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POD-Based Bicriterial Optimal Control by
the Reference Point Method

Stefan Banholzer ∗ Dennis Beermann ∗ Stefan Volkwein ∗∗

∗Department of Mathematics and Statistics, University of Konstanz,
78457 Konstanz, Germany
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Abstract: In the present paper a bicriterial optimal control problem governed by a parabolic
partial differential equation (PDE) and bilateral control constraints is considered. For the
numerical optimization the reference point method is utilized. The PDE is discretized by
a Galerkin approximation utilizing the method of proper orthogonal decomposition (POD).
POD is a powerful approach to derive reduced-order approximations for evolution problems.
Numerical examples illustrate the efficiency of the proposed strategy.

Keywords: Optimal control, multiobjective optimization, reference point method, proper
orthogonal decomposition, a-posteriori error analysis.

1. INTRODUCTION

In real applications, optimization problems are often de-
scribed by introducing several objective functions con-
flicting with each other. This leads to multiobjective or
multicriterial optimization problems; Ehrgott (2005), Mi-
ettinen (1998) or Stadler (1988). One prominent example
is given by an energy efficient heating, ventilation and air-
conditioning (HVAC) operation of a building with conflict-
ing objectives such as minimal energy consumption and
maximal comfort; Fong et al. (2006) and Kusiak et al.
(2011). Finding the optimal control that represents a good
compromise is the main issue in these problems. For that
reason the concept of Pareto optimal or efficient points is
developed. In contrast to scalar-valued optimization prob-
lems, the computation of a set of Pareto optimal points
is required. Consequently, many scalar-valued constrained
optimization problems have to be solved.

In this paper we apply the reference point method Ro-
maus et al. (2009) in order to transform a bicriterial
optimal control problem into a sequence of scalar-valued
optimal control problems and to solve them using well-
known optimal control techniques; see Tröltzsch (2010).
Preliminary results combining reduced-order modeling and
multiobjective PDE-constrained optimization are recently
derived Iapichino et al. (2013), Iapichino et al. (2015)
and Peitz et al. (2015).

The paper is organized as follows: In Section 2 we intro-
duce the bicriterial optimization problem under considera-
tion. The reference point method is explained in Section 3.
Here we also derive the a-posteriori error estimator which
is essential in our reduced-order approach. Section 4 is
devoted to recall the POD method for optimal control
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problems. Numerical examples are presented in Section 5.
Finally, a conclusion is drawn in Section 6.

Notation: Throughout this paper, if x1, x2 ∈ Rn are two
vectors, we write x1 ≤ x2 if x1

i ≤ x2
i for i = 1, ..., n, and

similarily for x1 < x2.

2. PROBLEM FORMULATION

2.1 The state equation

For time T > 0 the state equation is given by

(1)

yt(t,x)−∆y(t,x) =

m∑
i=1

ui(t)χi(x) for (t,x) ∈ Q,

∂y

∂n
(t,x) = 0 for (t,x) ∈ Σ,

y(0,x) = y◦(x) for x ∈ Ω,

where Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain with
Lipschitz-continuous boundary Γ = ∂Ω and n stands for
the outward normal vector. We set Q = (0, T )×Ω and Σ =
(0, T ) × Γ. Let H = L2(Ω) and V = H1(Ω) be endowed
by the canonical inner products; see Dautray and Lions
(2000). The variable u = (u1, . . . , um) ∈ U = L2(0, T )m

denotes the control and χi ∈ L∞(Ω), 1 = 1, . . . ,m, are
given control shape functions. Furthermore, y◦ ∈ L∞(Ω)
denotes a given initial heat distribution. We write y(t)
when y is considered as a function in x only for fixed
t ∈ [0, T ]. Recall that

W (0, T ) =
{
ϕ ∈ L2(0, T ;V )

∣∣ϕt ∈ L2(0, T ;V ′)
}

is a Hilbert space endowed with the common inner prod-
uct; see, e.g., Dautray and Lions (2000). A weak solution
y ∈ Y = W (0, T ) to (1) is called a state and has to satisfy
for all test functions ϕ ∈ V :

(2)

d

dt
〈y(t), ϕ〉H +

∫
Ω

∇y(t) · ∇ϕdx =
m∑
i=1

ui(t)〈χi, ϕ〉H ,

〈y(0), ϕ〉H = 〈y◦, ϕ〉H .



It is shown in Dautray and Lions (2000) that (2) admits
a unique solution y and

(3) ‖y‖Y ≤ C
(
‖y◦‖H + ‖u‖U

)
for a contant C ≥ 0. We introduce the linear operator
S : U → Y, where y = Su is the solution to (2) for given
u ∈ U with y◦ = 0. From (3) it follows that S is bounded.
Moreover, let ŷ ∈ Y be the solution to (2) for u = 0. Then,
the affine linear mapping U 3 u 7→ y(u) = ŷ + Su ∈ Y is
affine linear, and y(u) is the weak solution to (1).

2.2 The multiobjective optimal control problem

For given ua, ub ∈ U with ua ≤ ub in U, the set of
admissible controls is given as

Uad =
{
u ∈ U

∣∣ua(t) ≤ u(t) ≤ ub(t) in [0, T ]
}
.

Introducing the bicriterial cost functional

J : Y× U→ R2, J(y, u) =
1

2

(
‖y(T )− yΩ‖2H
‖u‖2U

)
the multiobjective optimal control problem (MOCP) reads

(P) min J(y, u) subject to (s.t.) (y, u) ∈ F(P)

with the feasible set

F(P) =
{

(y, u) ∈ Y× Uad

∣∣ y solves (2)
}
.

Next we define the reduced cost function Ĵ = (Ĵ1, Ĵ2) :

U→ R2 by Ĵ(u) = J(ŷ + Su, u) for u ∈ U. Then, (P) can
be equivalently formulated as

(P̂) min Ĵ(u) s.t. u ∈ Uad.

Problem (P̂) involves the minimization of a vector-valued
objective. This is done by using the concepts of order
relation and Pareto optimality; see, e.g., Ehrgott (2005).
In R2 we make use of the following order relation: For all
z1, z2 ∈ R2 we have

z1 ≤ z2 ⇔ z2 − z1 ∈ R2
+ =

{
z ∈ R2

∣∣ zi ≥ 0 for i = 1, 2
}
.

Definition 1. The point ū ∈ Uad is called Pareto optimal
for (P̂) if there is no other control u ∈ Uad \ {ū} with

Ĵi(u) ≤ Ĵi(ū), i = 1, 2, and Ĵj(u) < Ĵj(ū) for at least one
j ∈ {1, 2}.

3. THE REFERENCE POINT METHOD

3.1 The reference point problem

The theoretical and numerical challenge is to present the
decision maker with an approximation of the Pareto front

P =
{
Ĵ(u)

∣∣u ∈ Uad is Pareto optimal
}
⊂ R2

In order to do so, we follow the ideas laid out in Peitz et
al. (2015) and make use of the reference point method :
Given a reference point z = (z1, z2) ∈ R2 that satisfies

(4) z < Ĵ(u) for all u ∈ Uad

we introduce the distance function Fz : U→ R by

Fz(u) = 1
2 |Ĵ(u)− z|2 = 1

2

(
Ĵ1(u)− z1

)2
+ 1

2

(
Ĵ2(u)− z2

)2
.

The mapping Fz measures the geometrical distance be-
tween Ĵ(u) and z.

Lemma 2. The mapping Fz is strictly convex.

Proof. The mapping Fz is of the form Fz =
∑2
i=1 gi ◦ Ĵi

where, because of (4), we have gi : (zi,∞) → R+
0 with

gi(ξ) = (ξ − zi)
2/2. Because of the affine linearity of

u 7→ y(u), Ĵ1 is convex and Ĵ2 strictly convex. Further,
gi is strictly convex and monotone increasing for i = 1, 2.
Altogether, Fz itself is strictly convex. 2

Suppose that z is componentwise strictly smaller than
every objective value which we can achieve within Uad.
The goal is that – by approximating z as best as possible
– we get a Pareto optimal point for (P̂). Therefore, we
have to solve the reference point problem

(P̂z) minFz(u) s.t. u ∈ Uad

which is a scalar-valued minimization problem.

Theorem 3. For any z ∈ R2 the reference point problem
admits a unique solution ūz ∈ Uad.

Proof. By Lemma 2 the mapping Fz is convex. Now, the
proof is identical to the proof of Theorem 2.14 in Tröltzsch
(2010) and uses the strict convexity of Fz along with the
fact that Uad is bounded and closed in U. 2

Theorem 4. Let (4) hold and ūz ∈ Uad be an optimal

solution to (P̂z) for a given z ∈ R2. Then ūz is Pareto

optimal for (P̂).

Proof. We follow along the lines of Theorem 4.20 in
Ehrgott (2005): Assume that ūz ∈ Uad is not Pareto

optimal, then there exists a point u ∈ Uad with Ĵ(u) ≤
Ĵ(ūz) and Ĵj(u) < Ĵj(ūz) for j ∈ {1, 2}. Using (4) we get

0 < Ĵi(u)− zi ≤ Ĵi(ūz)− zi for i = 1, 2

and strictly smaller for i = j. Together, this yields Fz(u) <
Fz(ūz) which is a contradiction to the assumption that ūz
is optimal for (P̂z). 2

By solving (P̂z) consecutively with an adaptive variation
of z, we are able to move along the Pareto front in a uni-
form manner. This way, we get a sequence {zk}k∈N ⊂ R2

of reference points along with optimal controls {uk}k∈N ⊂
Uad that solve (P̂z) with z = zk as well as {Ĵk}k∈N ⊂ R2

with Ĵk = Ĵ(uk). To be more precise, the next reference
point zk+1 is chosen as

(5) zk+1 = Ĵk +hJ
Ĵk − Ĵk−1

|Ĵk − Ĵk−1|
+hz

Ĵk − zk

|Ĵk − zk|
for k ≥ 2,

where hJ , hz ≥ 0 are chosen to control the coarseness of
the approximation to the Pareto front. The algorithm is
initialized by applying the weighted sum method to (P̂);

Zadeh (1963). This yields the first iterates Ĵ1, Ĵ2 ∈ P. We
therefore do not require z1, z2 and compute z3 by setting
hz = 0 in (5). Note that the algorithm only moves in one

direction: If Ĵ1
1 > Ĵ2

1 , then it turns to the upper left in
the R2-plane. Therefore, we perform the algorithm twice,
the second time with switched roles of Ĵ1, Ĵ2 to cover the
other direction as well.

3.2 Optimality conditions

Applying the chain rule, we get for any u ∈ U

(6) ∇Fz(u) = (Ĵ1(u)− z1)∇Ĵ1(u) + (Ĵ2(u)− z2)∇Ĵ2(u).



It is well known (Hinze et al. (2009)) that the gradients

of Ĵ1 and Ĵ2 take the form

(7)
[
∇Ĵ1(u)

]
i

=

∫
Ω

χip(·) dx, 1 ≤ i ≤ m, ∇Ĵ2(u) = u,

where p ∈ Y is the weak solution to the adjoint equation

(8)

−pt(t,x) = ∆p(t,x) for (t,x) ∈ Q,
∂p

∂n
(t,x) = 0 for (t,x) ∈ Σ,

p(T,x) = y(T,x)− yΩ(x) for x ∈ Ω.

In particular, we have

(9) ‖p‖Y ≤ C‖y(T )− yΩ‖H
for a constant C ≥ 0 which does not depend on u.

We infer from (6)[
∇Fz(u)

]
i

= (Ĵ1(u)− z1)

∫
Ω

χip(·) dx

+ (Ĵ2(u)− z2)ui ∈ U for i = 1, . . . ,m.

The first-order necessary optimality condition for an opti-
mal ūz ∈ Uad now reads as the variational inequality

(10) 0 ≤ 〈∇Fz(ūz), u− ūz〉U for all u ∈ Uad.

Next, we investigate second-order derivatives: we find

∇2Fz(u)v =

2∑
i=1

(
(Ĵi(u)− zi)∇2Ĵi(u)v

+ 〈∇Ĵi(u), v〉U∇Ĵi(u)
)

for v ∈ U,

where [
∇2Ĵ1(u)v

]
i

=

∫
Ω

χiq(·) dx, ∇2Ĵ2(u)v = v

and q ∈ Y solves the second adjoint equation

−qt(t,x) = ∆q(t,x) for (t,x) ∈ Q,
∂q

∂n
(t,x) = 0 for (t,x) ∈ Σ,

q(T,x) = ỹ(T,x) for (t,x) ∈ Ω

and ỹ = Sv ∈ Y is the solution to (2) for u = v and y◦ = 0.
We are interested in whether the second derivative of Fz
is coercive. Let u ∈ Uad and v ∈ U:

〈∇2Fz(u)v, v〉U

=

2∑
i=1

(Ĵi(u)− zi)〈∇2Ĵi(u)v, v〉U +
∣∣〈∇Ĵi(u), v〉U

∣∣2
≥ (Ĵ1(u)− z1)

∫ T

0

∫
Ω

( m∑
k=1

χkvk

)
q dxdt

+ (Ĵ2(u)− z2)‖v‖2U
= (Ĵ1(u)− z1)‖ỹ(T )‖2H + (Ĵ2(u)− z2)‖v‖2U

with ỹ = Sv. This yields the following result.

Theorem 5. Let (4) hold. For any u ∈ Uad the hessian
∇2Fz(u) satisfies

〈∇2Fz(u)v, v〉U ≥ κz(u) ‖v‖2U
for κz(u) = Ĵ2(u)− z2 > 0. Moreover, if

(11) κ̄z = min
{
Ĵ2(u)− z2

∣∣u ∈ Uad

}
> 0

then ∇2Fz is uniformly positive definite with coercivity
constant κ̄z.

Remark 6. It is a major advantage for the upcoming error
estimation that a coercivity constant for ∇2Fz can be
chosen as Ĵ2(u) − z2 . Usually, the smallest eigenvalue of
∇2Fz(u) has to be computed to gain information about
the coercivity constant; Trenz (2016). From a numerical
point of view, this is both very expensive and unstable,
whereas the value κz(u) is easily available. 3

3.3 A-posteriori error estimation

We want to estimate the error ‖ūz − ũ‖U, where ūz ∈ Uad

is the (unknown) optimal control of (P̂z) and ũ ∈ Uad

is an given admisible control. We follow along the lines
of Kammann et al. (2005) and consider the perturbed
problem

(12) minFz(u) + 〈ζ, u〉U s.t. u ∈ Uad

for a fixed function ζ ∈ U. Notice that the functional
Fz + 〈ζ, ·〉U is also strictly convex. Hence, (12) has a
unique solution ūζ for any ζ ∈ U. The first-order sufficient
optimality condition for (12) reads

(13) 〈∇Fz(ūζ) + ζ, u− ūζ〉U ≥ 0 for all u ∈ Uad.

We will later show that a perturbation ζ = ζ(ũ) can be
computed numerically such that for a known admissible
control ũ ∈ Uad the variational inequality (13) holds. This
implies that ũ solves (12).

Suppose that (11) holds. Inserting ũ in (10) as u and ūz
in (13) as u yields

0 ≤ 〈∇Fz(ūz), ũ− ūz〉U + 〈∇Fz(ũ) + ζ, ūz − ũ〉U
≤ −〈∇Fz(ūz)−∇Fz(ũ), ūz − ũ〉U + ‖ζ‖U‖ūz − ũ‖U.

Using the mean value theorem for the Fréchet-differentiable
function ∇Fz yields the existence of a û ∈ U with

0 ≤ −〈∇2Fz(û)(ūz − ũ), ūz − ũ〉U + ‖ζ‖U‖ūz − ũ‖U
≤ −κ̄z‖ūz − ũ‖2U + ‖ζ‖U‖ūz − ũ‖U.

Summarizing, we deduce the rigorous estimate

‖ūz − ũ‖U ≤
1

κ̄z
‖ζ‖U.

We still have to identify the function ζ ∈ U. Exactly as in
Kammann et al. (2005), we use

(14) ζi(t) =

{
[(∇Fz(ũ))i(t)]− if ũi(t) = (ua)i(t),
−[(∇Fz(ũ))i(t)]+ if ũi(t) = (ub)i(t),
−(∇Fz(ũ))i(t) otherwise,

where we have used the decomposition for a real number
ξ ∈ R as ξ = [ξ]+ − [ξ]− with [ξ]+ = max(0, ξ) and [ξ]− =
−min(0, ξ). Thus, we have proved the next theorem.

Theorem 7. Assume that (11) holds and ūz ∈ Uad is the

unique solution to (P̂z). For an arbitrary control ũ ∈ Uad

let the function ζ ∈ U be defined as in (14). Then we can
estimate the error by

(15) ‖ūz − ũ‖U ≤ ∆(ũ) with ∆(ũ) =
1

κ̄z
‖ζ‖U.

3.4 Continuity of the mapping z 7→ ūz

An important aspect is how the optimal control ūz adapts
to the choice of the reference point.



Theorem 8. Suppose that (11) holds. Let ūz be the opti-

mal solution to (P̂z) for a given feasible reference point
z ∈ Z with

Z =
{
z̃ ∈ R2

∣∣ z̃1 < Ĵ1(u), z̃2 < Ĵ2(u)− κ̄ for all u ∈ Uad

}
.

Then the mapping z 7→ ūz is continuous from Z to Uad.

Proof. Let z1 = (z11, z12), z2 = (z21, z22) ∈ Z be chosen
arbitrarily with according optimal controls ū1 = ūz1 ,
ū2 = ūz2 . By using (10) we get

(16)

0 ≤ 〈∇Fz1(ū1), ū2 − ū1〉U + 〈∇Fz2(ū2), ū1 − ū2〉U
= −〈∇Fz1(ū1)−∇Fz1(ū2), ū1 − ū2〉U

+ 〈∇Fz2(ū2)−∇Fz1(ū2), ū1 − ū2〉U.
Arguing as in the proof of Theorem 7 the first term is
bounded by −κ̄‖ū1 − ū2‖2U. Hence, (16) implies that

(17) κ̄ ‖ū1 − ū2‖2U ≤ 〈∇Fz2(ū2)−∇Fz1(ū2), ū1 − ū2〉U.
From (6) we find that ∇Fz(u) depends linearly on z and

〈∇Fz2(ū2)−∇Fz1(ū2), ū1 − ū2〉U

=

2∑
i=1

(z1i − z2i) 〈∇Ĵi(ū2), ū1 − ū2〉U

≤
∣∣z1 − z2

∣∣( 2∑
i=1

〈∇Ĵi(ū2), ū1 − ū2〉
2

U

)1/2

≤ C(z2)
∣∣z1 − z2

∣∣‖ū1 − ū2‖U,
where C(z2) = (

∑2
i=1 ‖∇Ĵi(ū2)‖2U)1/2 is independent of

ū2 and therefore independent of z2. We derive from (17):

‖ū1 − ū2‖U ≤
C(z2)

κ̄

∣∣z1 − z2

∣∣.
Fixing z2 and letting z1 → z2 in R2 now yields ū1 → ū2 in
U which proves the claim. 2

Remark 9. The set Uad is bounded. Combining (3) and
(9) it follows that the weak solution p to (8) is bounded
in Y by a constant independent of u ∈ Uad. Consequently,
the norms ‖∇Ĵ1(u)‖U and ‖∇Ĵ2(u)‖U are bounded by a
constant independent of u ∈ Uad. Hence the constant C(z2)
in the proof of Theorem 8 is bounded from above by a
constant independent of u ∈ Uad. This implies that the
mapping z 7→ ūz is even Lipschitz-continuous. 3

4. REDUCED-ORDER MODELING (ROM) BY POD

The previously described reference point algorithm makes
it necessary to repeatedly solve (P̂z) which ultimately goes
back to computing the state equation (1) and its adjoint
equation (8) for many different instances. This multi-
query context makes model-order reduction techniques
conceivable; we focus in particular on proper orthogonal
decomposition (POD); see, e.g., Holmes et al. (2012):
After having computed the first control u1 by means of
a weighted sum problem, a finite-dimensional subspace

V ` = span {ψ1, . . . , ψ`} ⊂ V
is created such that the projected trajectory of y(u1) has
a least-squares deviation from its full-dimensional version
at given time instances 0 = t1 < t2 < . . . < tn = T . Let
X denote either the space H or V . Then we consider the
POD cost function I : V ` → R which is given by

In(ψ1, ..., ψ`) =

n∑
j=1

αj

∥∥∥y(tj)−
∑̀
i=1

〈y(tj), ψi〉X ψi
∥∥∥2

X

with positive (trapezoidal) weights αj . The POD optimiza-
tion problem then reads

(18) min In(ψ1, ...ψ`) s.t. 〈ψi, ψj〉X = δij (i, j = 1, ..., `).

The solution to (18) is well-known by the singular value
decomposition of a certain operator, compare e.g. Kam-
mann et al. (2005).

Now suppose that we have computed a POD basis
{ψi}`i=1 ⊂ X of rank ` ≤ n. The POD Galerkin solution

(19) y`(t) =
∑̀
i=1

a`i(t)ψi for t ∈ [0, T ], a` : [0, T ]→ R`

satisfies the following POD Galerkin scheme

(20)

d

dt
〈y`(t), ψj〉H +

∫
Ω

∇y`(t) · ∇ψj dx

=
m∑
i=1

ui(t) 〈χi, ψj〉H , t ∈ (0, T ),

〈y`(0), ψj〉H = 〈y◦, ψj〉H
for j = 1, ..., ` and t ∈ (0, T ). It is known that (20) admits
a unique solution y` = y`(u) ∈ H1(0, T ;V `) ⊂ Y; see, e.g.,
Gubisch and Volkwein (2016).

Inserting (19) into (20) we get the following system in R`:
Mȧ`(t) + Sa`(t) = Bu(t), a`(0) = a◦

with the mass matrix M ∈ R`×`, the stiffness matrix
S ∈ R`×` and the control operator B ∈ R`×m which are
given by

Mij = 〈ψi, ψj〉H for i, j = 1, ..., `,

Sij =

∫
Ω

∇ψi · ∇ψj dx for i, j = 1, ..., `,

Bij = 〈ψj , χi〉H for i = 1, ...,m, j = 1, ..., `.

The POD Galerkin approximation to (P) is given by the
minimization problem

(P̂`) min Ĵ`(u) s.t. u ∈ Uad,

where we set Ĵ`(u) = J(y`(u), u) and y`(u) denotes the
solution to (20) for u ∈ Uad.

To solve (P̂`) we apply the reference point method utilizing
the corresponding distance function

F `z (u) =
1

2
|Ĵ`(u)− z|2.

with a reference point z ∈ R2. Thereby, we obtain a POD
suboptimal control ū`z ∈ Uad for any z. The resulting error
is then estimated using (15) with ũ = ū`z. This indicates
the quality of the current POD basis, which can then be
recomputed if necessary.

5. NUMERICAL EXPERIMENTS

5.1 Setting

All computations were carried out on a standard PC
with Ubuntu 14.04 LTS, Intel(R) Core i7-4600U CPU @
2.10GHz x4, 11.4 GiB RAM.

For the state equation, we choose a two-dimensional do-
main Ω = (0, 1)2 and m = 9 shape functions which are
indicator functions representing a uniform partition of the
domain. The initial condition is y◦ ≡ 0 and we chose
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Fig. 1. Discrete Pareto front consisting of 64 points com-
puted using POD-ROM with ` = 2.

T = 1. The bilateral constraints were set to ua ≡ 0 and
ub ≡ 1. For the cost functional J , the terminal condition
is yΩ ≡ 1.

Problem (P̂z) was solved using a projected Newton-CG
method; see Kelley (1999). For the coefficients in (5),
two different settings were used as will be explained later
in detail. The discretization was done using linear finite
elements (FE) on a grid with Nx = 729 nodes. The time
interval was discretized uniformly using Nt = 100 time
instances. The time discretization of the state and adjoint
equation were done by an implicit Euler scheme. For the
POD basis computation we utilize X = V .

5.2 Results

First results can be seen in Figure 1, where the Pareto
front was computed using the POD-ROM ansatz described
in Section 4 with ` = 2 basis functions.

One can observe that the front becomes coarser towards
the lower right. This is due to the fact that in this
area, Ĵ`2 is relatively small which corresponds to little
to no control effort. For these objective values, a very
small increment in the control variable can yield a large
improvement towards the desired state. However, this is
due to the nature of the problem and is also observed using
different multiobjective optimization techniques, like, e.g.,
the weighted sum method. Apart from this, the results
are quite satisfactory: We have achieved a rather uniform
discretization of the Pareto front which can be presented
to the decision maker.

In Figures 2 and 3, the corresponding reference points
can be seen. Note that the axis are not scaled equally so
the pictures look distorted. We have utilized two different
strategies for choosing the parameters in (5), one resulting
in a very tight neighbourhood of the front, the other one
in a curve further apart. This has consequences which will
become apparent when considering the error estimation.

Recall that in the estimation for the real error (15), the
term κ̄z appears which is given by the condition (11). As
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Fig. 2. Part of the Pareto front with according reference
points, chosen close to the front itself.
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Fig. 3. Part of the Pareto front with according reference
points, chosen far from the front itself.

it turns out, this condition is too strong for our numerical
purposes. Instead, we only require that the inequality
holds for all u in a neighbourhood of the optimal control
ū. As an approximation, we therefore compute

κz(ū
`
z) = Ĵ`2(ū`z)− z2,

where ū`z is the suboptimal control solving (P̂`), and use
this value instead of κ̄z. Furthermore, an additional termi-
nation check is implemented to terminate the multiobjec-
tive optimization if κz(ū

`
z) falls below a certain tolerance

0 < εκ � 1.

By (11), if the reference points are further apart from the
Pareto front, κ̄z should be larger which would correspond
to a tighter estimator ∆(ũ) in (15) for the choice ũ = ū`z.
We have analyzed the behavior of the error estimator
along the multiobjective optimization iteration: For each
reference point z ∈ R2, we obtain a POD-based suboptimal
control ū`z which is an approximation to the (unknown)
optimal control ūz that is approximated by the FE control
denoted by ūhz . In Figures 4 and 5, we observe the behavior
of the true error ‖ūhz − ū`z‖U as well as the error estimator
∆(ū`z) in the course of the multiobjective optimization,
both for close and far reference points.

It can be seen that indeed, we are able to achieve a much
tighter estimate for the choice of distant reference points.
Nevertheless, the estimator can overshoot the real error
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Fig. 4. True error ‖ūhz − ū`z‖U and error estimator ∆(ū`z)
for ` = 2, using reference points z close to the Pareto
front.
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Fig. 5. True error ‖ūhz − ū`z‖U and error estimator ∆(ū`z)
for ` = 2, using reference points z far from the Pareto
front

for factors of up to 103. This can be explained by the fact
that we have used some rather rough estimates to get to
the bound κ̄z in (15). The neglected terms then explain
the observed discrepancies.

The zigzag behavior of the error estimates can be easily ex-
plained since in the implementation, we do not cover both
directions in the objective space consecutively. Instead, we
alternate between the two directions. We therefore alter-
nate between different regions of the Pareto front where
different properties of the reference point problem prevail.

6. CONCLUSION

In the present paper it is illustrated that POD reduced-
order strategies can be efficiently combined with the refer-
ence point method in order to solve bicriterial optimization
problems. A rigorous a-posteriori error estimator allows
us to control the POD error in order to ensure a desired
tolerance. As a next step we plan to involve also convective
terms in the state equation in order to model a heat
convection in a building.
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