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Set-Oriented Multiobjective Optimal Control of
PDEs using Proper Orthogonal Decomposition

Dennis Beermann and Michael Dellnitz and Sebastian Peitz and Stefan Volkwein

Abstract In this chapter, we combine a global, derivative-free subdivision algo-
rithm for multiobjective optimization problems with a-posteriori error estimates for
reduced-order models based on Proper Orthogonal Decomposition in order to effi-
ciently solve multiobjective optimization problems governed by partial differential
equations. An error bound for a semilinear heat equation is developed by which the
errors in the conflicting objectives can be estimated individually. The resulting al-
gorithm constructs a library of locally valid reduced-order models online using a
Greedy (worst-first) search. Using this approach, the number of evaluations of the
full-order model can be reduced by a factor of more than 1000.

1 Introduction

Many problems in engineering and physics can be modeled by partial differential
equations (PDEs), starting from fairly simple problems such as the linear heat equa-
tion up to highly non-linear fluid flow problems governed by the Navier-Stokes
equations. When designing an application where the underlying dynamical system
is given by a PDE, we are faced with a PDE-constrained optimization or optimal
control problem [28]. Due to the ever increasing complexity of technical systems

Dennis Beermann
Department of Mathematics and Statistics, University of Konstanz, e-mail: dennis.
beermann@uni-konstanz.de

Michael Dellnitz
Department of Mathematics, Paderborn University, e-mail: dellnitz@math.upb.de

Sebastian Peitz
Department of Mathematics, Paderborn University, e-mail: speitz@math.upb.de

Stefan Volkwein
Department of Mathematics and Statistics, University of Konstanz, e-mail: stefan.
volkwein@uni-konstanz.de

1

dennis.beermann@uni-konstanz.de
dennis.beermann@uni-konstanz.de
dellnitz@math.upb.de
speitz@math.upb.de
stefan.volkwein@uni-konstanz.de
stefan.volkwein@uni-konstanz.de


2 Dennis Beermann and Michael Dellnitz and Sebastian Peitz and Stefan Volkwein

and design requirements, there are nowadays only few problems, where only one
objective is of importance. For example, in buildings we want to provide a comfort-
able room temperature while at the same time minimizing the energy consumption.
This example illustrates that many objectives are often equally important and also
contradictory such that we are forced to accept a trade-off between them. This re-
sults in a multiobjective optimization problem (MOP), where multiple objectives
have to be minimized at the same time. Similar to scalar optimization problems, we
want to find an optimal solution to this problem. However, in a multiobjective opti-
mization problem, we have to identify the set of optimal compromises, the so-called
Pareto set.

Multiobjective optimization is an active area of research. Different approaches
exist to address MOPs, e.g., deterministic approaches [8, 16], where ideas from
scalar optimization theory are extended to the multiobjective situation. In many
cases, the resulting numerical method involves the consecutive solution of multi-
ple scalar optimization problems. Continuation methods make use of the fact that
under certain smoothness assumptions the Pareto set is a manifold [11]. Another
prominent approach is based on evolutionary algorithms [5], where the underly-
ing idea is to evolve an entire set of solutions (population) during the optimization
process. Set-oriented methods provide an alternative deterministic approach to the
solution of MOPs. Utilizing subdivision techniques (cf. [7, 26]), the desired Pareto
set is approximated by a nested sequence of increasingly refined box coverings.

When addressing PDE-constrained MOPs, many evaluations of this PDE are re-
quired and hence, the computational effort quickly becomes prohibitively large. The
typical procedure is to discretize the spatial domain by a numerical mesh, which
transforms the infinite-dimensional into a (potentially very large) finite-dimensional
system (i.e. a system of coupled ordinary differential equations). With increasing
computational capacities, the size of problems that can be solved has increased
tremendously during the last decades [24]. However, many technical applications
result in problems that are nowadays still very difficult or even impossible to solve.
Consequently, solving optimal control problems involving PDE constraints is a ma-
jor challenge and considering multiple criteria further increases the complexity.

To overcome the problem of expensive function evaluations, model-order reduc-
tion is a widely used concept. Here, the underlying PDE is replaced by a surrogate
model which can be solved much faster [21, 24]. In this context, reduced-order
models (ROMs) based on Galerkin projection and Proper Orthogonal Decomposi-
tion (POD) [12] have proven to be a powerful tool, in particular in a multi-query
context such as parameter estimation, uncertainty quantification or optimization
(see e.g. [10, 22]). During the last years, the first publications addressing PDE-
constrained problems with multiple criteria have appeared. In [2], the model has
been treated as a black box and evolutionary algorithms were applied. A compari-
son of different algorithms for multiobjective optimal control of the Navier-Stokes
equations is presented in [20] and approaches using rigorous error analysis can be
found in [3, 4, 13, 14].

In this work we extend the results from [19] and [22] in order to develop a
global, derivative-free algorithm for PDE-constrained multiobjective optimization
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problems based on POD-ROMs. To this end, the subdivision algorithm for inex-
act function values presented in [19] is combined with a localized reduced basis
approach [1] and error estimates for the objectives. The chapter is structured in
the following way: In Section 2, the PDE-constrained multiobjective optimization
problem is introduced along with the gradient-based and gradient-free version of the
subdivision algorithm. In Section 3, an a-posteriori error estimator for the individ-
ual objectives is derived. In Section 4, numerical results concerning both the error
estimator and the overall algorithm are presented. Finally, we end with a conclusion
and an outlook in Section 5.

Notation. If x1,x2 ∈Rn are two vectors, we write x1≤ x2 if x1
i ≤ x2

i for i= 1, ...,n,
and similarily for x1 < x2.

2 The Multiobjective Optimal Control Problem

Throughout this chapter, let Ω ⊂Rd be a bounded Lipschitz domain with boundary
Γ . Further, let (0,T ) ⊂ R be a time interval, Q := (0,T )×Ω and Σ := (0,T )×Γ .
The domain contains subdomains Ωi ⊂ Ω and indicator functions are defined by
χi(x) = 1 if x ∈ Ωi and χi(x) = 0 otherwise (i = 1, ...,m). The finite-dimensional
control space is given by U = Rm and we consider the following Multiobjective
Optimal Control Problem (MOCP):

min
u∈U

J(y,u) =
1
2


∫

Ω

|y(T,x)− yd,1(x)|2 dx∫
Ω

|y(T,x)− yd,2(x)|2 dx

|u|22

 (1a)

subject to (s.t.) the semilinear PDE constraints

yt(t,x)−∆y(t,x)+ y3(t,x) =
m

∑
i=1

uiχi(x) for (t,x) ∈ Q,

∂y
∂n

(t,s) = 0 for (t,s) ∈ Σ ,

y(0,x) = y0(x) for x ∈Ω

(1b)

and the bilateral control constraints

ua ≤ u≤ ub in U. (1c)

In (1a), the functions yd,1 and yd,2 ∈ L2(Ω) are two conflicting desired states. More-
over, | · |2 denotes the Euclidean norm. The state variable y is given as the solution
to the semilinear heat equation (1b) which we will call the state equation from now
on. It will be shown in Section 2.1 that such a solution always exists, is unique and
in particular belongs to C([0,T ];L2(Ω)), meaning that the integrals in (1a) are well-
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defined. In (1c), the control variable u is bounded by bilateral constraints ua, ub ∈U
with ua ≤ ub. Therefore, we define the admissible set

Uad =
{

u ∈ U
∣∣ua ≤ u≤ ub in U

}
.

2.1 The State Equation and its Galerkin Discretization

This section is dedicated to the analysis of the state equation (1b). First of all, let
us introduce the Gelfand triple V ↪→ H = H ′ ↪→V ′, where V = H1(Ω), H = L2(Ω)
and each embedding is continuous and dense. We define the solution space Y =
W (0,T )∩L∞(Q) with

W (0,T ) := L2(0,T ;V )∩H1(0,T ;V ′).

It is well-known [28] that W (0,T ) together with the common inner product is a
Hilbert space and continuously embeds into C([0,T ];H). Next, we specify what is
meant by a solution to (1b):

Definition 1. A function y ∈ Y is called a weak solution to (1b) if it holds for every
ϕ ∈V :

〈yt(t),ϕ〉V ′×V +
∫

Ω

(
∇y(t) ·∇ϕ + y(t)3

ϕ
)

dx =
m

∑
i=1

ui

∫
Ωi

ϕ dx a.e. in (0,T ),∫
Ω

y(0)ϕ dx =
∫

Ω

y0ϕ dx.

(2)

Here, ‘a.e.’ stands for ‘almost everywhere’. We briefly state a solvability result on
(1b) next:

Theorem 1 (Unique solvability of the state equation). For every u ∈ U, there ex-
ists a unique weak solution y ∈ Y of (2). The control-to-state operator

S : U→ Y, u 7→ y = Su, where (y,u) solves (2),

is Lipschitz-continuous, meaning there is a constant L > 0 such that for all controls
u1,u2 ∈ U with solutions yi = Sui (i = 1,2), it holds

‖y1− y2‖W (0,T )+‖y1− y2‖L∞(Q) ≤ L |u1−u2|2.

Proof. We observe that the operator

B : U→ Lr(Q), (Bu)(t,x) :=
m

∑
i=1

uiχi(x)

is linear and Lipschitz-continuous for every r ∈ [1,∞). The claim then follows from
[28, Theorems 5.5 and 5.8]. �
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The definition of the control-to-state operator S and the admissible set Uad allows
us to rewrite the MOCP (1) as a minimization problem in the control variable only:

Definition 2. We define the reduced cost function

Ĵ : U→ R3, Ĵ(u) = J(Su,u)

and the (1)-equivalent reduced Multiobjective Optimal Control Problem:

min
u∈U

Ĵ(u) =
1
2

 ‖(Su)(T )− yd,1‖2
H

‖(Su)(T )− yd,2‖2
H

|u|22

 s.t. u ∈ Uad. (P̂)

System (2) represents a nonlinear problem posed in infinite-dimensional function
spaces. It is solved in practice by a discretization method. Given linearily inde-
pendent spatial basis functions φ1, . . . ,φn ∈ V , the space V is replaced by an n-
dimensional subspace V h = span{φ1, ...,φn}. We endow V h with the V -topology.
Note that since V h is of finite dimension, V h can be identified with (V h)′ so we have
an isomorphism

L2(0,T ;V h)∩H1(0,T,(V h)′) ∼= H1(0,T,V h).

A Galerkin method is employed to replace the infinite-dimensional problem (2) with
a finite-dimensional version. Typically, n is a very large number which is why we
refer to the solution of the resulting system as a high-fidelity solution:

Definition 3. A function yh ∈ H1(0,T ;V h) is called a high-fidelity solution to (1b)
if it holds for every ϕh ∈V h:∫

Ω

(
yh

t (t)ϕ
h +∇yh(t) ·∇ϕ

h + yh(t)3
ϕ

h
)

dx =
m

∑
i=1

ui

∫
Ωi

ϕ
h dx a.e. in (0,T ),∫

Ω

yh(0)ϕh dx =
∫

Ω

y0ϕ
h dx.

(3)

Exactly as in Theorem 1, we obtain the unique solvability of the system (3) and
the existence of a Lipschitz-continuous solution operator

Sh : U→ H1(0,T ;V h), u 7→ yh = Shu, where (yh,u) solves (3).

Likewise, a high-fidelity reduced cost function can be introduced as

Ĵh : U→ R3, Ĵh(u) = J(Shu,u).
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2.2 Multiobjective Optimization

Consider the general multiobjective optimization problem

min
u∈U

Ĵ(u) = min
u∈U

 Ĵ1(u)
...

Ĵk(u)

 , (4)

where Ĵ : U→ Rk is a vector-valued objective function with continuously differen-
tiable scalar objective functions Ĵi : U→ R for i = 1, . . . ,k. The space of the ‘pa-
rameters’ u is called the decision space and the function Ĵ is a mapping to the k-
dimensional objective space. In contrast to single objective optimization problems,
there exists no total order of the objective function values in Rk for k ≥ 2. Con-
sider for example the points u1 = (3,2) and u2 = (1,3) and u3 = (2,1). Then neither
u2 < u1 nor u1 < u2. However, u3 < u1 since u3,1 < u1,1 and u3,2 < u1,2.

A consequence of the lack of a total order is that we cannot expect to find isolated
optimal points. Instead, the solution of (4) is the set of optimal compromises, the so-
called Pareto set named after Vilfredo Pareto:

Definition 4.

a) A point u∗ ∈ U dominates a point u ∈ U, if Ĵ(u∗)≤ Ĵ(u) and Ĵ(u∗) 6= Ĵ(u).
b) A point u∗ ∈ U is called (globally) Pareto optimal if there exists no point u ∈ U

dominating u∗. The image Ĵ(u∗) of a (globally) Pareto optimal point u∗ is called
a (globally) Pareto optimal value.

c) The set of non-dominated points is called the Pareto set PS ⊂ Rm, its image the
Pareto front PF ⊂ Rk.

d) When comparing sets, a set B∗ ⊂ U dominates a set B ⊂ U if for every point
u ∈B there exists at least one point u∗ ∈B∗ dominating u.

Consequently, for each point that is contained in the Pareto set, one can only improve
one objective by accepting a trade-off in at least one other objective (cf. Figure 1
(b)). A more detailed introduction to multiobjective optimization can be found in
[8, 16], for instance.

As mentioned in the introduction, many different algorithms for solving MOPs
exist. In this work, we focus on the set-oriented methods introduced in [7]. In the
following, we will shortly describe both the gradient-based and the gradient-free
approach. Since here, our results are obtained by the gradient-free version, this will
be explained in more detail. The numerical realization of this technique motivates
the use of localized reduced basis approaches.

2.2.1 Gradient-Based Multiobjective Optimization

Similar to single objective optimization, a necessary condition for optimality in mul-
tiobjective optimization is based on the gradients of the objective functions. In this
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(a) (b)

Fig. 1 Red lines: Sketch of a Pareto set (a) and Pareto front (b) for a multiobjective optimization
problem of the form (4) with m = 2 and k = 2.

section, we will restrict ourselves to unconstrained MOPs, i.e. Uad = Rm. In the
multiobjective situation, the corresponding Karush-Kuhn-Tucker (KKT) condition
is stated in the following theorem.

Theorem 2 ([15]). Let u∗ be a Pareto optimal point of (4). Then, there exist non-
negative scalars α1, . . . ,αk ≥ 0 such that

k

∑
i=1

αi = 1 and
k

∑
i=1

αi∇Ĵi(u∗) = 0. (5)

Observe that (5) is only a necessary condition for a point u∗ to be a Pareto optimal
point. The set of points satisfying (5) is called the set of substationary points PS,sub
which is obviously a superset of the Pareto set PS.

If u 6∈PS then a descent direction q : U→ Rm can be defined for which all
objectives are decreasing, i.e.

∇Ĵi(u) ·q(u)< 0, i = 1, . . . ,k.

One way to compute such a direction is to solve the following auxiliary optimization
problem [23]

min
α∈Rk

{∣∣∣ k

∑
i=1

αi∇Ĵi(u)
∣∣∣2
2

∣∣∣ αi ≥ 0 for i = 1, . . . ,k and
k

∑
i=1

αi = 1

}
. (QOP)

Using (QOP) we obtain the following result.

Theorem 3 ([23]). Define q : U→ U by

q(u) =−
k

∑
i=1

α̂i∇Ĵi(u), (6)
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where α̂ is the solution of (QOP). Then either q(u) = 0 and u satisfies (5), or q(u) is
a descent direction for all objectives Ĵ1(u), . . . , Ĵk(u) in u. Moreover, q(u) is locally
Lipschitz-continuous.

Using the result of Theorem 3, we can construct a global subdivision algorithm
[7] by which a nested sequence of increasingly refined box coverings of the entire
set of substationary points PS,sub is computed. Besides globality, a benefit of this
technique is that it can easily be applied to higher dimensions whereas in particular
geometric approaches struggle with a larger number of objectives. The computa-
tional cost, however, increases exponentially with the dimension of the Pareto set
such that in practice, we are restricted to a moderate number of objectives, i.e. k≤ 5.

In order to apply the subdivision algorithm to a multiobjective optimization prob-
lem, we first formulate the iteration scheme precisely. One step of the optimization
procedure is given by

u( j+1) = u( j)+h( j)q
(
u( j)), j = 0,1,2, . . . , (7)

where q(u( j)) is the descent direction according to (6) and h( j) is an appropriately
chosen step length (e.g. according to the Armijo rule [17] for all objectives). The
subdivision algorithm has initially been developed to compute global attractors for
dynamical systems [6]. Using the result of Theorem 3 and interpreting (7) as a dy-
namical system, one can show that (7) possesses an attractor for which the set of
substationary points PS,sub is a subset. If this set is connected, then it even coin-
cides with the attractor (see [7] for details). Using a multilevel subdivision scheme,
a sequence of sets B0,B1, . . . can be constructed, where each Bs is a subset of
Bs−1.

Remark 1. In the numerical realization, the elements of Bs are generalized rectan-
gles B (from now on referred to as boxes). These are represented by a finite number
of sample points; see Figure 2 for an illustration. Those sample points are distributed
randomly or on an equidistant grid, for example. ♦

In the subdivision algorithm, the steps subdivision and selection are performed
alternatingly. In the subdivision step, we construct a new collection of subsets B̂s
from Bs−1 such that⋃

B∈B̂s

B =
⋃

B∈Bs−1

B, diam(B̂s) = θsdiam(Bs−1), 0 < θmin ≤ θs ≤ θmax < 1,

where diam(Bs) is the box diameter:

diam(Bs) = max
B∈Bs

diam(B).

In practice, the subdivision is performed by consecutive bisection, cyclically with
respect to the coordinate directions.

In the selection step, all boxes are discarded which do not possess a pre-image
within B̂s. In other words, only those boxes are kept which are hit by a descent step
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of the dynamical system (7); cf. Figure 2 (b). In the limit s→∞, the algorithm yields
an arbitrarily close covering of the set of substationary points PS,sub.

(a) (b)

Fig. 2 Global subdivision algorithm – selection step. (a) Evaluation of the dynamical system gen-
erated by (7). (b) All boxes that do not possess a pre-image within the collection are discarded.

2.2.2 Gradient-Free Multiobjective Optimization

In many applications, gradients are unknown or difficult to compute. Furthermore,
in the majority of problems, additional constraints have to be taken into account. In
this case, we can use a gradient-free version of the subdivision algorithm which is
called the sampling algorithm in [7]. This algorithm also consists of a subdivision
and a selection step with the difference that the selection step is a non-dominance
test. Consequently, we directly compute the Pareto set PS instead of the set of sub-
stationary points PS,sub. In this chapter, we consider again the constrained problem,
i.e., the admissible set Uad ⊂ U is compact.

Algorithm 1 (Sampling algorithm)
Let B0 be an initial collection of finitely many subsets of the compact set Uad such that

⋃
B∈B0

B=
Uad. Then, Bs is inductively obtained from Bs−1 in two steps:

i) Subdivision. Construct from Bs−1 a new collection of subsets B̂s such that⋃
B∈B̂s

B =
⋃

B∈Bs−1

B, diam(B̂s) = θsdiam(Bs−1), 0 < θmin ≤ θs ≤ θmax < 1.

ii) Selection. Define the new collection Bs by

Bs =
{

B ∈ B̂s

∣∣∣ @B̂ ∈ B̂s such that B̂ dominates B according to Definition 4 d)
}
.

The numerical realization is similar to the gradient-based version. Every box B
is discretized by a finite number of sample points. At each of these sample points,
the objectives Ĵ are evaluated and all dominated points are identified using a non-
dominance test [25]. Finally, all dominated boxes are discarded, i.e. boxes which
contain only dominated points.
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We can conclude that in order to solve (4) by Algorithm 1, we have to evaluate the
objectives Ĵ for many different controls u which can quickly result in a prohibitively
large computational effort if model evaluations are expensive. The idea is therefore
to introduce a reduced-order model which is less expensive to solve but on the other
hand only yields approximations of the exact function values.

2.2.3 Inexact Function Values

Suppose now that we only have approximations Ĵ`i (u) of the objectives Ĵi(u). To be
more precise, we assume that

Ĵ`i (u) = Ĵi(u)+ εi with |Ĵ`i (u)− Ĵi(u)| ≤ ∆
J
i (u), (8)

where the upper bounds ∆ J
i (u) can be evaluated more efficiently than an actual

evaluation of Ĵ. For a more detailed introduction to multiobjective optimization with
uncertainties, also with respect to the treatment of inexact gradients, the reader is
referred to [19]. In Section 3.2, we will introduce the particular bound that is used
for the reduced cost function Ĵ in (P̂).

Based on the inexactness, we now extend the concept of non-dominance (cf. Def-
inition 4) to inexact function values:

Definition 5. Consider the multiobjective optimization problem (4), where the ob-
jective functions Ĵi(u), i = 1, . . . ,k, are only known approximately according to (8).

a) A point u∗ ∈U confidently dominates a point u ∈U, if Ĵ`i (u
∗)+∆ J

i (u)≤ Ĵ`i (u)−
∆ J

i (u) for i = 1, . . . ,k and Ĵ`i (u
∗)+∆ J

i (u) < Ĵ`i (u)−∆ J
i (u) for at least one i ∈

1, . . . ,k.
b) A set B∗ ⊂ U confidently dominates a set B ⊂ U if for every point u ∈B there

exists at least one point u∗ ∈B∗ confidently dominating u.
c) The set of almost non-dominated points, which is a superset of the Pareto set PS,

is defined as:

PS,∆ =
{

u∗ ∈ U
∣∣@u ∈ U with Ĵ`i (u)+∆

J
i (u)≤ Ĵ`i (u

∗)−∆
J
i (u), i = 1, . . . ,k

}
. (9)

Using Definition 5, we can extend the gradient-free Algorithm 1 to the situa-
tion where the function values are only known approximately. This can simply be
achieved by changing the non-dominance test in the selection step to the stronger
condition in (9). This allows us to compute the set of almost non-dominated points
PS,∆ based on reduced-order models using Algorithm 2. Consequently, if we are
interested in approximating the exact Pareto set with a prescribed accuracy, we are
faced with the challenge to control the error of the underlying reduced-order model
such that it satisfies condition (8). Algorithm 2 requires a large number of function
evaluations for different controls u with an error as small as possible. This task can
be addressed by using localized reduced basis approaches [1, 18]. Instead of build-
ing one model which is globally valid, the concept there is to store several, locally
valid ROMs in a library and evaluate the objective functions with the model with
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Algorithm 2 (Inexact sampling algorithm)
Let B0 be an initial collection of finitely many subsets of the compact set Uad such that

⋃
B∈B0

B=
Uad. Then, Bs is inductively obtained from Bs−1 in two steps:

i) Subdivision. Construct from Bs−1 a new collection of subsets B̂s such that⋃
B∈B̂s

B =
⋃

B∈Bs−1

B, diam(B̂s) = θsdiam(Bs−1), 0 < θmin ≤ θs ≤ θmax < 1.

ii) Selection. Define the new collection Bs by

Bs =
{

B ∈ B̂s

∣∣∣ @B̂ ∈ B̂s such that B̂ confidently dominates B according to (9)
}
.

the best accuracy. This has the advantage that the respective models can be smaller
in size whereas a reduced model which is accurate within a large range of controls
may become too high-dimensional to possess the necessary efficiency. This advan-
tage comes with the price that many high-fidelity function evaluations need to be
performed in order to build up the library of different ROMs.

3 Model-Order Reduction

Algorithm 1 implicitly presents us with the task of evaluating the cost function Ĵ(u)
for all sample points u∈B and all sets B∈Bs. Each of these evaluations requires the
system (2) (respectively (3) in the numerical implementation) to be solved for the
current control. As it was stated before, it is reasonable in this multi-query context to
apply model-order reduction techniques in order to reduce the computational effort
for the optimization.

3.1 The POD Galerkin Scheme for the State Equation

In this work we utilize the POD method to compute the ROMs; cf. [12]. Suppose
that we have chosen an admissible control u ∈ Uad and we would like to build a
localized surrogate model which is highly accurate for the data associated with this
control. Let yh = Shu denote the associated solution to (3). Then we consider the
linear space of snapshots

Vh = span
{

yh(t)
∣∣ t ∈ [0,T ]

}
⊂V h ⊂V with d= dimVh ≤ n.

For any finite ` ≤ d we are interested in determining a POD basis of rank ` which
minimizes the mean square error between yh(t) and their corresponding `-th partial
Fourier sums in the resulting subspace on average in [0,T ]:
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∫ T

0

∥∥∥yh(t)−
`

∑
i=1
〈yh(t),ψh

i 〉V ψ
h
i

∥∥∥2

V
dt

s.t. {ψh
i }`i=1 ⊂V h and 〈ψh

i ,ψ
h
j 〉V = δi j for 1≤ i, j ≤ `.

(P`)

A solution {ψh
i }`i=1 to (P`) is called POD basis of rank `. Let us introduce the linear,

compact, selfadjoint and nonnegative operator Rh : V →V h by

Rh
ψ =

∫ T

0
〈yh(t),ψ〉V yh(t)dt for ψ ∈V.

Then, it is well-known [10, Theorem 1.15] that a solution {ψh
i }`i=1 to (P`) is given

by the eigenvectors associated with the ` largest eigenvalues of Rh:

Rh
ψ

h
i = λ

h
i ψ

h
i for 1≤ i≤ ` λ

h
1 ≥ . . .≥ λ

h
` ≥ λ

h
`+1 ≥ . . .≥ 0.

Moreover, the POD basis {ψh
i }`i=1 of rank ` satisfies ψh

i ∈V h for 1≤ i≤ ` and

∫ T

0

∥∥∥yh(t)−
`

∑
i=1
〈yh(t),ψh

i 〉V ψ
n
i

∥∥∥2

V
dt =

d

∑
i=`+1

λi.

Remark 2 (Discrete POD method). It was already mentioned at the end of Section
2.1 that in the numerical implementation, the space V is replaced by the high-fidelity
space V h. Apart from that, the integral in (P`) has to be approximated numerically.
Let a time grid be given by 0 = t0 < .. . < tk = T along with integration weights
γ0, . . . ,γk > 0. Further, suppose that yhk

j is an approximation of yh(t) at the time
instance t = t j, j = 0, . . . ,k. Then, the discrete version of (P`) takes the form

min
k

∑
j=0

γ j

∥∥∥yhk
j −

`

∑
i=1
〈yhk

j ,ψhk
i 〉V ψ

hk
i

∥∥∥2

V

s.t. {ψhk
i }`i=1 ⊂V h and 〈ψhk

i ,ψhk
j 〉V = δi j for 1≤ i, j ≤ `.

(P`
k)

As for the continuous version (P`), a solution to (P`
k) is given by the eigenvectors to

the ` largest eigenvalues of the operator

Rhk : V →V h, Rhk
ψ =

k

∑
j=0

γ j 〈yhk
j ,ψ〉V yhk

j for ψ ∈V,

which is an approximation of Rhk. ♦

Now suppose that we have computed a POD basis {ψh
i }`i=1 ⊂V h of rank `� n.

We define the finite dimensional subspace V h` = span{ψh
1 , . . . ,ψ

h
` } ⊂V h. Then the

POD solution operator Sh` :U→H1(0,T ;V h`) ↪→Y is defined as follows: yh` = Sh`u
with y`(t)∈V ` for all t ∈ [0,T ] solves the following POD Galerkin scheme for every
1≤ i≤ `:
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Ω

(
yh`

t (t)ψh
i +∇yh`(t) ·∇ψ

h
i +(yh`(t)3

ψ
h
i

)
dx =

m

∑
i=1

ui

∫
Ωi

ψ
h
i dx a.e. in (0,T ),

yh`(0) = Ph` y0,

where the linear projection operator Ph` : H→V h` is given by

yh`
0 = Ph` y0 = argmin

ϕh`∈V h`
‖ϕ`− y0‖H .

We assume that the operator Ph` is a bounded operator from V to V . Then, we can
apply [27, Theorem 5.3]. It follows from [22] that the operator Sh` is well-defined
and

‖Shu−Sh`u‖2
L2(0,T ;V ) ≤C

d

∑
i=`+1

λ
h
i ‖ψh

i −Ph`
ψ

h
i ‖

2
V < ∞ for any u ∈ Uad. (10)

Note that this error estimate for the reduced state solution Sh`u is only valid for
the particular control u ∈ Uad that was used to generate the reduced-order model.
However, we are interested in estimating the error for an arbitrarily given admissible
control, and this will be addressed in the following section. Similarily to the reduced
cost function Ĵh, we introduce the reduced-order cost function

Ĵh` : U→ R3, Ĵh`(u) = J(Sh`u,u) =
1
2


‖(Sh`u)(T )− yd,1‖2

H

‖(Sh`u)(T )− yd,2‖2
H

|u|22

 .

3.2 Error Estimation

In this section, we will present an error estimator similar to (10) but for an arbitrary
control u ∈ Uad which was not necessarily used to build the reduced-order model.

Theorem 4 ([22]). Let a finite-dimensional subspace V ` be given as described in the
previous section and u ∈ Uad an arbitrary admissible control. Define the state and
reduced state solutions as yh = Shu and yh` = Sh`u. Then the following a-posteriori
estimate for the state holds:

‖yh(t)− yh`(t)‖2
H +

∫ t

0
‖yh(s)− yh`(s)‖2

V ds≤ ∆
pr(t,yh`) for all t ∈ [0,T ] (11)

with the a-posteriori estimator

∆
pr(t,yh`) = e2t

(
‖y0− yh`

0 ‖2
H +

∫ t

0
‖Rh`(s)‖2

V ′ ds
)
,
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where the residual term is defined for t ∈ [0,T ] and ϕh ∈V h as:

〈Rh`(t),ϕh〉V ′×V =
∫

Ω

yh`
t (t)ϕh +∇yh`(t) ·∇ϕ

h + yh`(t)3
ϕ

h dx−
m

∑
i=1

ui

∫
Ω

χiϕ
h dx.

From this, we can immediately derive an estimator for the cost function:

Lemma 1. Let V h` be introduced as in the previous section and u∈Uad an arbitrary
admissible control. Then the following a-posteriori estimate for the cost function
holds for i = 1,2:∣∣∣Ĵh

i (u)− Ĵh`
i (u)

∣∣∣≤√2∆pr(T,yh`)Ĵh`(u)+
1
2

∆
pr(T,yh`). (12)

Proof. We fix i ∈ {1,2} and observe using very basic estimations:∣∣∣Ĵh
i (u)− Ĵh`

i (u)
∣∣∣= 1

2

∣∣∣‖yh(T )− yd,i‖2
H −‖yh`(T )− yd,i‖2

H

∣∣∣
=

1
2

∣∣∣‖yh(T )− yd,i‖H +‖yh`(T )− yd,i‖H

∣∣∣
·
∣∣∣‖yh(T )− yd,i‖H −‖(yh`(T )− yd,i‖

∣∣∣
≤ 1

2

(
‖yh(T )− yd,i‖H +‖yh`(T )− yd,i‖H

)
· ‖yh(T )− yh`(T )‖H

≤ 1
2

(
2‖yh`(T )− yd,i‖H +‖yh(T )− yh`(T )‖H

)
· ‖yh(T )− yh`(T )‖H

=

√
2Ĵh`(u) · ‖yh(T )− yh`(T )‖H +

1
2
‖yh(T )− yh`(T )‖2

H .

The term ‖yh(T )−yh`(T )‖2
H can be further bounded by the state estimator (11), and

this yields (12). �

We can observe here that yh` ∈ H1(0,T ;V ), so both yh`(t) and yh`
t (t) in fact be-

long to the space V . However, it is analytically necessary to consider these terms as
elements in V ′. Therefore, the dual norm of R(t) is to be understood in the canonical
way:

‖Rh`(t)‖V ′ = max
ϕh∈V h\{0}

∣∣〈Rh`(t),ϕh〉V ′×V
∣∣

‖ϕh‖V
. (13)

At this point, we would like to consider the numerical realization in more detail. We
define the mass matrix M ∈ Rn×n and stiffness matrix A ∈ Rn×n by

Mi j =
∫

Ω

φiφ j dx, Ai j =
∫

Ω

∇φi ·∇φ j dx (i, j = 1, ...,n).

Let us express the functions yh`(t), ϕh and χi in the definition of Rh`(t) ∈ (V h)′ in
terms of the finite element basis {φ1, ...,φn} via
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yh`(t) =
n

∑
i=1

a`i (t)φi, ϕ
h =

n

∑
i=1

biφi, χi =
n

∑
i=1

ciφi

with coordinate vectors a`(t), b, c ∈Rn. We can then express the quotient in (13) as
follows: ∣∣〈Rh`(t),ϕh〉V ′×V

∣∣
‖ϕh‖V

=

∣∣b>d(t)
∣∣√

b>(M+A)b
for t ∈ [0,T ]

with d(t) := Ma`t (t)+Aa`(t)+M(a`(t))3−∑
m
i=1 uiMci. We can further conclude∣∣〈R(t),ϕh〉V ′×V

∣∣
‖ϕh‖V

=

∣∣b>(M+A)1/2(M+A)−1/2d(t)
∣∣√

b>(M+A)b

≤ |(M+A)1/2b|2|(M+A)−1/2d(t)|2√
((M+A)1/2b)>((M+A)1/2b)

≤ |(M+A)−1/2d(t)|2,

where (M+A)1/2 is the square root of the symmetric positive definite matrix M+A.
Summarizing, we have derived for any t ∈ [0,T ]

‖R(t)‖(V h)′ ≤
∣∣∣(M+A)−1/2

(
Ma`t (t)+Aa`(t)+M(a`(t))3−

m

∑
i=1

uiMci

)∣∣∣
2
,

which is used in practice to compute ∆pr(·,yh`(·)).

Remark 3. The estimator ∆pr(·,yh`(·)) from (11) was derived in [22] as a so-called
rigorous estimator. As a result, it was assumed during the proof that the unknown
true error always behaves according to the worst-case scenario. In a concrete ap-
plication, it is therefore often observed that this estimator overshoots the true error
by a roughly constant factor. Depending on the application, it may be desirable to
increase the tightness of the estimator by heuristically incorporating data from a
precomputed offline phase. Since this is the case in our application of inexact multi-
objective optimization, we will introduce such a heuristic in Section 4.1. However,
it has to be noted that the mathematical rigor that is prevalent at this point will be
lost by doing this. ♦

4 Numerical Algorithm and Results

In this section, we will combine the results from Sections 2.2 and 3.2 in order to ef-
ficiently and globally solve PDE-constrained MOCPs with set-oriented techniques.
To this end, the error estimates will be tightened by a heuristic factor and then con-
cepts from the localized reduced basis method will be adapted to the multiobjective
setting.

As the domain we consider the unit square Ω = (0,1)2 and the time interval
[0,T ] = [0,1]. The desired states are given by
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yd,1(x) =
{

0.5, x2 ≤ 0.5,
0.3, x2 > 0.5, yd,2(x) =

{
−0.5, x1 ≤ 0.5,

0.5, x1 > 0.5,

such that there are both conflicting and non-conflicting areas in the domain. The
subdomains are given by

Ω1 = [0,0.5]× [0,0.5], Ω2 = [0,0.5]× (0.5,1],
Ω3 = (0.5,1]× [0,0.5], Ω4 = (0.5,1]× (0.5,1].

The initial condition is y0(x) = 0 for all x ∈ Ω and we allow controls for the con-
straints ub = (1,1,1,1)> and ua =−ub.

4.1 Error Estimation

It has been mentioned in Remark 3 that the error estimator (11) often tends to con-
stantly overshoot the true error, a fact that can be observed for the given setup in
Figure 3. We would like to improve the tightness of the estimator by using a heuris-
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E
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(b)

Fig. 3 (a) Error ‖yh(T )− yh`(T )‖2
H in the state and error estimator ∆pr(T,yh`(T )) for randomly

chosen controls. (b) Error ‖yh(T )−yh`(T )‖2
H in the state and scaled error estimator ∆

pr
sc (T,yh`(T ))

for the same controls.

tic. We assume an over-estimation of the true error of the form

∆
pr(T,yh`)≈Csc · ‖yh(T )− yh`(T )‖2

H ,

where Csc > 1 is an unknown scaling factor. Let a finite sample set Usc ⊂ Uad be
given prior to the optimization. For a given reduced-order model, we compute the
full and reduced state solutions yu = Shu, y`u = Sh`u for all sample controls u ∈ Usc

and set Csc to be the geometric average
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Csc =

(
∏

u∈Usc

∆pr(T,yh`
u (T ))

‖yh
u(T )− yh`

u (T )‖2
H

) 1
|Usc|

.

Having thus obtained a heuristic correctional scaling factor, we replace the error
estimator by

∆
pr
sc (t,y

h`(t)) =
∆pr(t,yh`(t))

Csc
.

We illustrate the result of this procedure for randomly chosen controls in Figure 3. It
can be observed that on the one hand, we lose a rigorous estimate, i.e. it may happen
that ∆

pr
sc is smaller than the true error. On the other hand, ∆

pr
sc is significantly tighter

than ∆pr itself.
In Figure 4, we present some function values for the reduced-order and high-

fidelity function evaluations. The error margin indicated by the estimator ∆ J is so
small that it is not visible. When zooming in, we can see that the high-fidelity cost
function lies roughly within the error bar. It is therefore apparent that the perfor-
mance of the estimator is satisfactory for the purposes at hand.
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Fig. 4 For the random controls in Figure 3, these are the cost function values Ĵh
1/2(u) and Ĵh`

1/2(u).
Unvisible due to size, the reduced-order cost function plots are accomponied by an error bar of size
∆ J(u).
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4.2 Localized Reduced Bases: A Numerical Algorithm

Using the tightened error bounds, we are now in the position to address problem (P̂)
both with a finite element discretization and a POD approach. In the FEM approach,
we simply evaluate the discretized state equation at each sample point and then
determine the value of the cost functionals Ĵh

1 to Ĵh
3 . In the POD approach, we have

to ensure that the error estimator ∆ J
sc is less than a prescribed bound ∆ J

sc,max ∈ Rk

everywhere in the parameter domain. If we want to achieve this goal with a single
ROM, the model may become high-dimensional in order to satisfy the error bounds
everywhere and hence, inefficient. We therefore adopt ideas from localized reduced
basis methods [1, 18] and construct a library of locally valid models during the
subdivision procedure.

Before the first computation, we determine the factor Csc using several ROMs at
randomly distributed controls uref ∈ Usc within the parameter domain. In each of
these points, the factor between the true error and the error estimator is computed
and we set Csc as the mean value of these computations. Note that in our example,
this factor was≈ 2.5 everywhere in the parameter domain such that this approach is
justified. The library L is initialized by constructing a ROM for each of these FEM
solutions. This library can grow or shrink during the subdivision algorithm.

In each subdivision step, all sample points (the indices of which are contained in
the set N ) are evaluated using the closest ROM, where the distance is defined via
the Euclidean distance between the control u and the reference control u j

ref at which
the jth ROM was created. In the beginning, all points are denoted as insufficiently
approximated:

I =
{

i ∈N
∣∣ ∆

J
sc(u

i) 6≤ ∆
J
sc,max

}
,

meaning that they have not yet been approximated well enough using a ROM. Af-
ter the evaluation of Ĵ`, all points with a satisfactory error estimate according to
(12) are eliminated from I . Since the remaining points violate the desired error
bound ∆ J

sc,max ∈ Rk, we evaluate the full model and add a ROM to the library L .
This is done in a greedy way (see also [9]), i.e. we add the ROM at the point with
the maximum error. The above steps are repeated until all points are approximated
sufficiently accurately and consequently, the set I is empty. Finally, all ROMs are
removed from L which have not been used. This is done in order to keep the num-
ber of locally valid ROMs at an acceptable number. Moreover, ROMs belonging to
regions in the parameter domain which have been identified as dominated will not
be required any further. The procedure is summarized in Algorithm 3. We want to
emphasize that the approach presented here is only a first step towards using lo-
cal reduced bases within multiobjective optimization. We expect that the efficiency
can be further increased by implementing more sophisticated rules for clustering
the points than using the Euclidean distance. Moreover, we expect that making use
of online enrichment (see e.g. [1, 18]) or a combination of different bases will be
beneficial for the overall performance.
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Algorithm 3 (Greedy localized reduced basis approach)
Require: ∆ J

sc,max ∈ Rk, Csc, set of sample points N ⊂Uad;
1: Consider all sample points as insufficiently approximated, i.e. I = N ;
2: while I 6= /0 do
3: for i = 1, . . . , |I | do
4: Identify the closest ROM with respect to the 2-norm:

ι̂ = argmin
j∈{1,...,|L |}

∣∣ui−u j
ref

∣∣
2.

5: Compute Ĵh`(ui) using ROM ι̂ ;
6: Evaluate the error ∆ J

sc(u
i) for ROM ι̂ using (12);

7: if ∆ J
sc(u

i)≤ ∆ J
sc,max then

8: Accept Ĵh`(ui) as sufficiently accurate;
9: Remove i from the set I ;

10: Identify the sample point with the largest error:

imax = argmax
s∈I

∆
J
sc(u

s)

11: Add ROM to library L with uref = uimax ;
12: Remove all ROMs from L that have not been used;

4.3 Numerical Results

In this section we compare numerical results for the MOP (P̂) obtained by a finite el-
ement discretization (Algorithm 1) as well as a reduced-order model (Algorithm 2),
where the sample points in each subdivision step are evaluated using Algorithm 3.

Each box B is represented by an equidistant grid of two points in each direc-
tion, i.e. by 16 sample points in total. The exact Pareto set of (P̂) is shown in Fig-
ure 5 (a), where the boxes are colored according to the fourth component u4. The
corresponding Pareto front is given in Figure 5 (c) in green. The Pareto set for the
same problem, obtained by Algorithms 2 and 3, is shown in Fig. 5 (b), the corre-
sponding Pareto front in Figure 5 (c) in red. We observe a good agreement both
between the Pareto sets and the Pareto fronts. The error bound ∆ J

sc,max for the objec-
tives Ĵh

1 and Ĵh
2 is satisfied as desired. In order to also bound the error in the decision

space, further assumptions on the objectives have to be made.
For the inexact Pareto set, only 444 evaluations of the full model were required,

i.e., the FEM evaluations were reduced by a factor of more than 1000. The FEM
evaluations are mainly performed during the first subdivision steps (cf. Figure 6 (a))
whereas later, almost the entire decision space can be approximated by the existing
models. This is also illustrated in Figure 6 (b), where we observe an exponential
increase of the ratio of high-fidelity solutions between the FEM and the POD-based
approach. Therefore, it might be interesting to investigate the benefit of an offline
phase similar to classical reduced basis approaches.

Due to the inexactness, the number of boxes is larger in the inexact computation,
which is shown in Fig. 6 (c). Similar to the observations in [19], this effect becomes
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(a) (b)

(c) (d)

Fig. 5 (a) Pareto set of (P̂) after 22 subdivision steps using a finite element discretization.
Projection onto the first three components of u, and u4 is visualized by the box coloring. (b)
The Pareto set based on POD reduced-order models and the inexact sampling algorithm with
∆ J
sc,max = (0.025,0.025,0)>. (c) The corresponding Pareto fronts, where the FEM-based solu-

tion is depicted in green and the POD-based solution in red. The points are the images of the box
centers. (d) Clustering of the sample points. Each of the colored patches has been assigned to one
ROM, which are represented by black dots.

more severe during higher order subdivision steps. All boxes in the vicinity of the
exact Pareto set are not eliminated which results in an exponential increase in the
number of boxes. Consequently, further research is required to address this issue.

In Figure 5 (d), the locations of the reference controls uref of the (remaining)
ROMs are shown as black dots. The remaining points depict the sample points that
were evaluated in the 18th subdivision step, where the coloring depends on the ROM
the point was assigned to. Due to the fact that the selection is being based on the
Euclidean distance the size of all the patches is comparable. Since there is no formal
reason to choose this specific way of assigning sample points to ROMs, this moti-
vates the investigation of more advanced clustering approaches in order to further
reduce the number of required ROMs.

5 Conclusion and Outlook

In this chapter we have applied an inexact version of the gradient-free subdivision
algorithm from [19] to a multiobjective optimal control problem with a semilin-
ear parabolic state equation. The inexactness was in particular given by employing
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Fig. 6 (a) The number of FEM evaluations in each subdivision step. (b) Ratio of the total number
of high-fidelity evaluations within the POD-based inexact subdivision algorithm 2 and the FEM-
based exact subdivision algorithm 1. (c) Ratio of the respective number of boxes.

POD model-order reduction to the state equation in order to speed up cost func-
tion evaluations. Due to the existence of analytical error estimates for the resulting
state error, we were able to present an a-posteriori estimator for the cost function
error in Section 3. The maximal error for the reduced-order model is given a-priori
by the problem definition. In order to ensure the necessary accuracy, we employ
a localized-bases strategy. The ROMs are constructed iteratively using a Greedy
worst-first search which is described in Section 4. Our numerical results for a sim-
ple test problem confirm that the reduced-order approach is able to qualitatively
approximate both the Pareto front and the Pareto set. The Pareto front is captured
accurately according the prescribed error bounds on the cost function values. Fur-
thermore, the error estimator for the state variable and the cost function values are
coupled with a simple heuristic to compensate for a constant over-estimation factor.

It has to be mentioned that there is room for improvement to the presented algo-
rithm. Due to the difference in the Definitions 4 (exact dominance) and 5 (inexact
dominance), it is a natural consequence that the inexact algorithm can eliminate
fewer boxes in each iteration. This makes it necessary to perform more function
eliminations in the next iteration than for the exact algorithm. It may therefore be
beneficial to develop alternative or additional criteria in order reduce the number of
non-dominated boxes.

As far as the construction of reduced-order models is concerned, it has to be
stated that the current strategy only follows the heuristic that controls which lie
close to each other in a geometrical sense may share similar state and cost function
behavior. This straight-forward approach may result in an inefficiently large num-
ber of reduced-order models since there may be more distant controls which are
still sufficiently well approximated by the given reduced model. As a result, more
sophisticated clustering techniques in the control space need to be developed which
result in fewer, more cleverly spread reduced models for the state equation.

Let us mention that there is also a gradient-based version of Algorithm 1 [19]
based on a dynamical systems approach. In order to combine model-order reduc-
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tion and in particular error estimation with this method, we would have to estimate
the error between the gradients ∇Ĵh

i (u) and the reduced-order gradients ∇Ĵh`
i (u) by

using an a-posteriori estimator for the adjoint equation to the system (1).
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