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POD reduced order modeling for evolution equations utilizing
arbitrary finite element discretizations

Carmen Graflle and Michael Hinze

Abstract

The main focus of the present work is the inclusion of spatial adaptivity for snapshot
computation in the offline phase of model order reduction utilizing Proper Orthogonal De-
composition (POD-MOR). For each time level, the snapshots live in different finite element
spaces, which means in a fully discrete setting that the snapshots are vectors of different length.
In order to overcome this obstacle, we present a discretization independent POD reduced or-
der model, which is motivated from a continuous perspective and is set up explicitely without
interpolation of the snapshots. The analysis for the error between the resulting POD solution
and the true solution is carried out. Finally, we present numerical examples to illustrate our
approach.

Keywords and phrases: Model Order Reduction, Reduced Order Modeling, Proper Orthogonal Decomposi-
tion, Adaptive Finite Element Discretization, Partial Differential Equation, Evolution Equations
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1 Introduction

For many problem settings, model order reduction utilizing Proper Orthogonal Decomposition
(POD) has proven to be a powerful tool in order to reduce large scale systems to surrogate models
of low dimension while preserving a good approximation quality. The range of applications of POD
model order reduction (POD-MOR) comprises a broad scope, including (amongst others) linear and
nonlinear parabolic equations [15], optimal control of partial differential equations [8, 28, 14, 13, 2]
and fluid dynamics [21, 10, 20]. A general introduction to POD and reduced order modeling can
be found in [12, 23, 29], for example. The key idea of the POD technique is to apply a Galerkin
ansatz, in which the ansatz functions, i.e. the POD basis functions, contain information about the
underlying dynamical system. Following the approach of snapshot based POD in [26], the system
information is retrieved from snapshots of the solution trajectory at several time instances, which
are generated in a simulation.

In practice, many simulations require adaptive strategies for the spatial discretization in order to
be implementable. For example, in the simulation of Cahn-Hilliard systems based on diffuse inter-
face approaches, many degrees of freedom are required at the interfacial regions in order to well
resemble the steep gradient, whereas in the pure phases only little numbers of degrees of freedom
are needed, see [9] for example. Utilizing a uniform mesh for such problems would drastically
enlarge the computational effort and storage problems would occur.

In [5] adaptive finite element methods and POD reduced order modeling are considered as two
different techniques in order to reduce the complexity of the numerical solution of optimal control
problems. The combination of both approaches contains a major challenge. The inclusion of spatial
adaptivity in the context of model reduction means, in a discrete formulation, that the snapshots
at each time instance may have different lengths due to their different spatial resolutions. For this
reason, the snapshot matrix can not be set up directly and the usual POD procedure can not be
carried out. In this paper, we consider the combination of adaptive finite element snapshots with
POD model order reduction. Our perspective is based on the continuous setting, which allows us to
derive a reduced order model which is independent of the underlying finite element discretization.
The inclusion of spatial adaptivity in the POD framework is advantageous from two perspectives:



on the one hand, the use of adaptive finite elements for snapshot generation can remarkably reduce
the offline computation time in comparison to the use of a uniform mesh with resolution of the
finest level of the adaptive grids. On the other hand, we expect to speed up the computations
when solving the POD surrogate model in contrast to utilizing adaptive finite elements, since we
solve POD reduced systems of low order.

In order to overcome the difficulties arising from combining POD with adaptive finite elements,
different concepts are proposed. In [7], the use of dynamically adaptive meshes is combined with
POD-MOR for an unstructured ocean model. A fixed reference mesh is utilized, onto which the
spatial adaptive snapshots are interpolated. This allows snapshots of the same lengths at each
time level and the usual POD procedure can then be performed on this fixed reference mesh. In
[17, Ch. 2.4.3] an interpolation approach is outlined. The idea is to interpolate given snapshots
of arbitrary spatial discretizations by (piecewise) polynomials. For the fully discrete POD setting,
the spatial discretization points are chosen appropriately for the numerical integration of the poly-
nomials. In the context of reduced basis methods, adaptive wavelet discretizations are used in [3]
in the offline snapshot computation phase. In [31], a reduced basis method is developed which is
certified by a residual bound relative to the infinite-dimensional weak solution. Different adaptive
strategies are considered for both the finite element and the reduced basis level. Furthermore, in
[11] three numerical concepts to treat the moving free boundary for the calculation of the snapshots
are compared: first a Landau-type transformation, second a control volume approach and third
a moving mesh approach. In contrary to the first two concepts, the number of grid points in the
moving mesh approach (r-adaptivity) is kept fixed, but they are moved according to the evolution
of the free boundary. POD is applicable with only minor modifications. Recently and in parallel
to our work, in [27] POD model reduction in combination with snapshots utilizing h—adaptive
finite elements with fixed polynomial degree is investigated. In order to compute a POD basis,
two options are considered: either all snapshots are expressed in terms of a common finite element
basis or pairs of snapshots are expressed in terms of a common finite element basis of these pairs.
Moreover, error statements for a parametrized elliptic boundary value problem are proved.

The aim of this work is to derive a POD reduced order model for a general evolution equation
which can be set up and solved for arbitrary finite element discretizations without using interpo-
lation. This approach is motivated from a continuous perspective, where snapshots from different
finite element spaces belong to a same Hilbert space. The assembly of the snapshot matrix can
be avoided by directly setting up an eigenvalue problem for which we only need the calculation of
the inner product of the finite element ansatz functions. This can be computed for arbitrary finite
element discretizations and suffices to set up a POD-ROM.

The paper is organized as follows: the general problem setting of an abstract parabolic evolution
problem is described in Section 2. We recall the POD method in real Hilbert spaces in Section 3
and set up a POD eigenvalue problem which can be assembled for any finite element discretization.
The POD reduced order model for arbitrary finite element discretizations is discussed in Section
4. In order to validate the quality of the POD solution, we investigate the error between the POD
solution and the true solution in Section 5. Numerical examples are presented in Section 6 to
illustrate our approach.

2 Abstract parabolic evolution problem

2.1 Problem setting

Let us specify the abstract parabolic evolution problem which we consider in the following. Let
(V,{-,}v) and (H,(-,-)) be real separable Hilbert spaces such that there exists a dense and
continuous embedding V' < H. The dual space H' can be identified with H by the Riesz repre-
sentation theorem and the Gelfand triple (V, H, V') is formed by V < H = H' < V’. Since V is
continuously embedded in H, there exists a constant ¢, > 0 such that

lvll% < collvl|}  forallve V.
For a given symmetric, V-elliptic bilinear form a : V' x V — R, we assume boundedness, i.e.

38>0: J|a(u,v)| < Bllullvv|ly for all u,v € V



and coercivity, i.e.
Ik >0: a(u,u) > k|ul|}y forallueV.

Let A :V — V'’ be the bounded linear operator associated with the bilinear form a, i.e. A €
L(V, V') and
a(u,v) = (Au,v)yr v = (u, Av)yy, forall u,v €V,

where (-,-)y+ v denotes the dual pairing of V' and V. Moreover, we denote by N : V. — V' a
nonlinear operator. We are concerned with the following Cauchy problem for a semilinear evolution
problem. Let T" > 0 be a fixed end time. For a given initial function yo € H and external force
f € L?(0,T; V") we consider the problem: find y € W(0,T) := {v € L*(0,T;V),v; € L*>(0,T;V")}

with
{ W), v +aly(t),v) + N®),v)vv = (fB), vy, (1)
(y(0),v)r = (yo,v)m,
for all v € V and for almost all ¢t € (0,7]. Note that it holds %(y(t),wH = (y'(t),v)y v for all

y € L2(0,T;V) with ¥/ € L*>(0,T;V’) and all v € V in the sense of distributions in (0, 7).

Assumption 2.1. For every f € L?(0,T;V’) and yo € H there exists a unique weak solution of
(1) with
y e L*0,T;V)nC([0,T]; H) N H*(0,T; V).

Remark 2.2. Under monotonicity, boundedness and Lipschitz continuity assumptions on the
nonlinear operator N, existence and uniqueness results for a general abstract evolution equation
of type (1) are proved in [30, Th. 4.1] or [22, Ch. 6], for example.

Example 2.3 (Linear heat equation). Let O C R¥ k € {1,2,3} be a bounded open domain
with Lipschitz continuous boundary 92 and let T' > 0 be a fixed end time. We set Q := (0,T) x Q
and ¥ := (0,7) x 9Q. For a given forcing term f € L?(Q) and initial condition yo € L*(Q), we
consider the linear heat equation with homogeneous Dirichlet boundary condition:

ye(t,z) — Ay(t,z) = f(t,x2) in @,
y(t,z) = 0 on X, (2)
y(0,2) = yo(x) in Q.

The existence of a unique solution to (2) is a standard result and is proved in [19], for example.
We can write (2) as an abstract evolution problem of type (1) by deriving a variational formulation
for (2) with V = HZ () as the space of test functions, H = L?()) and integrating over the space
Q. The bilinearform a : V' x V — R is introduced by

a(u,v) = / Vu - Vo
Q
and the operator A" : V' — V' vanishes.
Example 2.4 (Cahn-Hilliard equation). Let Q,7,Q and X be defined as in Example 2.3.
The Cahn-Hilliard equation was proposed in [6] as a model for phase separation in binary alloys.

Introducing the chemical potential w, the Cahn-Hilliard equation can be formulated in the common
setting as a coupled system for the phase field ¢ and the chemical potential w:

a(t,z)+y-Ve(t,z) = mAw(t,x) in Q,
w(t,z) = —oelc(t,x)+ W (c(t,z)) inQ, ()

Ve(t,z) - va = Vw(t,z) vg=0 on X,

c(0,2) = ¢o(x) in Q,

where the convective term y - Ve describes the transport with (constant) velocity y. By v we
denote the outward normal on 92, m > 0 is a constant mobility, ¢ > 0 denotes the surface tension
and 0 < € < 1 represents the interface parameter. The phase field function ¢ describes the phase
of a binary material with components A and B. It is ¢ = —1 in the pure A-phase and ¢ = +1



in the pure B-phase. The interfacial region is described by ¢ € (—1,1) and its thickness is finite
and of order O(e). The function W(c) is a double well potential. A typical choice for W is the
polynomial free energy function

WP(c) = (1-c*)?/4,

which has exactly two minimal points at ¢ = +1, i.e. at the energetically favorable state. Another
choice for W is the relaxed double-obstacle free energy

1
Wil(e) = 5(1 = ¢) + S (max(c — 1,0)* + min(c +1,0)%), (4)
with relaxation parameter s > 0, which is introduced in [9] as the Moreau-Yosida relaxation of
the double obstacle free energy

La—¢?), if -1,1
Wm):{z( @), ifeel-11)
400, else.

For more details on the choices for W we refer to [1] and [4], for example. Concerning existence,
uniqueness and regularity of a solution to (3), we refer to [4].

In order to derive a variational form of type (1), we write (3) as a single fourth order parabolic
equation for ¢ by

ci(t,r) +y-Ve = mA(—ocAc(t,x) + ZW'(c(t, x))) in Q,
Ve(t,z) -va = V(—oeAc(t,z) + ZW'(c(t,x))) - va=0 onX, (5)
c(0,2) = co(x) in Q.

We choose V = H? N H} () and H = L?(Q2) and introduce the bilinear form a: V x V — R by
a(u,v) = / moeAu-Av+y-Ve-v
Q

and define the nonlinear operator A/ by

N(c) = —ZAW’(c).

2.2 Temporal and spatial discretization

In order to solve (1) numerically, we apply the implicit Euler method for temporal discretization.
Of course, other time integration schemes are possible. For a given n € N let

0=ty <...<t,=T (6)
denote an arbitrary grid in the time interval [0, 7] with time step sizes

Atj = tj - tj,1

for j = 1,...,n. We set I; = [tj_1,t;] for each time interval j = 1,...,n. The resulting time
discrete system consists in finding a sequence {3’ 7o C V satisfying the following equation system
gj _ gj—l ) : 1 ti .
(T,U>H+a(g37v)+<N(ﬂ]),v>v/,v = A—/ (fj;v)vrvdt, forj=1,...,n
tj tj Ji;_,
<gO7U>H = <yOaU>H7

(7)
for all v € V and f; denotes f; = f(t;) € V.

For the spatial discretization we utilize adaptive finite elements. At each time level j =0,...,n
we introduce a regular triangulation 7; of 2 and define an N;-dimensional conformal subspace V7
of V by 4 A .

V7= span{vy,...,vn } CV



with nodal basis {v? 7N e vl (P) =6y fori,k =1,..., N, with the nodes {Pg}g;l of the under-
lying triangulation 7;. Therefore at each time level j = 07 ..., n, the utilized finite element spaces
{vi }1_o can differ both in the underlying triangulation of the domain Q and in the polynomial
degree. This means that the solutions can be computed utilizing h—, p— and r—adaptivity, where
h—adaptivity denotes local refinement and coarsening of the triangulation according to certain
error indicators, p—adaptivity means increasing and decreasing the polynomial degree according
to the smoothness of the solution and r—adaptivity, or moving mesh methods, relocates the mesh
points to concentrate them in specific regions. We apply a Galerkin scheme for (7). Thus we look
for a sequence {yJ _, with ¥/ € V7 which fulfills

i — Ty } , .
<T7U>H+a(y]70)+<N(y])vv>v/,V = <fj7/U>V'A,V7 fOI']:].,...,'I'L (8)
J
<yO,U>H = <y07U>H7

for all v € V7, where IV : C(Q2) — V7 denotes the Lagrange interpolation. Since y/ € V7 holds, we
make the Galerkin ansatz

Y’ —Zy]v] ceVicv (9)

for j =0,...,n with appropriate mode coefficients {yZ N7

3 POD method utilizing snapshots with arbitrary finite el-
ement discretizations

3.1 POD method in real Hilbert spaces

The aim of this work is to propose a POD-ROM which does not depend on the underlying finite
element discretization. For this reason, the POD method is explained from an infinite-dimensional
perspective in this section, where we use a finite number of snapshots which lie in a common
Hilbert space. The POD method in Hilbert spaces is explained in [16] and [28], for example. Here,
we recall the main aspects.

Assume we are given snapshots

eVl . ytevn
of (1), which can be finite element samples of the solution trajectory V = span{y(t) | t € [0,T]}
for (1) on the given timegrid {t;}7_, introduced in (6). For each time level j = 0,...,n the
snapshots belong to different subspaces V°,..., V™ C V. Note that by construction we have
V= span{yJ _o CV C X, where X denotes elther of the spaces V or H.

The idea of the POD method is to describe the space V by means of few orthonormal functions
{}f_, € X, with £ < d := dimV, such that error between the snapshots {¥7}7_ and the
projection of the snapshots onto the subspace X¢ = span{t1,...,1;} C X is mmnmzed in the
following sense:

2

m%exz% st (Wi, )x =08;; for1<i,j</ (10)

¢
= W i) x v
=1

X

with e.g. nonnegative trapezoidal weights {a;}7_g:

At At; + At At
! —Mforjzl,...,n—l and o, = —=.

Aty 11
9+ Y 2 2 (11)

A solution to (10) is called a rank-¢£ POD basis. For this equality constrained minimization problem
(10), first order necessary (and by convexity sufficient) optimality conditions can be derived. For



this purpose, we introduce the bounded linear operator ) : R**! — X by

Vo => ajpy’ for ¢ =(do,...,¢n) €R".

Jj=0

Since the image V(X) = span{y,...,y"} has finite dimension, the operator ) is compact. Its
Hilbert space adjoint Y* : X — R satisfies (V¢, ¥)x = (¢, V*¢)gnt1 for ¢ € R* and ¢ € X
and is given by
W,yO)X
Vi = : for ¢ € X.
(¥, y")x
Then, the action of K := Y*Y : R*"*! — R™+! is given by
n .
>’ ) x s
§=0
K¢ = : for ¢ € R™T1,

> "y ) x e,

§=0
KC can be represented as the symmetric matrix

a1,y x o a0y x

K= : : e R(HD)x(n+1), (12)

ar(y, %) x o Yy x

We introduce the operator R := YY* : X — X, whose action is given by

n

R =3 aj(,y)xy’ fory € X.

j=0

It can be shown that the operator R is bounded, nonnegative and self-adjoint. Since the image
R(X) = span{y",...,y"} has finite dimension, the operator R is compact. Therefore the Hilbert-
Schmidt theorem (cf. [24, Th. VI.16], for instance) can be applied which ensures the existence of a
complete orthonormal basis {t; }2, for X and a sequence of corresponding nonnegative eigenvalues
{)‘z}?il with

Ry; = N\itp;  with Ay > ... > Ag > 0 and A; = 0 for all ¢ > d.

Likewise, one can compute the eigenvalues {\;}%_; of K, which coincide with the eigenvalues for
R except for possibly zero. The corresponding orthonormal eigenvectors {¢;}¢ ; C R"*! of K are

2,0
1 1 <¢1a?.J >X

eR"™ fori=1,...,d.

b1 =

(i, y™) x
Thus, the functions {t;}L , can be determined via

1
Vi

where (¢;); denotes the j-th component of ¢; € R"*! for i = 1,....,d.

1 <« , _
Yy = Vi = Mo ;aj(Qsi)jyﬂ €X fori=1,...4d, (13)

The following theorem states the necessary (and by convexity sufficient) optimality conditions
for problem (10) and presents the POD projection error.



Theorem 3.1. Let {\;}% ; denote the positive eigenvalues of R, and let {1;}¢_; C X denote the
corresponding eigenfunctions of R. For every ¢ € N with ¢ < d, a solution to (10) is given by the
eigenfunctions {wl} _, corresponding to the £ largest eigenvalues {)\; }z ;- Moreover the projection

error is
2

n 4 d
Doy =D Wox vl = > A (14)
Jj=0 i=1 X i=0+1

Proof. Since span{y’ };-L:O C X, the proof runs analogously to the proof in [28, Th. 3].

The basis {¢;}¢_, can alternatively be computed via singular value decomposition (SVD). The
SVD of the operator Y is given by

d
Y= Zaz ¢z R"‘sza
i=1

where oy > ... > 04 > 0 is the ordered sequence of singular values of )V with o; = /); for
i=1,...,d. For more details we refer to [24, Th. VI.17], for instance.

3.2 Numerical realization of the POD method utilizing snapshots from arbitrary finite
element spaces

Let us now turn our perspective to the numerical realization of computing a POD basis for snap-
shots from arbitrary finite element spaces. For each time level j = 0, ..., n, the snapshots {yj s
shall be taken from different finite element spaces {VJ _o Which lie in a common Hilbert space V
In the fully discrete fomulation of the POD method We are given the evaluation of the snapshots
on their corresponding grids, i.e. we are given the vectors

yoe RN ym e RVn

of different lengths with y/ = (yl-, ..,yN I € RNi| for j = 0,...,n. This is why we are not
able to set up the discrete counterpart to the operator R, which is an N x N matrix for uniform
spatial discretization with N nodes. Moreover, the representation of the POD basis as a linear
combination of the snapshots is no longer possible.

To overcome this obstacle, our aim is to set up a reduced order model which can be formulated
for arbitrary finite element discretizations. For this reason, we turn our attention to the matrix
K e R(+D)x(n+1) © This matrix dimension only depends on the number of snapshots and can be
computed for any underlying finite element discretization: the ij—th component K;;, for 4,5 =
0...,n,is given by

N, N;
(y y Zkakszsz ZZ kYZ Uka“l
k=1 1=1

Thus for any 4,5 = 0,...,n, we are able to compute the inner product <’U;€,Ulj>x fork=1,...,N;
and [ = 1,...,N;, compare Figure 1. We discover, then, that the calculation of the matrix
as well as the determination of its eigenvectors can be done for any underlying finite element
discretization. Thus, the eigenvectors {¢;}%_; of K are the right singular vectors of ) and contain
the space independent time information. ThlS fact will be used in the following to build up the
reduced order model. We note that the calculation of the matrix K can be done for arbitrary finite
element grids, i.e. all kinds of adaptivity (h—, p— and r—adaptivity) can be considered and we
do not need to express the snapshots in terms of a common finite element basis. Especially, our
approach is also applicable for finite elements with different polynomial degrees and relocated mesh
points. This distiguishes from the interpolation approach of the snapshots onto a fixed reference
mesh, cf. [27].

Moreover, the calculation of the matrix I € R(+1)x(n+1) (method of snapshots) is favorable, since
we assume the temporal dimension n to be far smaller than the spatial dimension(s).
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Figure 1: 1D finite element basis functions vlj and vl on their corresponding grids. Left: both
piecewise linear finite element ansatz functions. Right: piecewise linear and cubic finite element
ansatz functions.

Example 3.2. We choose V = H'(Q), H = L*(2) and set X = H = L?*(2). The triangulations of
Q) for each time level j = 0,...,n are denoted by {7}}?:0 and the finite element spaces are defined
by

VIi=V(T)={velC(Q):v|lr eP(T),VT €T;} CX, j=0,...,n,

where P, d_eno_tes the space of polynomials of degree » € N. The computation of the ij-th entry
Kij = aj(y",y?) 12(q) of the matrix K is calculated by

oy )2 ) = aj/yiyjdx
Q
N* N7

= ajZZyZy{/v,iv{dx

k=11=1 o

N® NI o o
= oszZy}ﬁy{ Z Z /v,@’uljdx

k=11=1 TeTi TET; pp

Computations become simpler when using nested grids. In this case, the intersection of two ar-
bitrary n—dimensional simplices coincides either with the smaller simplex, or is a common edge
simplex, or has no overlap.

4 POD reduced order modeling

4.1 POD reduced order modeling for arbitrary finite element discretizations

In this section, we stay in the infinite dimensional setting of the POD method and set up the
POD reduced order model utilizing snapshots with arbitrary finite element discretizations. This
perspective allows us to determine the mode coefficients of the POD Galerkin ansatz for arbitrary
underlying finite element discretizations. Suppose for given snapshots y° € Vp,...,y" € V" we
have computed the matrix K, (12), with K;; = a; (v, y?) x, for i, j = 0,...,n as well as its £ largest
eigenvalues {\;}¢_, and corresponding eigenvectors {¢;}¢_; C R"*! of low rank £ with £ < n + 1,
according to the strategy presented in Section 3. The POD basis {1; }¢_, is then given by (13), i.e

1
VA

This POD basis is utilized in order to compute a reduced order model for (1). For this reason, we
make the POD Galerkin ansatz

v = Yo, fori=1,...,¢

l l
(0 = (o= ;mw\/%y@ for all ¢ € [0,T), (15)



as an approximation for y(t), with the Fourier coefficients

ni(t) = (' (1), i) x = (Y1),

1 .
X

fori =1,...,¢. Inserting y* into (1) and choosing X* = span{t1,...,%,} C X as the test space,
leads to the system

{ %<ye(t)vw>H + a(yé(t)ﬂﬁ) + <N(ye(t))ﬂ/f>v',v = <f(75)»1/1>v’,v (16)
W 0),V)r = (yo,¥)m

for all ¢ € X* and for almost all ¢ € (0,T]. Utilizing the ansatz (15), we can write (16) as an
¢-dimensional ordinary differential equation system for the POD mode coefficients {n;(t)}¢_, C R:

an 1!%#/); H+ Zﬂj A%Wﬁw v+ < (yz(t)),wi>V’,V = <f(t)awi>V’,V

j=1
for t € (0,71,

(Yo, Vi) u

Z 77g ¢zy ¢J

(17)
for i =1,...,¢. Note that (¢;,%;)r = 0;; if we choose X = H in the context of Section 3.

Since we want to construct a reduced order model which can be built and solved for arbitrary finite
element discretizations, we rewrite system (17) utilizing the identity (13). Then, the system (17)
can be written as

an \/><y¢lay¢j H+an \/}\/} Ay¢j7y¢>\/’
1 1
+\/>\7<N(y ), Yoi)vrv = \//\7<f(t)’ Yoi)viv
for ¢ € (0,77,
¢
1
77( y¢zay¢> = 7<y03y¢1>H
2 75y e VA
(18)
In order to write (18) in a compact matrix-vector form, let us introduce the diagonal matrix
D e R with D = diag <\ﬁ \})

From the first ¢ eigenvectors {¢;}¢_, of K we build the matrix
® € RV by & =[g1 | ... | &l
Then, the system (18) can be written as the system

(19)

DOTK®D 5(t) + DOTY* AY®D 1(t) + DN (n(t)) = DF(t) forte (0,7,
D®TK®D n(0) = Dij,

for the vector-valued mapping n(t) = (91 (t),...,ne(t))” : [0,T] — R’ Note that the right hand
side F'(t) and the initial condition 7}y are given by

(F(t))i = <f(t)7y¢i>V',V = <y*f(t)7¢i>]1§n+1

and

(M0); = Yo, Yoi)ur = (V* Yo, di)rn+1,



for ¢ = 1,...,¢, respectively. Their calculation can be done explicitely for any arbitrary finite
element discretization. For a given function w € V' (for example w = f(t) or w = yp) with finite
element discretization w = ZNl w;p;, nodal basis {cpz} 4 C V and appropriate mode coefficients

N,
{w;};* we can compute

N Nj Ny, Nj
(V*w); = (w,y')x = (Q_wivi, Y_vivk)x =YY wivilenvl)x, forj=0,....n
i=1 k=1 i=1 k=1

where 3/ € V7 denotes the j—th snapshot. Again, for any i = 1,...,N, and k = 1,..., Nj, the
computation of the inner product (p;,v})x can be done explicitely.

Remark 3.3. Obviously, for linear evolution equations the POD reduced order model (19) can be
set up and solved utilizing snapshots with arbitrary finite element discretizations. The computa-
tion of the nonlinear component N (n(t)) needs particular attention. In future work, we intend to
investigate the nonlinear term and aim to introduce a projection based approach in order to set
up a POD reduced order formulation for the nonlinearity which can be set up for arbitrary finite
element discretizations without the need for interpolation.

Remark 3.4. Of course, the presented approach is also applicable to other classes of differential
equations like elliptic PDEs, for example.

4.2 Time discrete reduced order model
In order to solve the reduced order model (16) numerically, we apply the implicit Euler method for

time discretization and use for simplicity the same temporal grid {¢;}7_, (6) as for the snapshots.
It is also possible to use a different time grid, cf. [16]. The time discrete reduced order model reads

0,0 t;
Y — Y- L
ji]l?dj + a’(yf?w) + <N(y§)ﬂ/1>v’,v = 7/ <fj7ql}>V’,V for all w € Xéu
At . At o
<y€7w>H = <y07w>Ha
(20)
for j =1,...,n or equivalently
=t : :
D®TK®D (At) + D®TY*AY®D 1P + DN(n/) = DF; forj=1,...,n, (21)
J
D®TK®D n° = Dipp.

4.4 Expressing the POD solution in the full spatial domain

Having determined the solution 7(t) to (19), we can set up the reduced solution y*(t) in a continuous
framework:

4 n
= _mi(t) \/% D a(e)y |- (22)
i=1 i =0

Now, let us turn to the fully discrete formulation of (22). For a time-discrete setting, we introduce
for simplicity the same temporal grid {t;}"_; as for the snapshots. Let us recall the spatial
discretization of the snapshots (9) utilizing arbltrary finite elements

yj:Zyivi for j=0,...,n

Let {Qﬁ}i‘él denote an arbitrary set of grid points for the reduced system at time level ¢;. The
fully discrete POD solution can be computed by evaluation:

? n N7
=3 ) | =S 0600, (Y viek (@) (23)
;77 \/)Tij;) ;}’k k
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for s =1,...,nand r = 1,...,M;. This allows us to use any grid in the POD simulation. For
example we can use the same node points at time level j for the POD simulation as we have used
for the snapshots, i.e. for j = 0,...,n it holds M; = N; and Q4 = P} for all r,k = 1,...,N;.
Another option can be to choose

n Nj
@i =y Uw

i.e. the common finest grid. Obviously, a special and probably the easiest case concerning the
implementation is to choose snapshots which are expressed with respect to the same finite element
basis functions and utilize the common finest grid for the simulation of the reduced order system,
which is proposed by [27]. After expressing the adaptively sampled snapshots with respect to a
common finite element space, the subsequent steps coincide with the common approach of taking
snapshots which are generated without adaptivity. Then, expression (23) simplifies to

1 « :
Y (t, P2) st @,ZO%(@W : (24)
p

5 Error analysis for the reduced order model

For the validation of the approximation quality of the POD reduced order model, we are interested
in analyzing the error between the POD solution and the true solution. Our aim is to estimate the

expression
n
> ailly(ty) —yilia
§=0

where {y(t;)}}_o C X denotes the true solution for (1) at time instances {t;}"_, and {yf T is
the solution to the time discrete reduced order model (20), i.e

¢
i=1

with the POD basis {1;}¢_; computed from the snapshots {yj o from arbitrary finite element
spaces, i.e. 47 € VJ for j =0,...,n, as explained in Section 3. The Welghts {a; };L:O are trapezoidal
time weights, see (11). We choose X = V in the context of Section 3. Let us introduce the
orthogonal projection P*:V — V¢ by

¢
Plo = Z@ﬂ/’iﬁ/%‘ for all v e V.

i=1

It holds true ||P*||zn) = 1, where £(V) is the space of linear bounded operators from V to V.
The subsequent calculations follow closely the proofs of [16, Thm. 4.7], [29, Thm. 3.2.5] and [15
Th. 7] In our situation, we compute the POD basis corresponding to the fully discrete snapshots
{yJ _o utilizing adaptive finite element spaces, whereas in [16], [29] and [15], the POD basis is
computed from snapshots corresponding to the solution trajectory at the given time instances.
For this reason, in the following estimation an additional term corresponding to the error for the
spatial discretization will appear.

We make use of the decomposition
y(t) =y = y(ty) =y +y' = PY +PY = Ply(t;) + Ply(ty) —yj =mj +o; + ¢ +9;  (26)

for j =0,...,n, where n; :== y(t;) —y7, 0; := y/ =Py, ¢; = Py’ —Ply(t;) and ¥, := ”Pey(tj)—yf.
The term 7; is the discretization error. We utilize the decomposition

n =y(t;) —y =y(t;) — 7 +§ —y =B + E]

11



where 77 denotes the solution to the time discrete problem (7). By EJ := y(t;) — %’ we denote the
global time discretization error and Ej := ¢/ — y7 is the global spatial discretization error. It is

and . |
|E{ |z < max [|E/|lg =: ¢
7=0,....n

Since we use the implicit Euler method for time integration, it is &, = O(At) with At =
max;—o,...n At;. Therefore, we can estimate

o ajlly(t) =l < Dl Bl + Bl <2) (A1) +63) < 2T((A1)? +¢7).  (27)
j=0 j=0 =0

Moreover, we have
ST allcE =3 aslPly — Py < 1P 12 S elinglly (28)
j=0 j=0 j=0

The term g; is the projection error of the snapshot y? projected onto the POD space V¢. The
weighted sum of all projection errors is given by the sum of the neglected eigenvalues (14), i.e.

14

n n d
Salloflt = ailly? = > vl <eo > A (29)
=0 J=0

i=1 i=0+1

It remains to estimate the term ¢J; which is the error between the projection of the true solution
y(t;) at time instance ¢; onto the POD space V* and the time discrete ROM solution yf to (25).
With the use of the notation 99; = (9; —9;_1)/At; for j =1,...,n, we get

A 0
@9, 0y = (P (y(tg) Az(@ﬁ) Y AZH’WH
(P (W) +N ;) = f5,0)m + alyj, )
(P (y(tj) ;Z(Ul)) () ;Z(tjl) FN () = N (), D) a + alyl — y(t;), )

= (2 + N5 = N(t)), ¥)m + aly; —y(t;), )

ti)—y(t;i_ ti)—y(ti_
for 1 € V! with zj =P y(ts) — yti-) — ylts) —ylts 1). With the choice 1 = ¥; and the use
At; At;
of the identity
2(u —v,u) = [[ull® = [Jo[|* + lu—v||®
we obtain
19;1% < 1951l + 28¢5 (Bllys — y(t)llea + 1zl + IN(y5) = NyE) ) 195
We assume that N is Lipschitz continuous, i.e. there exists L > 0 such that
IV (y5) = N (y(t)ller < Llly; —y(t)lm forj=1,...,n.
Applying Young’s inequality we find
19 11F < 119;-1l7 + Aty (erllof + calldjlF + 123017 + el F + ellé; %)

with the constants ¢; := S+ L and ¢g := 5(8+4 L)+ 1. Under the assumption that At is sufficiently
small, we conclude

J
1913 < e2edist ( W% + 3 Azl + callowl + callml3 + c1||<k%{>> . (30)

k=1

12



For more details on this, we refer to [16] and [29]. We choose the initial condition for (20) such
that Jo = Py(to) — y§ = Plyo — y§ = 0.

Next, we estimate the term involving z;. It holds true

el = [P y(t) ;i(tk_l) _ Yt ;fk(tk—l) 12,
y(tr) — y(tr—1)

y(tr) — y(te—1)

- ¢ — Ply(t Cy(te) — U(ts) + y(ty) — 2
1P A(tk) ?y< k) + Py (te) — 9te) + 9(ts) AL ( |)H "
y(ty) — y(lp— . . . . y(tr) — y(tr—
< 2P W) 175y — B + 2P ) = ) [+ 2 () - S5
< esllwlld 4+ 2Py tk) — o)l

y(tr) — y(te—1)

with c3 =2 + 2H,P£H%(H) and wy 1= y(tk) - Aty

, which can be estimated as

J 2
(At)? .
E Aty llwg |7 < S ||?/H2L2(o,tj,H)-
k=1

For more details on this, we refer to [16] and [29].
Finally, we can summarize the estimation for the term involving 9; by

19511 < ca (Z ar(IP () — 9t I + llowllE + lmelE + lIGlIF) + (At)zlliillizm,nm)
k=1

with ¢4 := e?*2T max{%,4,2¢;} and thus it is

n n d
S oillally < T (Y aglP() = i)+ APl + 3 N g,
j=0 Jj= i=L+1

0
2T+ [P ) ((A1)? + €7))

Theorem 5.1. Let {y(¢;)}}7_, denote the solution to problem (1) at the time grid {¢;}_, and

yf is the solution to (20). Let the nonlinear operator A be Lipschitz continuous and the maximal
time step At := max;—o,... n At; be sufficiently small. Furthermore, we assume (t) to be bounded
on [0,7]. We choose the initial condition for (20) such that Py, = y§ is fulfilled. Then, there
exists a constant C' > 0 such that

n d n
Yoailly(ty) = yili < O [ (AP +eh+ Y0 A+ D eyl PGty — i)l |
j=0 i=0+1 j=0

where €, := max;—o, .. n ||y3 — ||z is the global spatial discretization error and 7’ is the solution
to (7) at time instance ¢;.

Proof. Utilizing the decomposition (26) we infer

n n
Yo ailly(ts) = yila <2 aiUmslla + llesll + G 11% + 19;11%)-
§=0 j=0

Together with (27), (28), (29) and (31) this leads to the claim. O
Remark 5.2. If we choose V = H'(Q) and H = L*(Q) and utilize a static piecewise linear finite
element discretization with h being the diameter of the triangles, then g, = O(h?). In the case

of adaptively refined spatial grids €, can be estimated by the prescribed error tolerance, if e.g.
residual based a-posteriori error estimation is applied.

Remark 5.3. We intend to study an error analysis for the approximation of the nonlinearity in
future research.
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6 Numerical Realization and Examples

For all numerical examples, we choose 2 C R? as open and bounded domain and utilize conformal,
piecewise linear finite elements for spatial discretization. For simplicity, we only utilize an h-
adaptive concept, which means that at timestep ¢;,5 = 1,...,n we refine or coarsen the spatial
mesh according to the error indicator

ne = Vhell [Vy’], vele foral E €&, (32)

where hg is the length of the edge, [ . ], denotes the jump of the function across the edge E, vg
is the outward normal derivative on the edge F and & denotes the collection of all edges in the
current triangulation. As refinement rule we use the marked edge bisection. We utilize structured,
hierarchical and nested grids. The numerical test cases illustrate our approach to set up and solve
a POD reduced order model utilizing snapshots with adaptive spatial discretization, which is ex-
plained in Section 3 and 4.

We compare our approach to the use of a uniform mesh, where the mesh size coincides with the
fineness of the smallest triangle in the adaptive mesh. Furthermore, we compare our approach
to the use of a finest mesh following [27]. For this, the practical numerical concept works as fol-
lows. In a full dimensional simulation, h-adaptive snapshots are generated at the time instances
{t; }?:0. At the same time we carry along a reference grid with the simulation, which coincides
with the computational grid at initial time and which is only refined in the same manner as the
computational grid. In this way, the reference grid becomes the finest mesh (i.e. the overlay of
all computational grids) at the end of the snapshot generation. Then, the snapshots are expressed
with respect to the finite element basis functions corresponding to the finest mesh and the usual
POD procedure is carried out.

All coding is done in C++ and we utilize FEniCS [18] for the solution of the differential equations
and ALBERTA [25] for dealing with hierarchical meshes.

Example 6.1: Linear heat equation. We consider the Example 2.3 (2) of a linear heat equation
with Dirichlet boundary condition. The spatial domain is chosen as Q = [0,1]x [0, 1] C R?, the time
interval is [0, 7] = [0,1.57]. We construct an example in such a way that we know the analytical
solution. It is given by

y(t,x) =r(t,z) - (s1(t,z) — s2(t, 7))

with

r(t,z) = 1+1000-(cos(t)~(a:170.5)7:?111(;)-(93270.5))2

50000-21-(1—z1)-(0.54cos(t)- (€1 —0.5)—sin(t)-(x2—0.5))* 2= (1—(0.54cos(t)-(x1—0.5)—sin(t)-(y—0.5)))*)

(t,z) = 10000-z5-(1—x2)-(0.5+sin(t)-(x1 —0.5)+cos(t)- (2 —0.5))2-(0.5—sin(t)- (x1 —0.5) —cos(t)-(£2—0.5))?
S1\L,T) = 1+100+((0.5+sin(f) (21 —0.5)+cos(t) (2 —0.5))—0.25)2 )

(t,z) = 10000-z2-(1—x2)-(0.54sin(t)-(x1—0.5)+cos(t)-(x2—0.5))%-(0.5—sin(t)-(x1 —0.5) —cos(t)-(x2—0.5))?
S200, ) = (IT+100%((0.5+sin(t)-(z1—0.5)+cos(t) (x2—0.5))—0.75)2 :

The forcing term f, the boundary condition g and the initial condition yq are chosen accordingly.
For the temporal discretization we introduce the uniform time grid by

t; = jAt

for j =0,...,1570 with At = 0.001. The analytical solution at three different time points is shown
in Figure 2.

Due to the steep gradients in the neighbourhood of the minimum and maximum, respectively, the
use of an adaptive finite element discretization is jusitified. The resulting computational meshes as
well as the corresponding finest mesh (reference mesh at the end of the simulation) are shown in
Figure 3. The number of node points of the adaptive meshes varies between 3637 and 7071 points.
The finest mesh has 18628 node points. In contrary, a uniform mesh with the same discretization
fineness as the finest triangle in the adaptive grids (hmin = 0.0047) would have 93025 node points.
This clearly reveals the benefit of using adaptive meshes for snapshot generation. Particularly, the
comparison of the computational times emphasizes the benefit of adaptive snapshot sampling: the
snapshot generation on the adaptive mesh takes 944 seconds, whereas utilizing the uniform mesh
it takes 8808 seconds. Therefore, we gain a speedup factor of 9 (see Table 3).
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Figure 2: Surface plot (top) and view from above (bottom) of the analytical solution of (2) att =tg
(left), t =T/2 (middle) and t =T (right)
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Figure 3: Adaptive finite element meshes at (i) t = to, (1) t = T/2, (1ii) t = T and (i) finest
mesh
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In Figure 4, the resulting normalized eigenspectrum of the correlation matrix for uniform spatial
discretization (“uniform FE mesh”), the normalized eigenspectrum of the matrix K (12) (“inf-
POD”) as well as the normalized eigenspectrum of the correlation matrix utilizing snapshots inter-
polated onto the finest mesh (“finest FE mesh”) is shown. We observe that the eigenvalues for both
adaptive approaches coincide. Moreover, we recognize that about the first 28 eigenvalues computed
corresponding to the adaptive simulation coincide with the simulation on a uniform mesh. From
index 29 on, the methods deliver different results: for the uniform discretizations, the normalized
eigenvalues fall below machine precision at around index 100 and stagnate. In contrary, the nor-
malized eigenvalues for both adaptive approaches flatten in the order around 10~'°. Concerning
dynamical systems, the magnitude of the eigenvalue corresponds to the characteristic properties of
the underlying dynamical system: the larger the eigenvalue, the more information is contained in
the corresponding eigenfunction. Since all adaptive meshes are contained in the uniform mesh, the
difference in the amplitude of the eigenvalues is due to the interpolation errors during refinement
and coarsening. This is the price we have to pay in order to get a fast snapshot generation utilizing
adaptive finite elements. Moreover, the investigation of the decay of the eigenvalues constitutes
an analyzing tool for adaptivity in the following sense. Using an adaptive mesh technique means
that some parts of the domain are resolved coarsely according to the utilized error estimation,
i.e. information gets lost. In the sense of a singular value analysis, this implies that adaptivity
neglects the noise, which is indicated by the singular values on the uniform spatial mesh at those
places which are not resolved with the adaptive grid. The overtones which get lost in the adaptive
computations lie in the same space which is not considered by POD when using the adaptive finite
element snapshots. This allows us to characterize the space, which is not resolved by adaptivity.
From this point of view, adaptivity can be interpreted as a smoother.

0 0
10° 10 10 — adaptive FE mesh
finest FE mesh —finest FE mesh  uniform FE meen
——infPOD ——infPOD —— adaptive FE mesh, bigger error tol
—— uniform FE mesh 10 5 ——uniform FE mesh 10 -5 = = = adaptive FE mesh, smaller error tol
10 5}
o 10 o o
& 8 -0 S 4o-10
= = 10 =
< < <"
-15
-15 10
10
10 -20
10720 0%
0 500 1000 1500 0 50 100 150 200 0 50 100 150 200
index i index i index i

Figure 4: Comparison of the normalized eigenvalues utilizing an adaptive and a uniform spatial
mesh, respectively. Left: all eigenvalues, middle: first 200 largest eigenvalues, right: first 200
largest eigenvalues with different error tolerances for the adaptivity (1.5 times bigger and smaller
error tolerances, respectively)

Since the first few POD basis functions are the most important ones regarding the captured in-
formation, we visualize 11,12 and 15 in Figure 5, which are computed corresponding to using an
adaptive grid. The POD basis functions corresponding to the uniform spatial discretization have
a similar appearance. Note that the POD bases are unique up to the sign. We can recognize the
initial condition in the first POD basis function. Then, the index of the POD basis corresponds
to the number of maxima and minima of the POD basis: 1 has two minima and two maxima
etc. This behaviour is similar to the increasing oscillations in higher frequencies in trigonometric
approximations. The increasing number of oscillations is necessary in order to approximate the
transport of the steep gradients of the solution with increasing accuracy.

The POD solutions for £ = 10 and ¢ = 50 POD basis functions utilizing spatial adaptive snapshots
which are interpolated onto the finest mesh are shown in Figure 6. The visual comparison makes
clear which influence the increase of utilized POD basis function has on the approximation quality.
The more POD basis functions we use (until stagnation of the corresponding eigenvalues), the less
oscillations appear in the POD solution and the better is the approximation.

Table 1 compares the approximation quality of the POD solution utilizing adaptively gen-
erated snapshots which are interpolated onto the finest mesh with snapshots of uniform spatial
discretization depending on different POD basis lengths. Our approach from Section 3-4 deliv-
ers very similar results as the use of adaptive finite element snapshots which are interpolated
onto the finest mesh. For example, for £ = 20 POD bases, we get with the infPOD-approach
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Figure 5: Surface plot (top) and view from above (bottom) of the POD basis functions ¢ (left),
Yo (middle) and 5 (right)
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Figure 6: Surface plot of the POD solution of (2) utilizing £ = 10 (top) and £ = 50 (bottom) POD
basis functions at t = to (left), t = T/2 (middle) and t =T (right)
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the following errors: L?(Q)—error between the POD solution and the finite element solution:
Erel = 3.0795 - 1072, e,ps = 7.2568 - 10°, L?(Q)—error between the POD solution and the true
solution: e€,e = 2.1673 - 1072 and e, = 5.1070 - 10°.

¢ et ehie Eret Enba
1 1.3019-10° | 3.0209-10F2 | 1.3072-10° | 2.9807 - 1072
3 | 7.4954-107' | 1.7163- 1012 | 7.5892.107! | 1.7084 - 1012
5 | 4.3913-10"% | 1.0099- 1072 | 4.4547-10~! | 1.0063 - 1072
10 | 1.3724-10"! | 3.1661- 107! | 1.3717-10~' | 3.1042 - 10!
20 | 3.0827-1072 | 7.2641-10° | 1.5661-102 | 3.5364 - 10°
30 | 2.5985-1072 | 6.2451-10° | 2.0485-1073 | 4.6177-10!
50 | 2.6371-1072 | 6.3974-10° | 5.6762-107° | 1.2848-102
100 | 2.6123-1072 | 6.3184-10° | 6.4882-10% | 1.5875-10~°
150 | 2.6118-10~2 | 6.3199-10Y | 8.1376-10~7 | 3.2343 - 10~

Table 1: Relative and absolute L?*(Q)—error between the POD solution and the finite element
solution wutilizing adaptive finite element snapshots which are interpolated onto the finest mesh
(columns 2-8) and uniform meshes (columns 4-5)

¢ e eats et e
1 1.2829-10° | 2.9801-10F2 | 1.3083-10° | 2.9832-107F2
3 | 7.4652-10"' | 1.7103-10"2 | 7.6019-10~1 | 1.7114 - 10712
5 | 4.3952-107"' | 1.0099 - 1012 | 4.4674-10~" | 1.0093 - 1012
10 | 1.3661-10"! | 3.1476-10%! | 1.3803-10~! | 3.1239- 10!
20 | 2.1718-1072 | 5.1171-10% | 1.6030-10"2 | 3.6243-10°
30 | 1.4949-10~2 | 3.6412-10° | 3.0093-103 | 6.9835- 101
50 | 1.4136-10~2 | 3.3995-10° | 2.0706-10~3 | 4.9677-10!
100 | 1.4023-10=2 | 3.3850-10° | 2.0694-10~3 | 4.9650- 10!
150 | 1.3900-10~2 | 3.3566-10° | 2.0700-1073 | 4.9674-10~!

Table 2: Relative and absolute L?(Q)—error between the POD solution and the true solution uti-
lizing adaptive finite element snapshots which are interpolated onto the finest mesh (columns 2-3)
and uniform meshes (columns 4-5)

We note that the error between POD solution and finite element solution utilizing a uniform mesh
decays down to the order 10~® and 1075 (¢ = 100), respectively and then stagnates. This behaviour
is clear, since the more POD basis we include (up to stagnation of the corresponding eigenvalues),
the better is the POD solution. In contrary, the error between the POD solution and the true
solution starts to stagnate from ¢ = 29. This is due to the fact that at this point also the spatial
discretization error is taken into account.

Finally, of particular interest is the computational efficiency of the POD reduced order modeling
utilizing adaptive finite element discretizations. For this reason, the computational times for the
FE and POD simulation utilizing uniform finite element discretizations and adaptive finite element
snapshots, which are interpolated onto the finest mesh, respectively, are listed in Table 3. Once
the POD basis is computed in the offline phase, the POD simulation corresponding to adaptive
snapshots is 5 times faster than the FE simulation utilizing adaptive finite element meshes. This
speedup factor even gains greater importance, if we think of optimal control problems, where the
repeated solving of several partial differential equations is necessary. We note that in the infPOD-
approach, the computation of the matrix K (12) is expensive. Since K is symmetric, it suffices to
calculate the entries on and above the diagonal, which are X741 k = ((n+1)* 4+ n+1) entries.
For each entry the calculation time is around 0.03 seconds, which leads to a computation time of
around 36997 seconds for the matrix K. Same effort is needed to build Y*.A). The offline phase for
infPOD is therefore around around 88271 seconds. For this reason, the approach to interpolate the
adaptive generated snapshots onto the finest mesh is computationally more favorable. But since
the computation of L and Y*A)Y can be parallelized, the offline computation time for infPOD can
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be reduced provided that the appropriate hardware is available.

adaptive FE mesh | uniform FE mesh | speedup factor
FE simulation 944 sec 8808 sec 9.3
POD offline computations 264 sec 1300 sec 4.9
POD simulation 204 sec 1107 sec 5.4
speedup factor 2.0 3.6 -

Table 3: CPU times for FE and POD simulation utilizing uniform finite element meshes and
adaptive finite element snapshots which are interpolated onto the finest mesh, respectively, and
utilizing £ = 50 POD modes

Example 6.2: Cahn-Hilliard equation. We consider Example 2.4, (3) of the Cahn-Hilliard
equation given in the coupled formulation for the phase field ¢ and the chemical potential w. The
data is chosen as follows: we consider the rectangular domain Q = (0,1.5) x (0,0.75), end time
T = 0.025, constant mobility m = 0.00002 and constant surface tension o = 24.5. The interface
parameter ¢ is set to € = 0.02, which leads to an interface thickness of about 7 - ¢ =~ 0.0628. We
choose the relaxed double-obstacle free energy (4). As initial condition, we choose a circle with
radius r = 0.25 and center (0.375,0.375). The initial condition is transported horizontally with
constant velocity v = (30,0)7. As spaces for the Gelfand triple we consider V = H}(Q) and
H = L*(Q).

Let us define the uniform time discretization
t; = jAt

for j = 0,...,1000 with At = 2.5-107°. We utilize a semi-implicit Euler scheme for temporal
discretization. Let ¢*~1 € V and ¢* € V denote the time discrete solution at ¢;_; and ¢5. The
time discrete Cahn-Hilliard system reads as follows. For given ¢*~!, find ¢* with associated w*
solving

k_ k-1
<%701>H+(U-Vckfl,vﬁH+m<Vwk',Vv1>H = 0 Yo eV,
—(w*, va) g + 0e(VeF, Vo) + (Wi (F) + W (") v)p = 0 V€V,

and ¥ = cy. Note that the free energy function W is split into a convex part W, and a concave
part W_, such that W = W, + W_ and W/ is treated implicitly with respect to time and W’
is treated explicitly with respect to time. This leads to an unconditionally energy stable time
marching scheme, compare [9].

Figures 7 and 8 show the phase field (left) and the chemical potential (right) for the finite
element simulation utilizing adaptive meshes. The initial condition c¢q is transported horizontally
with constant velocity.

The adaptive finite element meshes as well as the finest mesh which is generated during the
adaptive finite element simulation are shown in Figure 9.

In this example, we only compare the solution to the POD-ROM utilizing two kinds of snapshot
discretizations: on the one hand we use adaptive finite elements and express these with respect to
the finite element basis functions corresponing to the finest mesh. On the other hand we compute
the solution to the POD-ROM with snapshots computed on a uniform finite element discretization,
where the fineness is chosen to be of the same size as the smallest triangle in the adaptive meshes.

In Figure 10 a comparison is visualized concerning the normalized eigenspectrum for the phase
field ¢ and the chemical potential w utilizing uniform and adaptive finite element discretization.
We note for the phase field ¢ that about the first 180 eigenvalues computed corresponding to the
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Figure 7: Phase field ¢ computed on an adaptive finite element mesh (left) and chemical potential
w (right) at t =t (top), t = T/2 (middle) and t =T (bottom)
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Figure 8: 8d-visualization of the phase field ¢ with adaptive finite element mesh (left) and chemical
potential w (right) at t =ty (top), t = T/2 (middle) and t =T (bottom)
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Figure 9: Adaptive finite element meshes and finest mesh

adaptive simulation coincide with the eigenvalues of the simulation on the finest mesh. Then, the
eigenvalues corresponding to the uniform simulation decay faster. Similar observations apply for
the chemical potential w.

c w
10° ‘ ‘ 10° ‘ ‘
adaptive FE mesh adaptive FE mesh
——uniform FE mesh uniform FE mesh
107
) [
3 3 5
= = 10771
~ o0 -
107 107
0 200 400 600 800 1000 0 200 400 600 800 1000
index i index i

Figure 10: Comparison of the normalized eigenvalues utilizing an adaptive and a uniform spatial
mesh, respectively. Left: phase field c, right: chemical potential w

The information content of a POD basis of rank ¢ relatively to the amount of the information
content of all snapshots is given by the energy F, i.e. the ratio of modeled and total energy. It is
defined by

l
Zi:l Ai
=
21:1 /\i

We will choose the numbers /. and ¢,,, such that

EW) :=

¢ =argmin{E({): E({) >1—p}

for a given value p representing the loss of information. Table 4 and Figure 11 summarize how to
choose /. and ¢, in order to achieve a desired accuracy.

In the following, we run the numerical simulations for different combinations of numbers for £,
and ¢,, of Table 4.

Figures 12 and 13 visualize the first, second, and fifth POD modes for the phase field ¢ and
the chemical potential w. Analogue to Example 6.1, we observe a periodicity in the POD bases
corresponding to its number.

Finally, the approximation quality of the POD solution utilizing adaptive meshes is summarized
in Table 5, whereas Table 6 lists the results for the use of a uniform finite element mesh.
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P ng elaud ezmi e;ni
107°1 [ 3 4 3 4
10792 | 10 | 13 10 13
1079 | 19 | 26 19 | 25
1079 | 29 | 211 | 28 | 160
1079 | 37 | 644 | 37 | 419
107% | 65 - 51 | 562
10710 | - - 57 | 601

Table 4: Number of needed POD bases in order to achieve a loss of information below the tolerance
p utilizing adaptive finite element meshes (column 2-3) and uniform finite element discretization
(column 4-5).

c w
10° ‘ ‘ 10° ‘ ‘
adaptive FE mesh adaptive FE mesh
uniform mesh uniform mesh
10°° 10°°
10 -10 4 10 -10
10 -15 10 -15
0 200 400 600 800 1000 0 200 400 600 800 1000

index i index i

Figure 11: Number of needed POD bases in order to achieve a loss of information below a certain
tolerance

Figure 12: First, second and fifth POD bases for ¢ (left) and w (right).
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Figure 13: 3d visualization of first, second and fifth POD bases for ¢ (left) and w (right).

e c:erd c:ed w e w e

3 4 ] 8.4463-1073 | 8.7803-10—3 | 3.0048-10° | 3.0328 1072
10 | 13 || 3.3093-1073 | 3.4402-1073 | 3.7709 - 10~' | 5.1764 - 10!
19 | 26 || 1.5703-1073 | 1.6325-1072 | 2.1223-10~' | 2.5934 . 10!
29 | 26 | 7.3462-10"* | 7.6369 -10~* | 1.0997 -10~! | 1.4523. 10!
37 | 26 | 3.5742-107* | 3.7157-107% | 4.8215-1072 | 4.9942-10°
50 | 50 || 1.8844-10"* | 1.9592-10"% | 2.1761-1072 | 1.9468 - 10°
65 | 26 | 9.7470-107° | 1.0132-10~* | 1.1109-10"2 | 1.0133-10°
100 | 100 || 3.3749-107° | 3.5086 - 10~® | 3.5694 - 102 | 3.3140 - 10!

Table 5: Relative and absolute L?(Q)—error between the POD solution and the finite element

solution utilizing adaptive meshes.

A o c: sgii c: 5;{}; w : 5381? w : 5;‘{)‘;

3 4 | 8.4487-107° | 8.7827-10"3 | 3.7504-10° | 3.0308- 1072
10 | 13 || 3.3088-107% | 3.4397-10"3 | 4.3279-10"! | 5.2023 - 10+!
19 | 26 || 1.5701-1073 | 1.6323-1072 | 2.3924-10~1 | 2.5825- 10!
20 | 26 | 7.3284-10"* | 7.61836-10~* | 1.1637-10"! | 1.4523 - 10!
37 | 26 | 3.5537-10"% | 3.6944-10~* | 5.0400-10"2 | 4.9555-10°
50 | 50 | 1.8685-10"% | 1.9426-10~* | 2.3376-10"2 | 1.9309-10°
65 | 26 | 9.5653-107° | 9.9437-10~° | 1.1560-10~2 | 9.9776 - 10!
100 | 100 || 3.2238-10° | 3.3514-107° | 3.4206-10~2 | 3.0183-10!

Table 6: Relative and absolute L*(Q)—error between the POD solution and the finite element

solution utilizing uniform meshes.
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7 Conclusion

In this work, we have proposed a POD reduced order model for arbitrary finite element discretiza-
tions. The approach is motivated from a infinite dimensional approach. Using the method of
snapshots we are able to set up the correlation matrix by explicitely evaluating the inner products
of snapshots. For this reason, our approach does not need any interpolation or projection onto a
common finite element reference grid. Therefore, it is applicable for arbitrary h—, p— or r—adaptive
finite element meshes. From a computational point of view, sufficient hardware should be available
in order to compute the correlation matrix in parallel and make the offline computational time
competitive. In future work, we intend to derive a POD reduced order model for nonlinear PDEs
and study error bounds for the nonlinear POD reduced order model.
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