) = ∅.
Proof. Let Λ : H(div;S) → L2(S;T (S)) denote the continuous embedding, and let Λ∗ :

L2(S;T (S))∗ → H(div;S)∗ denote its adjoint. Since by de�nition b̃(p) = b(Λp) and Λp = p
holds for all p ∈H(div;S), we conclude from the chain rule that

RH(div;S)∂b̃(p) = Λ∗RL2(S;T (S))∂b(Λp) = Λ∗RL2(S;T (S))∂b(p)
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holds; see for instance [25, Prop. I.5.7]. Notice that the Riesz maps RH(div;S) : H(div;S) →
H(div;S)∗ and RL2(S;T (S)) : L2(S;T (S)) → L2(S;T (S))∗ are present here since we identify
the subdi�erential in both Hilbert spaces with elements from the Hilbert space itself; cf. (27).
We have thus shown that

∂b̃(p) = R−1H(div;S)Λ
∗RL2(S;T (S))∂b(p)

holds for all p ∈ H(div;S). It is now an easy exercise to verify that R−1H(div;S)Λ
∗RL2(S;T (S))

is equal to Π.

Proof of Theorem 12. Recall from (22) the de�nition of H and b and let us denote, as
above, by b̃ the restriction of b to H(div;S). The (unique) minimizer of (21) is characterized
by

0 ∈ ∂
(
H(p) + b̃(p)

)
.

Since H is continuous on all of H(div;S) and b̃ is �nite e.g., at p ≡ 0, this is equivalent to

0 ∈ ∂H(p) + ∂b̃(p)

by the sum rule of subdi�erentials; see for instance [25, Prop. I.5.6]. Notice that this also
implies |p|2 ≤ β a.e. on S since otherwise b̃(p) =∞ and the subdi�erential is empty. Having

characterized ∂b̃(p) in Corollary 15 and using the obvious Fréchet di�erentiability of H, we
can write equivalently (using the notation from Corollary 15)

0 = R−1H(div;S)H
′(p) + Π∇`(p)

⇔ 0 = R−1H(div;S)H
′(p) +R−1H(div;S)Λ

∗RL2(S;T (S))∇`(p)

⇔ 0 = H ′(p) δp+ 〈Λ∗RL2(S;T (S))∇`(p), δp〉H(div;S)∗,H(div;S) for all δp ∈H(div;S)

⇔ 0 = H ′(p) δp+ 〈RL2(S;T (S))∇`(p), Λδp〉L2(S;T (S))∗,L2(S;T (S)) for all δp ∈H(div;S)

⇔ 0 = H ′(p) δp+ (∇`(p), Λδp)L2(S;T (S)) for all δp ∈H(div;S).

This is precisely (23).

Acknowledgments. Parts of this paper were written while the second author was visiting
the University of British Columbia, Vancouver. He would like to thank the Department of
Computer Science for their hospitality.

REFERENCES

[1] H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces, vol. 6
of MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2006.



28 M. HERRMANN, R. HERZOG, H. KRÖNER, S. SCHMIDT AND J. VIDAL

[2] T. Aubin, A course in di�erential geometry, vol. 27 of Graduate Studies in Mathematics, American
Mathematical Society, Providence, RI, 2001.

[3] C. L. Bajaj and G. Xu, Anisotropic di�usion of surfaces and functions on surfaces, ACM Transactions
on Graphics, 22 (2003), pp. 4�32.

[4] S. Bartels, Total variation minimization with �nite elements: convergence and iterative solution, SIAM
Journal on Numerical Analysis, 50 (2012), pp. 1162�1180, https://doi.org/10.1137/11083277X.

[5] S. Bartels, Error control and adaptivity for a variational model problem de�ned on functions of
bounded variation, Mathematics of Computation, 84 (2015), pp. 1217�1240, https://doi.org/10.1090/
S0025-5718-2014-02893-7.

[6] M. Ben-Artzi and P. G. LeFloch, Well-posedness theory for geometry-compatible hyperbolic conser-
vation laws on manifolds, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, 24 (2007),
pp. 989�1008, https://doi.org/10.1016/j.anihpc.2006.10.004.

[7] H. Benninghoff and H. Garcke, Segmentation and restoration of images on surfaces by paramet-
ric active contours with topology changes, Journal of Mathematical Imaging and Vision, 55 (2016),
pp. 105�124, https://doi.org/10.1007/s10851-015-0616-6.

[8] M. Bertalmío, L.-T. Cheng, S. Osher, and G. Sapiro, Variational problems and partial di�erential
equations on implicit surfaces, Journal of Computational Physics, 174 (2001), pp. 759�780, https://
doi.org/10.1006/jcph.2001.6937.

[9] H. Biddle, I. von Glehn, C. B. Macdonald, and T. März, A volume-based method for denoising
on curved surfaces, in 2013 IEEE International Conference on Image Processing, IEEE, sep 2013,
pp. 529�533, https://doi.org/10.1109/icip.2013.6738109.

[10] P. Blomgren and T. Chan, Color TV: total variation methods for restoration of vector-valued images,
IEEE Transactions on Image Processing, 7 (1998), pp. 304�309, https://doi.org/10.1109/83.661180.

[11] K. Bredies and D. Lorenz, Mathematische Bildverarbeitung, Vieweg & Teubner, 2011, https://doi.org/
10.1007/978-3-8348-9814-2.

[12] X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and
applications to color image processing, Inverse Problems and Imaging, 2 (2008), pp. 455�484,
https://doi.org/10.3934/ipi.2008.2.455.

[13] J.-F. Cai, S. Osher, and Z. Shen, Linearized Bregman iterations for frame-based image deblurring,
SIAM Journal on Imaging Sciences, 2 (2009), pp. 226�252, https://doi.org/10.1137/080733371.

[14] J. L. Carter, Dual Methods for Total Variation-Based Image Restoration, PhD thesis, UCLA, 2001.
[15] A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathemat-

ical Imaging and Vision, 20 (2004), pp. 89�97, https://doi.org/10.1023/B:JMIV.0000011325.36760.1e.
Special issue on mathematics and image analysis.

[16] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems,
Numerische Mathematik, 76 (1997), pp. 167�188, https://doi.org/10.1007/s002110050258.

[17] T. Chan, S. Esedoglu, F. Park, and A. Yip, Total variation image restoration: overview and recent
developments, in Handbook of mathematical models in computer vision, Springer, New York, 2006,
pp. 17�31, https://doi.org/10.1007/0-387-28831-7 2.

[18] T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-based
image restoration, SIAM Journal on Scienti�c Computing, 20 (1999), pp. 1964�1977, https://doi.org/
10.1137/S1064827596299767.

[19] T. F. Chan and J. Shen, Image processing and analysis, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2005, https://doi.org/10.1137/1.9780898717877. Variational, PDE, wavelet,
and stochastic methods.

[20] U. Clarenz, U. Diewald, and M. Rumpf, Processing textured surfaces via anisotropic geometric
di�usion, IEEE Transactions on Image Processing, 13 (2004), pp. 248�261, https://doi.org/10.1109/
tip.2003.819863.

[21] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, Anisotropic feature-preserving denoising of
height �elds and bivariate data, in Proceedings of Graphics Interface 2000, Toronto, Ontario, Canada,
2000, Canadian Human-Computer Communications Society, pp. 145�152, https://doi.org/10.20380/
GI2000.20.

[22] M. P. do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston,
Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty.

https://doi.org/10.1137/11083277X
https://doi.org/10.1090/S0025-5718-2014-02893-7
https://doi.org/10.1090/S0025-5718-2014-02893-7
https://doi.org/10.1016/j.anihpc.2006.10.004
https://doi.org/10.1007/s10851-015-0616-6
https://doi.org/10.1006/jcph.2001.6937
https://doi.org/10.1006/jcph.2001.6937
https://doi.org/10.1109/icip.2013.6738109
https://doi.org/10.1109/83.661180
https://doi.org/10.1007/978-3-8348-9814-2
https://doi.org/10.1007/978-3-8348-9814-2
https://doi.org/10.3934/ipi.2008.2.455
https://doi.org/10.1137/080733371
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
https://doi.org/10.1007/s002110050258
https://doi.org/10.1007/0-387-28831-7_2
https://doi.org/10.1137/S1064827596299767
https://doi.org/10.1137/S1064827596299767
https://doi.org/10.1137/1.9780898717877
https://doi.org/10.1109/tip.2003.819863
https://doi.org/10.1109/tip.2003.819863
https://doi.org/10.20380/GI2000.20
https://doi.org/10.20380/GI2000.20


TV IMAGE RECONSTRUCTION PROBLEMS ON SMOOTH SURFACES 29

[23] D. C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data, SIAM Journal
on Applied Mathematics, 56 (1996), pp. 1181�1198, https://doi.org/10.1137/S003613999427560X.

[24] Y. Dong, M. Hintermüller, and M. M. Rincon-Camacho, A multi-scale vectorial Lτ -TV framework
for color image restoration, International Journal of Computer Vision, 92 (2011), pp. 296�307, https:
//doi.org/10.1007/s11263-010-0359-1.

[25] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, vol. 28 of Classics in Applied
Mathematics, SIAM, Philadelphia, 1999.

[26] G. Enrico, Minimal Surfaces and Functions of Bounded Variation, vol. 80 of Monographs in Mathemat-
ics, Birkäuser, 1984.

[27] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer, Berlin, 2004.
[28] E. Hebey, Sobolev Spaces on Riemannian Manifolds, vol. 1635 of Lecture Notes in Mathematics, Springer,

1996.
[29] E. Hebey, Nonlinear Analysis on Manifolds, vol. 5 of American Mathematical Society, Courant Lectures

Notes in Mathematics, 2000.
[30] R. Herzog, G. Stadler, and G. Wachsmuth, Directional sparsity in optimal control of par-

tial di�erential equations, SIAM Journal on Control and Optimization, 50 (2012), pp. 943�963,
https://doi.org/10.1137/100815037.

[31] M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally constrained
optimization problem, SIAM Journal on Applied Mathematics, 64 (2004), pp. 1311�1333, https://
doi.org/10.1137/S0036139903422784.

[32] J. R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective, Prentice-Hall Inc.,
Englewood Cli�s, N.J., 4th ed., 2015.

[33] J. John and M. Wilscy, Image processing techniques for surface characterization of nanostructures,
in 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), IEEE,
mar 2016, https://doi.org/10.1109/iccpct.2016.7530317.

[34] W. Kühnel, Di�erentialgeometrie, vol. 6 of Aufbaukurs Mathematik, Springer Spektrum, 2013.
[35] R. Lai and T. F. Chan, A framework for intrinsic image processing on surfaces, Computer Vision and

Image Understanding, 115 (2011), pp. 1647�1661, https://doi.org/10.1016/j.cviu.2011.05.011.
[36] A. Logg, K.-A. Mardal, and G. Wells, eds., Automated Solution of Di�erential Equations by the

Finite Element Method, vol. 84 of Lecture Notes in Computational Science and Engineering, Springer
Berlin Heidelberg, 2012.

[37] L. D. López Pérez, Régularisation d'images sur des surfaces non planes, PhD thesis, Université de
Nice�Sophia Antipolis, 2006, https://tel.archives-ouvertes.fr/tel-00141417v1.

[38] F. Malgouyres and F. Guichard, Edge direction preserving image zooming: a mathematical and
numerical analysis, SIAM Journal on Numerical Analysis, 39 (2001), pp. 1�37 (electronic), https://
doi.org/10.1137/S0036142999362286.

[39] E. Naden, T. März, and C. B. MacDonald, Anisotropic di�usion �ltering of images on curved
surfaces, tech. report, 2014, https://arxiv.org/abs/arXiv:1403.2131.

[40] P. Perona and J. Malik, Scale-space and edge detection using anisotropic di�usion, IEEE Transactions
on pattern analysis and machine intelligence, 12 (1990), pp. 629�639, https://doi.org/10.1109/34.56205.

[41] A. Pressley, Elementary di�erential geometry, Springer Undergraduate Mathematics Series, Springer-
Verlag London, Ltd., London, second ed., 2010, https://doi.org/10.1007/978-1-84882-891-9.

[42] U. Prüfert, F. Tröltzsch, and M. Weiser, The convergence of an interior point method for an
elliptic control problem with mixed control-state constraints, Computational Optimization and Appli-
cations. An International Journal, 39 (2008), pp. 183�218, https://doi.org/10.1007/s10589-007-9063-7.

[43] P.-A. Raviart and J. M. Thomas, A mixed �nite element method for 2nd order elliptic problems, in
Mathematical aspects of �nite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.),
Rome, 1975), Springer, Berlin, 1977, pp. 292�315. Lecture Notes in Math., Vol. 606.

[44] M. E. Rognes, D. A. Ham, C. J. Cotter, and A. T. T. McRae, Automating the solution of
PDEs on the sphere and other manifolds in FEniCS 1.2, Geoscienti�c Model Development, 6 (2013),
pp. 2099�2119, https://doi.org/10.5194/gmd-6-2099-2013.

[45] S. Rosenberg, The Laplacian on a Riemannian Manifold, vol. 31 of London Mathematical Society
Students Texts, Cambridge University Press, 1997.

[46] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,

https://doi.org/10.1137/S003613999427560X
https://doi.org/10.1007/s11263-010-0359-1
https://doi.org/10.1007/s11263-010-0359-1
https://doi.org/10.1137/100815037
https://doi.org/10.1137/S0036139903422784
https://doi.org/10.1137/S0036139903422784
https://doi.org/10.1109/iccpct.2016.7530317
https://doi.org/10.1016/j.cviu.2011.05.011
https://tel.archives-ouvertes.fr/tel-00141417v1
https://doi.org/10.1137/S0036142999362286
https://doi.org/10.1137/S0036142999362286
https://arxiv.org/abs/arXiv:1403.2131
https://doi.org/10.1109/34.56205
https://doi.org/10.1007/978-1-84882-891-9
https://doi.org/10.1007/s10589-007-9063-7
https://doi.org/10.5194/gmd-6-2099-2013


30 M. HERRMANN, R. HERZOG, H. KRÖNER, S. SCHMIDT AND J. VIDAL

Physica D, 60 (1992), pp. 259�268, https://doi.org/10.1016/0167-2789(92)90242-F.
[47] A. Schiela, Barrier methods for optimal control problems with state constraints, SIAM Journal on Op-

timization, 20 (2009), pp. 1002�1031, https://doi.org/10.1137/070692789.
[48] D. Strong and T. Chan, Edge-preserving and scale-dependent properties of total variation regulariza-

tion, Inverse Problems. An International Journal on the Theory and Practice of Inverse Problems,
Inverse Methods and Computerized Inversion of Data, 19 (2003), pp. S165�S187, https://doi.org/
10.1088/0266-5611/19/6/059. Special section on imaging.

[49] M. Ulbrich and S. Ulbrich, Primal-dual interior point methods for PDE-constrained optimization,
Mathematical Programming, 117 (2009), pp. 435�485, https://doi.org/10.1007/s10107-007-0168-7.

[50] D. Wachsmuth, Numerical solution of optimal control problems with convex control constraints, in Sys-
tems, control, modeling and optimization, vol. 202 of IFIP Int. Fed. Inf. Process., Springer, New York,
2006, pp. 319�327, https://doi.org/10.1007/0-387-33882-9 30.

[51] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for total
variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), pp. 248�272, https://
doi.org/10.1137/080724265.

[52] C. Z linescu, Convex analysis in general vector spaces, World Scienti�c Publishing Co., Inc., River
Edge, NJ, 2002, https://doi.org/10.1142/9789812777096.

[53] W. P. Ziemer, Weakly di�erentiable functions, vol. 120 of Graduate Texts in Mathematics, Springer-
Verlag, New York, 1989, https://doi.org/10.1007/978-1-4612-1015-3. Sobolev spaces and functions of
bounded variation.

https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1137/070692789
https://doi.org/10.1088/0266-5611/19/6/059
https://doi.org/10.1088/0266-5611/19/6/059
https://doi.org/10.1007/s10107-007-0168-7
https://doi.org/10.1007/0-387-33882-9_30
https://doi.org/10.1137/080724265
https://doi.org/10.1137/080724265
https://doi.org/10.1142/9789812777096
https://doi.org/10.1007/978-1-4612-1015-3

