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SUBGRADIENT COMPUTATION
FOR THE SOLUTION OPERATOR OF THE OBSTACLE PROBLEM

ANNE-THERESE RAULS AND STEFAN ULBRICH

ABSTRACT. The non-differentiability of the solution operator of the obstacle problem
is the main challenge in tackling optimization problems with an obstacle problem as a
constraint. Therefore, the structure of the Bouligand subdifferential of this operator is in-
teresting from a theoretical and from a numerical point of view. The goal of this article
is to characterize and compute a specific element of the Bouligand subdifferential for a
wide class of obstacle problems. We allow right-hand sides that can be relatively sparse
in H−1(Ω) and do not need to be distributed among all of H−1(Ω). Under assumptions
on the involved order structures, we investigate the relevant set-valued maps and charac-
terize the limit of a sequence of Gâteaux derivatives. With the help of generalizations
of Rademacher’s theorem, this limit is shown to be in the considered Bouligand subdif-
ferential. The resulting subgradient is the solution operator of a Dirichlet problem on a
quasi-open domain.

1. INTRODUCTION

This article is concerned with the derivation of a generalized gradient for the reduced
objective associated with the optimal control of an obstacle problem

min
y,u

J (y,u)

subject to y ∈ Kψ ,

〈Ly− f (u),z− y〉H−1(Ω),H1
0 (Ω) ≥ 0 for all z ∈ Kψ .

(1.1)

Here, Ω ⊂ Rd is open and bounded, J : H1
0 (Ω)×U → R is a continuously differentiable

objective function and L ∈ L
(
H1

0 (Ω),H−1(Ω)
)

is a coercive and T-monotone operator.
Furthermore, f : U → H−1(Ω) is a Lipschitz continuous, continuously differentiable and
monotone operator on a partially ordered Banach space U . We will specify the precise
assumptions on U later on, but the class of Banach spaces U we consider includes the
important examples H−1(Ω), L2(Ω) and Rn. The closed convex set Kψ is of the form

Kψ :=
{

z ∈ H1
0 (Ω) : z≥ ψ

}
and the obstacle ψ ∈ H1(Ω) satisfies ψ ≤ 0 on ∂Ω. The inequality “z ≥ ψ” is to be
understood pointwise almost everywhere (a.e.) in Ω or, equivalently, pointwise quasi-
everywhere (q.e.) in Ω. We denote by S : U → H1

0 (Ω) the solution operator of (1.1), by
A(u) := {ω ∈ Ω : S(u)(ω) = ψ(ω)} the active set and by As(u) = f-supp(µ) ⊂ A(u) the
strictly active set. Here, µ is the regular Borel measure associated with the multiplier
LS(u)− f (u) ∈ H−1(Ω)+ and f-supp(µ) denotes the fine support of this measure, see also
[Wac14, Appendix A].

In points u ∈U where the Lipschitz solution operator S : U→H1
0 (Ω) is Gâteaux differ-

entiable, the Gâteaux derivative S′(u) is the solution operator to a Dirichlet problem of the
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2 A. RAULS AND S. ULBRICH

form

ξ ∈ H1
0 (D(u)),〈

Lξ − f ′(u;h),z
〉

H−1(Ω),H1
0 (Ω)

= 0 for all z ∈ H1
0 (D(u)).

(1.2)

Here, any quasi-open set D(u) with Ω\A(u)⊂D(u)⊂Ω\As(u) up to a set of zero capacity
is valid and yields the same solution operator equal to S′(u). This variational equation for
the Gâteaux derivative is a consequence of the classical result by Mignot [Mig76], which
gives the directional derivative as the solution to a related variational inequality. Note that
the strict complementarity condition, which states that As(u) = A(u) holds up to a set of
zero capacity and which was introduced, e.g., in [BS00, Def. 6.59], is not automatically
implied by Gâteaux differentiability for general f other than the identity map on H−1(Ω).
Therefore, there can really be a gap between the sets As(u) and A(u), even when S is
differentiable in u.

Since, in general, S is not Gâteaux differentiable in all points of U , we are interested
in computing at least one element of a suitable subdifferential in such points. In order
to obtain an element of the Bouligand subdifferential ∂BS(u) of S in a point u ∈ U , we
construct and characterize limits of solution operators of (1.2) for points un with un→ u in
U . This requires a careful study of the set-valued maps u 7→ H1

0 (D(u)) and we will focus
on the special case D(u) = Ω\A(u). The spaces H1

0 (Ω\A(un)) are shown to converge in
the sense of Mosco towards H1

0 (Ω\A(u)) in the case where un ↑ u in U .
We impose assumptions on U to guarantee that the order structure in U is rich enough

to construct a sequence of Gâteaux points (un)n∈N with un ↑ u for arbitrary u ∈ U , see
Assumption 5.1. In particular, these assumptions on U apply for the special cases U =Rn,
U = L2(Ω) and U = H−1(Ω).

Altogether, this leads to Theorem 5.3, which the following is a simplified version of.

Theorem. Assume that U = Rn, U = L2(Ω) or U = H−1(Ω) and let f : U → H−1(Ω) be
a Lipschitz continuous, continuously differentiable and monotone operator. Let u,h ∈U.
Denote the unique solution to the variational equation

ξ ∈ H1
0 (Ω\A(u)),〈

Lξ − f ′(u;h),z
〉

H−1(Ω),H1
0 (Ω)

= 0 for all z ∈ H1
0 (Ω\A(u)),

(1.3)

by Ξ(u;h). Then

Ξ(u; ·) ∈ ∂BS(u).

Furthermore, for each increasing sequence (un)n∈N with un ↑ u it holds

Ξ(un;h)→ Ξ(u;h)

for each h ∈U.

If u is a point where S is Gâteaux differentiable, then the equality S′(u) = Ξ(u; ·) holds,
where Ξ(u; ·) is determined by the variational equation (1.3). Thus, an element of the
Bouligand subdifferential is obtained independently from differentiability. This explains
why algorithms that assume not to strike non-differentiability points while working with
formulas for the Gâteaux derivative will actually compute a subgradient, also in points of
non-differentiability.

In numerical realization it might be difficult to solve the system (1.3) because of the
structure of the space H1

0 (Ω \A(u)). This is due to the possibly bad behaved form of the
set A(u). Our approach suggests that, instead of solving (1.3), it is also possible to solve the
system for some ũ < u to obtain a better behaved active set A(ũ) and an inexact subgradient
that is a good approximation for ũ close enough to u.
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We conjecture that similar results to the statement in the theorem could be obtained by
considering the sets Ω\As(u) and sequences (un)n∈N with opposite monotonicity proper-
ties. The subgradients obtained by considering the sets A(u) and As(u) are somehow the
‘extremal’ elements in the Bouligand subdifferential, whereas the remaining elements are
related to sets between them, see also Lemma 3.3 and Remark 3.1.

Once such an analogous result is established also for a quasi-open set D(u) with

H1
0 (Ω\A(u))⊂ H1

0 (D(u))⊂ H1
0 (Ω\As(u)),

one can also switch to a better behaved set D(u) to avoid difficulties with bad structure and
to obtain a (possibly different) element of the Bouligand subdifferential.

We put this paper into perspective. For finite dimensional obstacle problems, a char-
acterization of the whole Clarke subdifferential (of the reduced objective function) was
obtained in [HR86]. To achieve this result, the authors impose the local surjectivity as-
sumption D f (u) = Rn on f : Rm → Rn. With this assumption, each index set between
As(u) and A(u) can be associated with an element of the subdifferential. In [CCMW18], the
Bouligand subdifferentials of the solution operator to a nonsmooth semilinear equation rel-
ative to several combinations of topologies are characterized. This is the first contribution
dealing with subgradients for nonsmooth mappings between infinite dimensional spaces.
In the recent [RW18], these characterizations are obtained for the infinite dimensional ob-
stacle problem, except for the one involving only weak topologies. The authors consider
right-hand sides distributed among all of H−1(Ω), i.e., f is the identity on H−1(Ω). In
this setting, for a given u ∈H−1(Ω) and an arbitrarily chosen quasi-open set D(u) between
Ω \A(u) and Ω \As(u), it is possible to construct a sequence (un)n∈N of right-hand sides
in H−1(Ω), which converges to u and which fulfills A(un) = As(un) = Ω \D(u) up to a
set of capacity zero. This approach cannot be translated to our setting, since, in general,
(un)n∈N is not contained in the range of f . The characterization for the subdifferential
involving the weak operator topology is obtained by considering capacitary measures and
the corresponding notion of γ-convergence.

We will proceed as follows: In the remainder of this section we formally define the
Bouligand subdifferential. Afterwards, in Section 2, we give a short introduction to ca-
pacity theory, quasi-open sets, and Sobolev spaces on quasi-open sets. In Section 3, we
collect features of the variational inequality (1.1). For our purpose, especially results on
monotonicity, differentiability and convergence are important. We proceed in Section 4
with a precise analysis of the set-valued map connected to the sets that appear in the vari-
ational equation for the Gâteaux derivative and show a result on monotone continuity, see
Corollary 4.1. This will help us to prove the Mosco convergence of the corresponding
sets, provided the sequence (un)n∈N converging to u has suitable monotonicity properties.
Establishing these convergence results, identifying the limit and infering the main result,
using density of Gâteaux differentiability points, will be done in Section 5. An adjoint
equation for a Clarke subgradient of the reduced objective will also be provided.

The Bouligand subdifferential. In the following, we will formally define the Bouligand
subdifferential which we consider for the solution operator of the obstacle problem (1.1).
It is not clear how to extend the definition of the Bouligand subdifferential from finite
to infinite dimensions, see [CCMW18], since the respective weak and strong topologies
in infinite dimensions are not equivalent anymore. Therefore, our definition is only one
possible out of several generalizations to infinite dimensions. We choose one that can also
be found in [CCMW18]. See also [Thi82, Sect. 2] for the concepts, although they do not
carry the specific name Bouligand subdifferential.

For the finite dimensional case, see, e.g., [OKZ98, Def. 2.12], [FP03, Def. 4.6.2].

Definition 1.1. Let X be a separable Banach space and Y a separable Hilbert space.
Furthermore, assume that the operator T : X → Y is Lipschitz continuous. We will denote
the subset of X on which T is Gâteaux differentiable by DT .
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The Bouligand subdifferential of T in u is defined as

∂BT (u) :=
{

Σ ∈L (X ,Y ) : T ′ (un)→ Σ in the weak operator

topology for some sequence (un)n∈N ⊂ DT with lim
n→∞

un = u
}
.

Here, T ′ denotes the Gâteaux derivative of T .

Remark 1.1. (1) Since DT is dense in X , each u ∈ X can be approximated by a se-
quence (un)n∈N ⊂ DT ⊂ X , see Theorem 5.2 or [BL00, Theorem 6.42]. Now,
since T is Lipschitz continuous, the Gâteaux derivatives T ′ (un) are bounded by
the Lipschitz constant in L (X ,Y ). The compactness of the unit ball in L (X ,Y )
with respect to the weak operator topology yields the existence of an accumulation
point of the sequence (T ′ (un))n∈N. Thus, ∂BT (u) is nonempty.

(2) Let X =U , Y = H1
0 (Ω) and let Ĵ(u) = J (S(u),u) be the reduced objective respec-

tive to a continuously differentiable objective function J : H1
0 (Ω)×U → R. Here,

S : U → H1
0 (Ω) is, as usual, the solution operator to the obstacle problem (1.1).

Then{
Σ
∗Jy (S(u),u)+ Ju (S(u),u) : Σ ∈ ∂BS(u)

}
⊂ ∂BĴ(u)⊂ ∂CĴ(u),

where ∂CĴ(u) is Clarke’s generalized gradient, see [Cla90].
The first inclusion follows from the chain rule for the mixed Fréchet/ Gâteaux

derivative, since J is Fréchet differentiable. The second inclusion is implied by
weak∗-closedness of Clarke’s generalized gradient, see [Cla90, Prop. 2.1.5b]. These
arguments are also used in [CCMW18]. Moreover, by [Thi82, Proposition 2.2],
∂CĴ(u) is the closed convex hull of ∂BĴ(u) in the weak operator topology.

(3) From Definition 1.1, it directly follows that if T is Gâteaux differentiable in u with
Gâteaux derivative T ′(u), then T ′(u) belongs to ∂BT (u).

(4) In our derivation of elements in ∂BS(u), we will construct limits of sequences
(S′ (un))n∈N in the strong operator topology, so we could have taken the strong
operator topology in Definition 1.1 as well.

2. FUNDAMENTALS OF CAPACITY THEORY AND SOBOLEV SPACES ON QUASI-OPEN
DOMAINS

2.1. Capacity theory. We define a capacity that is appropriate for our purposes when
dealing with the space H1

0 (Ω). Note that it is possible to define analoguous capacities
also for other Sobolev spaces, see, e.g., [AH96], [HKM93]. In addition, the following
definitions can be found, e.g., in [ABM14, Sect. 5.8.2, Sect. 5.8.3], [DZ11, Def. 6.2].

Definition 2.1. a) Let E ⊂Ω be a set. Then we define the capacity of E by

cap(E) := inf
{∫

Ω

|∇v|2 dλ
d : v ∈ H1

0 (Ω),v≥ 1 a.e. in a neighborhood of E
}
.

b) A set O ⊂ Ω is called quasi-open if for all ε > 0 there exists an open set Ωε ⊂ Ω

with cap(Ωε) < ε such that O∪Ωε is open. The complement of a quasi-open set
is called quasi-closed.

c) The function v : Ω→ R is called quasi-continuous if for all ε > 0 there exists an
open set Ωε ⊂Ω with cap(Ωε)< ε and such that v|Ω\Ωε

is continuous.

We use the prefix ‘quasi-’ to express that a property holds except on a set of zero capac-
ity.

Remark 2.1. Countable unions of quasi-open sets are quasi-open and countable intersec-
tions of quasi-closed sets are quasi-closed. Nevertheless, the family of quasi-open subsets
does not define a topology on Ω, since arbitrary unions of quasi-open sets do not have to
be quasi-open, see also [BB05, Chapter 4].
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The following result on quasi-continuous representatives can be found, e.g., in [DZ11,
Chapter 6, Theorem 6.1].

Lemma 2.1. Each element of H1(Ω) has a quasi-continuous representative and this quasi-
continuous representative is uniquely defined up to values on subsets of Ω with zero ca-
pacity.

When we speak about function values of elements v ∈ H1
0 (Ω), then we usually mean

the function values of a quasi-continuous representative. In this sense, for ψ ∈ H1(Ω), the
sets

{ω ∈Ω : v(ω) = ψ(ω)}
or

{ω ∈Ω : v(ω)≥ 0}
have to be understood. They are defined up to a set of zero capacity. Furthermore, these
sets are quasi-closed.

Let v,w ∈ H1
0 (Ω). We say that v≥ w if

cap({ω ∈Ω : v(ω)< w(ω)}) = 0,

i.e., if v ≥ w q.e. on Ω. Equivalently, we could demand v ≥ w a.e. on Ω, see [Wac14,
Lemma 2.3].

Together with the relation ‘≥’, the space H1
0 (Ω) becomes a vector lattice, see [Rod87].

In particular, sup(v,w) ∈ H1
0 (Ω) exists for all v,w ∈ H1

0 (Ω).
The following lemma on convergence in H1

0 (Ω) is taken out of [BS00, Lemma 6.52].

Lemma 2.2. Suppose that yn → y in H1
0 (Ω). Denote by (ỹn)n∈N and ỹ fixed quasi-

continuous representatives of (yn)n∈N and y, respectively. Then there is a subsequence
of (ỹn)n∈N that converges to ỹ pointwise quasi-everywhere.

2.2. The space H1
0 (O) with O quasi-open. The goal of this subsection is to define the

spaces H1
0 (O) for quasi-open sets O as generalizations of the spaces H1

0 (Ω) on open do-
mains Ω⊂Rd . These spaces are interesting for our purposes since closed linear subspaces
of H1

0 (Ω) are of this form and since they naturally appear in the Dirichlet problems char-
acterizing the Gâteaux derivative of the solution operator, see Section 3.1.

The capacity we have introduced in Definition 2.1 can be evaluated on arbitrary subsets
of Ω. In the following subsection, we need to formally define the capacity of arbitrary
subsets of Rd , quasi-open sets in Rd and quasi-continuous representatives of equivalence
classes in H1

(
Rd
)
. Therefore, we introduce the following notion of capacity which is also

called ‘Sobolev capacity’, see also [HKM93, Sect. 2.35], [ABM14, Sect. 5.8.2]:

Definition 2.2. a) For a set E ⊂ Rd we define

Cap(E) := inf
{∫

Rd

(
|v|2 + |∇v|2

)
dλ

d :

v ∈ H1(Rd),v≥ 1 a.e. in a neighborhood of E
}
.

b) A set O ⊂ Rd is called Rd-quasi-open if for all ε > 0 there exists an open set
Ωε ⊂ Rd such that O∪Ωε is open and such that Cap(Ωε) < ε . The complement
of a Rd-quasi-open set in Rd is called Rd-quasi-closed.

c) The function v : Rd → R is called quasi-continuous if for all ε > 0 there exists an
open set Ωε ⊂ Rd such that Cap(Ωε)< ε and such that v|Rd\Ωε

is continuous.

Remark 2.2. (1) Compared to Definition 2.1, the domain Ω is replaced by Rd and
H1

0 (Ω) by H1
(
Rd
)
. The definition of the capacity Cap works with the natural

norm on H1
(
Rd
)
. Due to the Poincaré inequality, we could also have taken this
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norm (with Rd replaced by Ω) in Definition 2.1 to obtain an equivalent capacity
on Ω.

(2) The capacity Cap is bounded from above by the capacity cap, i.e., there is a con-
stant c > 0 such that Cap(E)≤ ccap(E) holds for all subsets E ⊂Ω, see [Wac14,
Lem. A1]. Furthermore, for E ⊂Ω, it holds cap(E) = 0 if and only if Cap(E) = 0,
see, e.g., [HKM93, Cor. 2.39]. In particular, quasi-open sets are Rd-quasi-open
and quasi-closed sets are Rd-quasi-closed. When we say that a property holds true
quasi-everywhere, then this statement is independent of the capacity used.

In the rest of the paper, we will leave out the prefix Rd and just say quasi-open
also for subsets of Rd and quasi-continuous also for functions on Rd .

(3) Analogous to the result in Lemma 2.1, each v ∈ H1
(
Rd
)

has a quasi-continuous
representative, see [AH96, Prop. 6.1.2].

Remark 2.3. From the definition it can be seen that for a quasi-open set O ⊂ Rd there
exists a decreasing sequence of open sets Ωn ⊃ O such that

lim
n→∞

Cap(Ωn \O) = 0.

Remark 2.3 can be seen as a motivation for the following definition, which is taken from
[KM92], as well as many other definitions and results in this subsection.

Definition 2.3. For a quasi-open set O⊂ Rd we define the space

H1
0 (O) :=

⋂{
H1

0 (Ω) : Ω open, Ω⊃ O
}

equipped with the norm of H1
(
Rd
)
.

Remark 2.4. Let Ω⊂Rd be open and let v ∈H1(Ω). Then it holds v ∈H1
0 (Ω) if and only

if there is a quasi-continuous function ṽ on Rd such that ṽ = v a.e. in Ω and ṽ = 0 q.e. on
Rd \Ω, see [HKM93, Theorem 4.5], [DZ11, Lemma 6.1] or [ABM14, Theorem 5.8.5].

Definition 2.3 offers a natural extension of the spaces H1
0 (Ω) for open sets Ω, which are

a subclass of quasi-open sets. Remark 2.4 explains how we can interpret the intersection
over function spaces with different domains as in Definition 2.3. We identify v ∈ H1

0 (Ω)

with its quasi-continuous representative on Rd .
The spaces H1

0 (O) are closed subspaces of H1
(
Rd
)

and thus Hilbert spaces.
Formally, elements in H1

0 (O) are defined on all of Rd . The next lemma shows that we
can also take a different perspective and derive an analogue to Remark 2.4 for quasi-open
sets.

Lemma 2.3. Let O be quasi-open. It holds v ∈H1
0 (O) if and only if v ∈H1

(
Rd
)

such that
v = 0 q.e. on Rd \O.

Proof. We have to show that⋂{
H1

0 (Ω) : Ω open, Ω⊃ O
}
=
{

v ∈ H1(Rd) : v = 0 q.e. on Rd \O
}
.

Since for open sets Ω it holds

H1
0 (Ω) =

{
v ∈ H1(Rd) : v = 0 q.e. on Rd \Ω

}
,

the inclusion{
v ∈ H1(Rd) : v = 0 q.e. on Rd \O

}
⊂
⋂{

H1
0 (Ω) : Ω open, Ω⊃ O

}
follows.

By Remark 2.3, there exists a sequence of open sets (Ωn)n∈N with O⊂Ωn such that

lim
n→∞

Cap(Ωn \O) = 0.(2.1)
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So if v ∈
⋂{

H1
0 (Ω) : Ω open, Ω⊃ O

}
, then, in particular, v ∈

⋂
n∈N H1

0 (Ωn). This implies
v = 0 q.e. on

⋃
n∈N
(
Rd \Ωn

)
.

Now, by (2.1) and by monotonicity of the capacity, it follows

Cap

(⋂
n∈N

Ωn \O

)
= 0

and it holds

Rd \O =

(⋃
n∈N

(
Rd \Ωn

))
∪

(⋂
n∈N

Ωn \O

)
,

so we have shown that v = 0 q.e. on Rd \O. �

Lemma 2.3 can be interpreted as follows: A function v defined on O belongs to H1
0 (O)

provided its zero extension belongs to H1
(
Rd
)
. The above result also shows that if O1,O2

are quasi-open sets with Cap(O14O2) = 0, then H1
0 (O1) = H1

0 (O2). Here, O14O2 =
(O1 \O2)∪ (O2 \O1) denotes the symmetric difference of the sets O1 and O2.

We need the following definition from [KM92]:

Definition 2.4. We call a collection O of quasi-open sets a quasi-covering of a set E if
there is a countable subfamily of O such that its union P satisfies Cap(E \P) = 0.

The following lemma gives an application of quasi-coverings. It is a direct consequence
of [KM92, Lemma 2.4] and [KM92, Lemma 2.4].

Lemma 2.4. Let O be quasi-open and v ∈ H1
0 (O). Suppose that the family O = {Oi}i∈I

of quasi-open subsets of O is a quasi-covering of O. Then there is a sequence (vn)n∈N ⊂
H1

0 (O) converging to v such that each vn is a finite sum of functions in
⋃

i∈I H1
0 (Oi).

3. FEATURES OF THE OBSTACLE PROBLEM

In this section, we recall important properties of the variational inequality characterizing
the obstacle problem.

Let L ∈ L
(
H1

0 (Ω),H−1(Ω)
)

be a coercive operator, i.e., for some positive constant
α > 0 it holds

〈Ly,y〉H−1(Ω),H1
0 (Ω) ≥ α‖y‖2

H1
0 (Ω)

.

Furthermore, let L satisfy

〈L(y− z),(y− z)+〉H−1(Ω),H1
0 (Ω) > 0(3.1)

for all y,z ∈ H1
0 (Ω) with (y− z)+ = sup(0,y− z) 6= 0. This property is called strict T-

monotonicity, see [Rod87, p. 105].
In the rest of this article, we usually write 〈·, ·〉 instead of 〈·, ·〉H−1(Ω),H1

0 (Ω) for the dual

pairing between H1
0 (Ω) and H−1(Ω). If we mean another pairing with different spaces

involved, then we will explicitly write it down.
Let U be a separable partially ordered space and let f : U → H−1(Ω) be Lipschitz

continuous, continuously differentiable and monotone. Let ψ ∈H1(Ω) such that ψ ≤ 0 on
∂Ω and let u ∈U . We consider the closed convex set

Kψ :=
{

z ∈ H1
0 (Ω) : z≥ ψ

}
and deal with the variational inequality

y ∈ Kψ ,

〈Ly− f (u),z− y〉 ≥ 0 for all z ∈ Kψ .
(3.2)
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It is well known that this obstacle problem has a unique solution and that the solution
operator

S : U → H1
0 (Ω)

that assigns the solution of the variational inequality to a given u ∈U is Lipschitz continu-
ous, see, e.g., [Bar84], [KS00], [Fri88].

The next lemma on monotonicity properties of solutions to the variational inequality
can be found in [Fri88, Problem 3, p. 30] and [Rod87, Theorem 5.1]. The result is of
crucial importance in our approach.

Lemma 3.1. The solution operator S : U → H1
0 (Ω) for the obstacle problem (3.2) is in-

creasing: Suppose that u1,u2 ∈U such that u1 ≥ u2. Then it holds S (u1)≥ S (u2) a.e. and
q.e. in Ω.

3.1. Differentiability. Let id : H−1(Ω)→ H−1(Ω) be the identity mapping on H−1(Ω).
In order to distinguish the solution operator respective to a general f from the solution
operator respective to id, we denote the solution operator relative to id by Sid.

It is well known that the solution operator Sid is directionally differentiable and that
the directional derivative in a point u and in direction h, denoted S′id (u;h), is given as the
unique solution to the variational inequality

ξ ∈KKψ
(u),

〈Lξ −h,z−ξ 〉 ≥ 0 for all z ∈KKψ
(u).

Here,

KKψ
(u) := TKψ

(Sid(u))∩µ
⊥(3.3)

is called the critical cone. In (3.3), TKψ
(Sid(u)) denotes the tangent cone of Kψ at Sid(u) ∈

Kψ , and µ⊥ = {z ∈ H1
0 (Ω) : 〈µ,z〉 = 0} is the annihilator with respect to the functional

µ = LSid(u)− u ∈ H−1(Ω). With the help of capacity theory, one can find the following
characterization of the critical cone

KKψ
(u) =

{
z ∈ H1

0 (Ω) : z≥ 0 q.e. on Aid(u),z = 0 q.e. on Aid
s (u)

}
.

The active set

Aid(u) := {ω ∈Ω : Sid(u)(ω) = ψ(ω)}

as well as the strictly active set Aid
s (u) ⊂ Aid(u), characterized as the fine support of the

regular Borel measure µ = LSid(u)−u ∈ H−1(Ω)+, are quasi-closed subsets of Ω that are
defined up to a set of zero capacity. For details we refer to [Mig76], [BS00, Sect. 6.4],
[Wac14, Appendix A].

In order to obtain the directional derivative for the composite mapping S = Sid ◦ f for an
operator f : U→H−1(Ω) as specified before, we will apply a chain rule for the directional
derivatives.

For general directionally differentiable mappings the chain rule might not hold. A
stronger form of differentiability is needed. The following definition is taken from [BS00,
Def. 2.45].

Definition 3.1. Let X ,Y be Banach spaces and consider a mapping T : X → Y . Then T
is directionally differentiable at x ∈ X in the Hadamard sense (or Hadamard directionally
differentiable) if the directional derivative T ′ (x;h) exists for all h ∈ X and fulfills

T ′ (x;h) = lim
n→∞

T (x+ tnhn)−T (x)
tn

for all sequences (tn)n∈N and (hn)n∈N with tn ↓ 0 and hn→ h.

The following proposition can be found in [BS00, Prop. 2.49].
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Proposition 3.1. Suppose that T : X → Y is directionally differentiable in x and Lips-
chitz continuous in a neighborhood of x. Then T is directionally differentiable at x in the
Hadamard sense.

Corollary 3.1. The solution operator Sid : H−1(Ω)→H1
0 (Ω) is directionally differentiable

in the Hadamard sense.

The following chain rule for directional derivatives holds, see [BS00, Prop. 2.47].

Lemma 3.2. Let X ,Y,Z be Banach spaces and assume that T : X → Y is directionally
differentiable at x and that R : Y → Z is Hadamard directionally differentiable at T (x).
Then the composite mapping R ◦ T is directionally differentiable at x and the following
chain rule holds

(R◦T )′ (x;h) = R′
(
T (x);T ′ (x;h)

)
.

This means the directional derivative S′ (u;h) of S = Sid ◦ f in direction h ∈U is given
by the solution of the variational inequality

ξ ∈KKψ
( f (u))〈

Lξ − f ′ (u;h) ,z−ξ
〉
≥ 0 for all z ∈KKψ

( f (u)) ,

where

KKψ
( f (u)) =

{
z ∈ H1

0 (Ω) : z≥ 0 q.e. on A(u) ,z = 0 q.e. on As (u)
}
.

Here,

A(u) := Aid( f (u)) = {ω ∈Ω : S(u)(ω) = ψ(ω)}

is the active set and As(u) := Aid
s ( f (u)) the strictly active set.

We now specify the behavior of S′ in points where S is Gâteaux differentiable. We
consider the largest linear subset of the critical cone KKψ

( f (u)), the set

H1
0 (Ω\A(u)) =

{
z ∈ H1

0 (Ω) : z = 0 q.e. on A(u)
}

(3.4)

and the smallest linear superset of KKψ
( f (u)), the linear hull of KKψ

( f (u)),

H1
0 (Ω\As(u)) =

{
z ∈ H1

0 (Ω) : z = 0 q.e. on As(u)
}
.(3.5)

Recall that the sets on the right-hand sides of (3.4) and (3.5) coincide with the spaces on
the left hand side, since Ω\A(u) and Ω\As(u) are quasi-open sets, see Definition 2.3 and
Lemma 2.3.

Observe that whenever A(u) = As(u) holds up to a set of zero capacity, then these sets
coincide and S is Gâteaux differentiable in u. This is also known as the strict complemen-
tarity condition, see, e.g., [BS00, Sect. 6.4.4].

The strict complementarity condition is also necessary for Gâteaux differentiability if
we consider the identity id on H−1(Ω) and the corresponding solution operator Sid. This
does not hold anymore when the range of f in H−1(Ω) is smaller. Nevertheless, the fol-
lowing lemma holds.

Lemma 3.3. Suppose that S is Gâteaux differentiable in u ∈U and let h ∈U be arbitrary.
Then the directional derivative S′ (u;h) is determined by the solution to the variational
equation

ξ ∈ H1
0 (D(u)),〈

Lξ − f ′(u;h),z
〉
= 0 for all z ∈ H1

0 (D(u)).
(3.6)

Here, D(u) = Ω \A(u) and D(u) = Ω \As(u) are admissible sets that provide the same
solution ξ .
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Proof. The assumption that u is a differentiability point implies that for all h ∈ U the
elements S′ (u;h) lie in a linear subspace of KKψ

( f (u)), which means they lie in H1
0 (Ω \

A(u)). Thus, for all h ∈U it holds

S′ (u;h) ∈ H1
0 (Ω\A(u)),〈

LS′ (u;h)− f ′(u;h),z−S′ (u;h)
〉
≥ 0 for all z ∈ H1

0 (Ω\A(u))⊂KKψ
( f (u)).

Since H1
0 (Ω \A(u)) is a linear subspace, the variational inequality becomes a variational

equation and thus S′ (u;h) is determined by the unique solution to the variational equation

ξ ∈ H1
0 (Ω\A(u)),〈

Lξ − f ′(u;h),z
〉
= 0 for all z ∈ H1

0 (Ω\A(u)).

On the other hand, for all h∈U , the element S′ (u;h) is clearly contained in H1
0 (Ω\As(u)),

the linear hull of KKψ
( f (u)).

We argue that the inequality〈
LS′ (u;h)− f ′(u;h),z−S′ (u;h)

〉
≥ 0

is fulfilled for all test functions z from H1
0 (Ω\As(u)), and not only from KKψ

( f (u)).
Fix z ∈ KKψ

( f (u)) and take an arbitrary h ∈ U . Then the test function z fulfills the
variational inequality for the direction −h, namely〈

LS′ (u;−h)− f ′(u;−h),z−S′ (u;−h)
〉
≥ 0

or, equivalently, 〈
LS′ (u;h)− f ′(u;h),−z−S′ (u;h)

〉
≥ 0.

This shows that −z is also an admissible test function for the direction h.
Now, consider an arbitrary z ∈ H1

0 (Ω\As(u)), i.e., z ∈ H1
0 (Ω) with z = 0 q.e. on As(u).

Then we can write z as z = z+− z−, with z+,z− ∈KKψ
( f (u)). Since KKψ

( f (u)) is a cone,
2z+, respectively 2z−, are in KKψ

( f (u)) and it holds〈
LS′ (u;h)− f ′(u;h),2z+−S′ (u;h)

〉
≥ 0

and 〈
LS′ (u;h)− f ′(u;h),−2z−−S′ (u;h)

〉
≥ 0

for all h ∈U . Adding up both inequalities and dividing by 2 yields〈
LS′ (u;h)− f ′(u;h),z−S′ (u;h)

〉
≥ 0.

Therefore, each z∈H1
0 (Ω\As(u)) is a valid test function and S′ (u;h) is the unique solution

of the variational equation

ξ ∈ H1
0 (Ω\As(u)),〈

Lξ − f ′(u;h),z
〉
= 0 for all z ∈ H1

0 (Ω\As(u)).

In summary, in a differentiability point u the unique solutions of the variational equations

ξ ∈ H1
0 (D(u)),〈

Lξ − f ′(u;h),z
〉
= 0 for all z ∈ H1

0 (D(u))

with D(u)=Ω\A(u) and D(u)=Ω\As(u) coincide and determine the Gâteaux differential
of S in u. �

Remark 3.1. In particular, all linear subsets H1
0 (D(u)) with a quasi-open set D(u) satisfy-

ing

Ω\A(u)⊂ D(u)⊂Ω\As(u)
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up to a set of capacity zero are admissible. Up to disagreement on a set of capacity zero,
there is only one set D(u) satisfying these properties in cases when the strict complemen-
tarity condition is fulfilled in u.

In the following analysis, we will focus on the set H1
0 (Ω\A(u)). Although the sets D(u)

in Lemma 3.3 and Remark 3.1 can be replaced without effect in the system (3.6) for the
Gâteaux derivative in respective points, they can have a different Mosco limit when consid-
ering the sequences

(
H1

0 (D(u))
)

n∈N for (un)n∈N ⊂ DS converging to u. In this regard, the
gap between As(u) and A(u) is responsible for the richness of the subdifferential in certain
points u. We will encounter the notion of Mosco convergence and see how it is connected
to convergence of solutions to variational inequalities in the following subsection.

3.2. A stability result. In Lemma 3.3 we have seen that the Gâteaux derivatives of the
solution operator S in differentiability points evaluated in a direction h solve a variational
equation. Since the Bouligand subdifferential contains limits of Gâteaux derivatives, we
thus need to study the convergence behaviour of solutions to variational equations or more
generally variational inequalities.

A closer look at the variational equation (3.6) reveals that for a fixed direction h ∈U
and a sequence of elements (un)n∈N ⊂ DS with lim

n→∞
un = u, the corresponding variational

equations for S′ (un;h) differ only in the closed convex sets H1
0 (D(un)). We will see that

we can use a well suited convergence result for such systems based on the notion of Mosco
convergence for closed convex sets.

The following definition goes back to Umberto Mosco, see also [Mos69].

Definition 3.2 (Mosco convergence). Let X be a Banach space and denote by (Cn)n∈N a
sequence of nonempty subsets of X. If the sets

C̃1 := {x ∈ X : xn→ x for a sequence (xn)n∈N satisfying xn ∈Cn for every n ∈ N}

and

C̃2 :=
{

x ∈ X : xk ⇀ x for a sequence (xk)k∈N with xk ∈Cnk for a subsequence (Cnk)k∈N
}

coincide, then we say that the sequence (Cn)n∈N converges to C := C̃1 = C̃2 in the sense of
Mosco.

The next result on Mosco limits of monotone sequences can be found in [Mos69,
Lemma 1.2, 1.3]:

Lemma 3.4. Let (Cn)n∈N be a sequence of nonempty closed convex subsets of a Banach
space X.

i) If (Cn)n∈N is an increasing sequence of sets, it follows

Cn→
⋃

n∈N
Cn.

ii) If (Cn)n∈N is decreasing, it follows

Cn→
⋂

n∈N
Cn.

Remark 3.2. (1) Let H be a Hilbert space and denote by PC the projection onto the
set C. Then the convergence of a sequence (Cn)n∈N of nonempty closed convex
sets in the sense of Definition 3.2 is equivalent to the convergence of the sequence
(PCnx)n∈N to PCx in the norm of X and for all x ∈ X , i.e., the convergence of
(PCn)n∈N with respect to the strong operator topology on L (H), see [Rod87,
Theorem 4.3].
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(2) Let (On)n∈N be a sequence of quasi-open subsets of Ω. Then the convergence of(
H1

0 (On)
)

n∈N to H1
0 (O) in the sense of Mosco is equivalent to the γ-convergence

of the sequence (On)n∈N to O, see [BB05, Prop. 4.5.3 and Remark 4.5.4] This
notion of convergence is also used in [RW18] and appropriate when investigating
the full Bouligand subdifferential involving the weak operator topology, where
capacitary measures play a role.

The following proposition is taken from [Rod87, Theorem 4.1]. The result will be
our tool for studying convergence of solutions to variational inequalities and thus Gâteaux
derivatives in differentiability points.

Proposition 3.2. Let L ∈L
(
H1

0 (Ω),H−1(Ω)
)

be coercive and let (Cn)n∈N ,C be closed
convex subsets of H1

0 (Ω). Assume that Cn → C in the sense of Mosco and hn → h in
H−1(Ω), then the unique solutions of

ξn ∈Cn,

〈Lξn−hn,z−ξn〉 ≥ 0 for all z ∈Cn

converge to the solution of the limit problem

ξ ∈C,

〈Lξ −h,z−ξ 〉 ≥ 0 for all z ∈C.

4. THE SET-VALUED MAP u 7→ H1
0 (Ω\A(u))

In this section, we analyze the set-valued map u 7→ H1
0 (Ω \A(u)), as a preparation to

show Mosco convergence of the sets H1
0 (Ω \A(un)) for suitable sequences (un)n∈N con-

verging to u.

4.1. A monotone continuity result for the set-valued map. We now establish continuity
results for the set-valued map u 7→ H1

0 (Ω\A(u)).

Proposition 4.1. Let u ∈U be arbitrary and let (un)n∈N be an increasing sequence such
that un ↑ u. Then for each v ∈ H1

0 (Ω \A(u)) there is a sequence (vn)n∈N satisfying vn ∈⋂
∞

j=J(n) H1
0 (Ω\A(u j)) for some natural number J(n) ∈ N as well as vn→ v.

Proof. We want to show that the sequence (Ω\A(un))n∈N of quasi-open sets is a quasi-
covering of Ω\A(u), i.e., we have to show that

Cap

(
(Ω\A(u))\

⋃
n∈N

(Ω\A(un))

)
= Cap

(
(Ω\A(u))∩

⋂
n∈N

A(un)

)
= 0.(4.1)

Since un→ u, it follows S (un)→ S(u) in H1
0 (Ω) and therefore, pointwise quasi-everywhere

for a subsequence. This means for quasi all x ∈
⋂

n∈N A(un) it holds S(u)(x) = ψ(x), i.e., x
belongs to A(u) and (4.1) follows. Therefore, the family (Ω\A(un))n∈N is a quasi-covering
of Ω\A(u).

Let v ∈ H1
0 (Ω\A(u)). By Lemma 2.4, there exists a sequence (vn)n∈N converging to v

such that each vn is a finite sum of functions in
⋃

i∈I H1
0 (Ω \A(ui)). This means for each

n ∈ N there is N(n) ∈ N and a map πn : {1, . . . ,N(n)}→ N such that

vn =
N(n)

∑
i=1

g(n)
πn(i)

with g(n)j ∈ H1
0 (Ω\A(u j)). It holds vn ∈ H1

0

(
Ω\

⋂N(n)
i=1 A

(
uπn(i)

))
. We define J(n) :=

maxi=1,...,N(n) πn(i). Since (A(un))n∈N is decreasing, we conclude

vn = 0 q.e. on A(uJ(n))
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and therefore also

vn = 0 q.e. on
∞⋃

j=J(n)

A(u j).

It follows that

vn ∈
∞⋂

j=J(n)

H1
0 (Ω\A(u j)),

see Lemma 2.3. �

Corollary 4.1. Let u ∈ U be arbitrary and let (un)n∈N be an increasing sequence such
that un ↑ u. Then for each v ∈ H1

0 (Ω \A(u)) there is a sequence (wn)n∈N satisfying wn ∈
H1

0 (Ω\A(un)) for each n ∈ N as well as wn→ v.

Proof. Let v ∈ H1
0 (Ω \A(u)). Proposition 4.1 yields a sequence (vn)n∈N such that, with

some natural number J(n) ∈ N,

vn ∈ H1
0 (Ω\A(u j)) for all j ≥ J(n)

holds as well as lim
n→∞

vn = v. Set

j0 := 0

and for n≥ 1 set

jn := max
(

max
1≤n′≤n

J
(
n′
)
, jn−1 +1

)
.

Then ( jn)n∈N is strictly increasing and it holds

vn ∈ H1
0 (Ω\A(u j)) for all j ≥ jn.

Now, for i = 1, . . . , j1−1, choose

wi ∈ H1
0 (Ω\A(ui)).

If i≥ j1, then there is exactly one n ∈ N such that i ∈ { jn, . . . , jn+1−1} and we set

wi := vn

in this case. By this process, we find a sequence (wn)n∈N with wn ∈ H1
0 (Ω\A(un)) for all

n ∈ N and lim
n→∞

wn = v. �

Remark 4.1. It is easy to see that the result from Corollary 4.1 holds also when un ↓ u
since in this case the inclusions H1

0 (Ω\A(u))⊂ H1
0 (Ω\A(un)) imply the statement.

If the result held for all sequences (un)n∈N converging to u, we would obtain lower
semicontinuity of the set-valued map u 7→ H1

0 (Ω \A(u)). In this regard, the property in
Corollary 4.1 could be called monotone lower semicontinuity.

5. AN ELEMENT OF THE BOULIGAND SUBDIFFERENTIAL

We show the convergence of (S′ (un;h))n∈N ⊂H1
0 (Ω) for differentiability points un con-

verging from below towards u and identify the limit, even when u is not a differentiable
point of S. This will give us an element of the Bouligand subdifferential.

The influence of monotonicity of the sequence (un)n∈N on Mosco convergence of the
sequences

(
H1

0 (D(un))
)

n∈N, in particular, for the sets D(un) = Ω \ A(un) and D(un) =

Ω\As(un), is visualized in Figure 1 and Figure 2. Figure 1 shows solutions of the obstacle
problem for u = 0 and for some values ui < 0 and ui > 0 close to 0. The respective sets
A(ui), As (ui) are shown in Figure 2.

In u = 0, the strict complementarity condition does not hold, the isolated point in A(0)
belongs to the set A(0), but is not contained in As(0). Note that this point has capacity
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Ω

ψ

FIGURE 1. An instance of the obstacle problem for a piecewise quadratic obstacle ψ . The solution S(0) is plotted
in red, while solutions for S(u) with different parameters for u≤ 0 are plotted in green and for u≥ 0 in blue.

strictly positive in this one-dimensional case. Therefore, u = 0 is a point where the re-
spective solution operator is potentially non-differentiable. In the values shown for ui > 0
and ui < 0, the strict complementarity condition holds and the solution operator is differ-
entiable. For ui > 0, the solutions S (ui) lose contact to the obstacle in this point, so the
sets A(ui) have a jump when approaching A(0). Vice versa, the sets As (ui) for ui < 0 do
all contain a neighborhood of the isolated point, whereas in the limit case, As(0) does not
contain this point anymore.

(A) The sets A(u). (B) The sets As(u).

FIGURE 2. The sets A(u) and As(u) respective to the parameters of u and the overall setting plotted in Figure 1.

These observations stress that the Mosco convergence of the sets
(
H1

0 (D(un))
)

n∈N is
connected to monotonicity properties of the sequences (un)n∈N.

Example 5.1. When dealing, e.g., with the sets (H1
0 (Ω \A(un)))n∈N, it can be seen that

the Mosco limit will not be H1
0 (Ω\A(u)) for a decreasing sequence (un)n∈N in cases as in

Figure 2a. One can choose an element v ∈ H1(Rd) with {v > 0} = Ω \As(0) up to a set
of zero capacity, see [Vel15, Prop. 2.3.14] or [HW18, Lemma 3.6], and define vn := v for
all n ∈ N. Then, it holds vn ∈ H1

0 (Ω\A(un)) for all n ∈ N as well as vn→ v. Nevertheless,
v is not an element of H1

0 (Ω\A(0)). Therefore, the Mosco limit of the sequence (H1
0 (Ω\

A(un)))n∈N is not H1
0 (Ω\A(0)) (but rather H1

0 (Ω\As(0))).

The idea to consider increasing sequences of controls (un)n∈N approximating u in or-
der to deduce Mosco convergence of the sets

(
H1

0 (Ω\A(un))
)

n∈N towards H1
0 (Ω \A(u))

becomes apparent. This idea is formalized in the following theorem.
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Theorem 5.1. Let (un)n∈N ⊂U be a convergent sequence of controls with limit u∈U such
that un ↑ u. Then H1

0 (Ω\A(un))→ H1
0 (Ω\A(u)) in the sense of Mosco.

If, furthermore, S is differentiable in un for all n ∈ N, then (S′(un; ·))n∈N converges in
the strong operator topology to Ξ(u; ·), where, for a given h ∈ U the element Ξ(u;h) is
given by the unique solution of

ξ ∈ H1
0 (Ω\A(u)),〈

Lξ − f ′(u;h),z
〉
= 0 for all z ∈ H1

0 (Ω\A(u)).

Proof. The monotonicity of (un)n∈N implies that (S (un))n∈N is an increasing sequence in
H1

0 (Ω) (compare Lemma 3.1), in particular, the sets A(un) are decreasing and, therefore,
the sequence

(
H1

0 (Ω\A(un))
)

n∈N is increasing. Lemma 3.4 implies

lim
n→∞

H1
0 (Ω\A(un)) =

⋃
n∈N

H1
0 (Ω\A(un)).

We want to show that

H1
0 (Ω\A(u)) =

⋃
n∈N

H1
0 (Ω\A(un)).

Corollary 4.1 implies the inclusion

H1
0 (Ω\A(u))⊂

⋃
n∈N

H1
0 (Ω\A(un)).

Let v be an element of
⋃

n∈N H1
0 (Ω\A(un)). Then there is m > 0 such that v ∈ H1

0 (Ω\
A(um)), i.e., v = 0 q.e. on A(um)⊃ A(u). Thus,⋃

n∈N
H1

0 (Ω\A(un))⊂ H1
0 (Ω\A(u))

with Lemma 2.3. Since the set on the right-hand side is closed, also⋃
n∈N

H1
0 (Ω\A(un))⊂ H1

0 (Ω\A(u))

holds.
All in all, we deduce the Mosco convergence of the sequence

(
H1

0 (Ω\A(un))
)

n∈N to-
wards H1

0 (Ω\A(u)).
The assertion that for given h ∈U the sequence S′(un;h) converges to Ξ(u;h) is implied

by Proposition 3.2 and Lemma 3.3. By the Banach Steinhaus theorem, the operator Ξ(u; ·)
is an element of L

(
U,H1

0 (Ω)
)

and the second statement of the theorem follows.
�

5.1. Existence of appropriate differentiability points. In order to infer that the element
Ξ(u; ·) ∈L

(
U,H1

0 (Ω)
)

constructed in Theorem 5.1 is in the subdifferential ∂BS(u) for all
u ∈U , we have to make sure that a sequence of differentiability points (un)n∈N converg-
ing from below to a non-differentiable u always exists. Therefore, we investigate certain
subsets of U as exceptional sets of differentiability. Since we want to construct a mono-
tone sequence, the sets we consider are particular subsets of order cones. We recall the
following theorem:

Theorem 5.2. Let X be a separable Banach space and let Y be a Hilbert space. Let S
be a Lipschitz function from X into Y . Then the set of points in X in which S is Gâteaux
differentiable is dense in X.

For a proof we refer to [BL00, Theorem 6.42]. Here, it is shown that the set of points
in X where S is not Gâteaux differentiable is Aronszajn null. It can be shown that the
complements of Aronszajn null sets are dense in X , see [BL00, Chapter 6.1, p. 127].
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If we assume that X is an Asplund space, it can be shown that even the set of Fréchet
differentiability points is dense and that the mean value theorem holds, see [Pre90, Theo-
rem 2.5]. The requirement that Y is a Hilbert space can be weakened, but for simplicity
and since it is sufficient for our purposes we state the theorem like that.

The following proposition shows that we can always find an approximating sequence of
differentiability points converging from below to a given u ∈U , so that Theorem 5.1 really
yields an element of the Bouligand subdifferential of S in each point u. Therefore, we
impose assumptions on the size of the positive cone in the space U , which are all satisfied
for the examples U = L2(Ω), U = H−1(Ω) or U = Rn.

Assumption 5.1. We assume that V is an ordered space such that the positive cone P :=
{v ∈ V : v ≥ 0} has nonempty interior. Let U be a separable ordered space such that
V is embedded into U . The embedding ι : V → U is assumed to be continuous, dense
and compatible with the order structures of V and U , i.e., if v1,v2 ∈ V with v1 ≤ v2 then
ι(v1)≤ ι(v2) in U .

Proposition 5.1. Let Assumption 5.1 be satisfied and let u ∈U be arbitrary. Then there is
a sequence (un)n∈N such that S is differentiable in each un and un ↑ u.

Proof. Fix u ∈U . Denote by P the positive cone in V and for r > 0 and v ∈V denote by
Br(v) the closed ball of radius r around v in V . For short, we write also Br instead of Br(0).
Let v0 be an interior point of P . Note that this implies that for all λ > 0 the element λv0
is an interior point of P . Without loss of generality, assume that ‖v0‖V = 1.

Define ϑn :=−2−nv0, then ϑn ∈ −P . We define S̃ : V → H1
0 (Ω) by

S̃(v) := S(v+u).

Since V is continuously embedded into U , the operator S̃ is Lipschitz continuous on V .
Therefore, by Theorem 5.2, the set of points in V in which S̃ is differentiable is dense in V .
Thus, we find u1 ∈ ϑ1− (P ∩B2−1) where S̃ is differentiable.

It holds

‖u1‖V ≤ ‖ϑ1‖V +‖u1−ϑ1‖V ≤ 2−1 +2−1 = 1.

Now, for n≥ 2 assume that there is un−1 ∈ ϑn−1−P with

‖un−1‖V ≤ 2−(n−2).

We argue that in V , the set

(ϑn−P)∩ (un−1 +P)∩B2−n(ϑn)(5.1)

has nonempty interior:
Let δn > 0 be such that Bδn(2

−(n+1)v0)⊂P holds and let yn be an arbitrary element of
Bδn . The following arguments show that the element ϑn− 2−(n+1)v0 + yn is contained in
all the sets that are intersected in (5.1).

It holds

ϑn−2−(n+1)v0 + yn ∈ (ϑn−P)(5.2)

as well as

−2−(n+1)v0− yn ∈ −P.(5.3)

From (5.3) and since −un−1 ∈ −ϑn−1 +P we conclude that

ϑn−2−(n+1)v0 + yn = un−1−un−1−2−nv0−2−(n+1)v0 + yn

≥ un−1−ϑn−1−2−nv0−2−(n+1)v0−2−(n+1)v0

= un−1.

(5.4)
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Furthermore, we estimate

‖ϑn−2−(n+1)v0 + yn−ϑn‖V = ‖2−(n+1)v0− yn‖V ≤ 2−(n+1)+δn ≤ 2−n.(5.5)

The arguments in (5.2), (5.4) and (5.5) show that the set in (5.1) has nonempty interior.
Thus, we can find a point in the intersection (5.1), denoted un, where S̃ is differentiable and
which then fulfills

0≥ ϑn ≥ un ≥ un−1

as well as

‖un‖V ≤ ‖ϑn‖V +‖ϑn−un‖V ≤ 2−n +2−n = 2−(n−1).

Next, we argue that S is differentiable in u+ un for all n ∈ N. Since S̃ is just the re-
striction of S to V composed with a translation of u, the directional derivative S̃′(v;h) for
v,h ∈ V is given by S′(v+ u;h). Let n ∈ N. Since S̃ is Gâteaux differentiable in un, the
operator S′(un + u; ·) : V → H1

0 (Ω) is linear. Furthermore, S′(un + u; ·) is continuous on
U since it is given as the solution operator of a variational inequality and since f ′(u; ·) is
continuous on U . Now, density of V in U implies that S′(un + u; ·) is a bounded linear
operator.

By construction, (un +u)n∈N is an increasing sequence of Gâteaux differentiability
points in U that converges to u. �

5.2. Main result. We are now in the position to summarize our results and prove our main
result.

Theorem 5.3. Assume that U satisfies Assumption 5.1 and let u ∈U be arbitrary. Then
the operator Ξ(u; ·) ∈L

(
U,H1

0 (Ω)
)
, where Ξ(u;h) is given by the unique solution to the

variational equation

ξ ∈ H1
0 (Ω\A(u)),〈

Lξ − f ′(u;h),z
〉
= 0 for all z ∈ H1

0 (Ω\A(u)),
(5.6)

is in the Bouligand subdifferential of S in u.

Proof. Proposition 5.1 yields the existence of a sequence (un)n∈N such that S is Gâteaux
differentiable in un for each n ∈ N with un ↑ u in U .

By Theorem 5.1, for all h ∈U , the sequence (S′ (un;h))n∈N converges to the solution
Ξ(u;h) of (5.6). By definition of ∂BS(u), see Definition 1.1, it holds Ξ(u; ·) ∈ ∂BS(u). �

5.3. Adjoint representation of the subgradient. Let J : H1
0 (Ω)×U → R be a continu-

ously differentiable objective function. We consider an optimization problem with respect
to this objective function, which is constrained by our variational inequality

min
y,u

J(y,u)

subject to y ∈ Kψ ,

〈Ly− f (u),z− y〉 ≥ 0 for all z ∈ Kψ .

The question arises, how an element of Clarke’s generalized gradient ∂CĴ(u) respective to
the reduced objective function

Ĵ(u) := J (S(u),u)

can be computed. See [Cla90] for details on Clarke’s generalized gradient.

Theorem 5.4. Let q be the unique solution of the variational equation

q ∈ H1
0 (Ω\A(u)),

〈L∗q,v〉=
〈
Jy (S(u),u) ,v

〉
for all v ∈ H1

0 (Ω\A(u)).
(5.7)
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Then it holds

f ′(u)∗q+ Ju (S(u),u) ∈ ∂CĴ(u).

Here, f ′(u)∗ ∈L
(
H1

0 (Ω),U∗
)

is the Banachian adjoint of f ′(u) ∈L
(
U,H−1(Ω)

)
and

L∗ ∈L
(
H1

0 (Ω),H−1(Ω)
)

is the Banachian adjoint of L ∈L
(
H1

0 (Ω),H−1(Ω)
)
.

Proof. The coercivity of L∗ follows from the coercivity of L, thus the variational equation
(5.7) has a unique solution. It holds

∂CĴ(u) 3 Σ
∗Jy (S(u),u)+ Ju (S(u),u)

for all Σ ∈ ∂BS(u), see Remark 1.1, Item 2.
Let q ∈ H1

0 (Ω) be the solution to (5.7). We verify that f ′(u)∗q fulfills〈
Ξ(u; ·)∗Jy (S(u),u) ,w

〉
U∗,U =

〈
f ′(u)∗q,w

〉
U∗,U(5.8)

for all w ∈U , where Ξ(u;h) is given by the solution to

ξ ∈ H1
0 (Ω\A(u)),

〈L∗z,ξ 〉=
〈

f ′(u;h),z
〉

for all z ∈ H1
0 (Ω\A(u)),

(5.9)

see Theorem 5.3.
In fact, for all w ∈U it holds〈

f ′(u)∗q,w
〉

U∗,U =
〈

f ′(u;w),q
〉

(5.9)
= 〈L∗q,Ξ(u;w)〉

(5.7)
=
〈
Jy (S(u),u) ,Ξ(u;w)

〉
=
〈
Ξ(u; ·)∗Jy (S(u),u) ,w

〉
U∗,U

and thus (5.8) holds. �
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